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ABSTRACT Deep learning techniques are currently the state of the art approach to deal with image classi-
fication problems. Nevertheless, non-expert users might find challenging the use of these techniques due to
several reasons, including the lack of enough images, the necessity of trying different models and conducting
a thorough comparison of the results obtained with them, and the technical difficulties of employing different
libraries, tools and special purpose hardware like GPUs. In this work, we present FrImCla, an open-source
and free tool that simplifies the construction of robust models for image classification from a dataset of
images, and only using the computer CPU. Given a dataset of annotated images, FrImCla automatically
constructs a classification model (both for single-label and multi-label classification problems) by trying
several feature extractors (based both on transfer learning and traditional computer vision methods) and
machine learning algorithms, and selecting the best combination after a thorough statistical analysis. Thus,
this tool can be employed by non-expert users to create accurate models from small datasets of images
without requiring any special purpose hardware. In addition, in this paper, we show that FrImCla can be
employed to construct accurate models that are close, or even better, to the state-of-the-art models.

INDEX TERMS AutoML, deep learning, image classification, transfer learning.

I. INTRODUCTION
Nowadays, there exists an increment in the use of deep
learning methods in a wide variety of computer vision appli-
cations, for example, in image classification within X-ray
baggage security [1] or in the classification of gastrointesti-
nal diseases [2]. However, using deep learning techniques
presents several challenges for non-expert users. First of
all, deep learning methods are usually data demanding, and
acquiring such an amount of images in problems related
to, for instance, object classification in biomedical images,
might be difficult [2]–[4].Moreover, there is not a silver bullet
solution to solve all the image classification problems [5],
and for each particular problem, it is necessary to conduct
a thorough analysis of several algorithms to determine the
improvement of one method with respect to the others.
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To overcome the problem of limited amount of data, one
of the most fruitful approaches in the literature consists
in applying transfer learning [6]. This technique re-uses a
model trained in a source task in a new target task [7]–[10].
As explained in [6], transfer learning can be employed in
different ways; one of them consists in using the output
of a trained source network as ‘‘off-the-shelf’’ features that
are employed to train a complete new classifier for the tar-
get task [7]. However, there are several source models (for
instance, DenseNet [11], GoogleNet [12], or Resnet 50 [13]
among others) that can be employed to extract the features;
hence, the second problem— conducting a thorough analysis
of different methods still remains. In order to tackle such a
challenge, the methodology presented in [14], [15] can be
employed to carry out a statistical analysis.

Even if the combination of transfer learning, machine
learning algorithms and statistical analysis can be used to
create models for image classification; it is necessary to
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combine several tools, and connecting those libraries is a
time-consuming, tedious and error-prone task, that leads to
‘‘pipeline jungles’’ that are difficult to use by non-expert
users [16]. In this work, we try to simplify the access and
use of those tools in the line of Automated Machine Learn-
ing (AutoML) research [17], see Section II. To achieve such
an aim, we have built FrImCla, a tool that allows users
to experiment with deep learning and traditional computer
vision techniques for single-label and multi-label image clas-
sification in a simple way, see Section III. In order to illustrate
the use of FrImCla and its feasibility to construct useful
image classification models for a variety of contexts and
using different dataset sizes, we study several single-label and
multi-label datasets in Section IV; and in addition, we com-
pare FrImCla with other AutoML tools in Section V. The
paper ends with a Conclusions section.

FrImCla is available at https://github.com/ManuGar/
FrImCla where the interested reader can find a complete
documentation, and several examples showing how to use this
tool.

II. RELATED WORK
The goal of Automated Machine Learning (AutoML) is
the democratisation of machine learning techniques [17].
This aim is achieved by simplifying the construction and
usage of machine learning models, mainly supervised mod-
els, for domain experts that have a limited machine learning
background.

Typically, a researcher approaches a supervised machine
learning problem as follows. First of all, a set of features is
extracted from a raw dataset — this step is known as feature
extraction. Subsequently, the researcher selects a machine
learning algorithm to fit the data (that is, model selection)
and chooses a set of hyperparameters to make the model as
accurate as possible (that is, hyperparameter tuning). Finally,
the researcher validates the model to check whether it gener-
alises properly. There are dozens of alternatives for each one
of the steps of the machine learning pipeline, and AutoML
techniques try to find the best combination for each particular
problem [18].

The most well-known AutoML techniques have been
focused on hyperparameter tuning; that is, finding the best
hyperparameters for a model. These techniques includemeth-
ods such as grid search [19], random search [19] or Bayesian
optimisation [20]. Since there is not a single model that
works best for every problem [21], hyperparameter tuning
has to be conducted for several models. This issue has
been addressed by tools like SMAC [22], Auto-WEKA [23],
RapidMiner [24] or Auto-Sklearn [25] that discover the best
combination of model and hyperparameters. Another interest
of AutoML has been feature construction; for instance by
creating features from relational databases via deep feature
synthesis [26]. Finally, there are also end-to-end tools, such
as TPOT [27] (that is built on top of the library scikit-learn
and automatically designs and optimises machine learn-
ing pipelines), MLBox [28] (a library with components for

preprocessing, optimising and predicting), the caret pack-
age [29] (a set of several tools for automatically developing
predictive models using the R language), or the Automatic
Statistician [30] (a tool that automates many aspects of data
analysis, model discovery and explanation).

The aforementioned methods and tools are focused on
constructing shallow models from structured data. In the case
of unstructured data, such as images or text, AutoML tech-
niques are mainly focused on automatically designing neural
deep architectures [31]. This approach, known as Neural
Architecture Search (NAS), usually involves reinforcement
learning [32] or evolutionary algorithms [33] to discover new
neural networks, and has outperformed manually designed
architectures on tasks such as image classification or object
detection [34]. However, even if NAS techniques avoid the
manual design of neural architectures for image classifica-
tion, the adoption of these techniques by non-expert users
to construct recognition models is far from trivial; mainly,
because they are computationally intensive (for instance,
NasNet takes 1800 GPU days [34], and AmoebaNet takes
3150 GPU days [35]), require some prior knowledge about
typical properties of architectures to simplify the search [31],
and also require some coding experience to use the libraries
that implement the NAS methods.

Nevertheless, non-expert users can take advantage of
AutoML techniques to construct image classification mod-
els thanks to tools like Auto-Keras [36], an open-source
package on top of the Keras library [37] that uses Bayesian
optimisation for NAS by efficiently adapting itself to dif-
ferent GPU memory limits; DEvol [38], a library also on
top of Keras that employs genetic architecture search; or
Ludwig [39], a toolbox built on top of Tensorflow [40] that
allows anyone to train deep learning models for different
tasks. Even, if these tools are less computationally demanding
that usual NAS techniques, the selection and construction of
the best model is time-consuming, and distributed and cloud
services, like Google cloud vision or Azure custom vision,
have arisen [41], [42].

However, all the mentioned AutoML approaches have
drawbacks when working in the context of image classifi-
cation. First of all, most of the tools are designed to work
with structured data; hence, the issue of extracting features
from raw images remains an important challenge — it is
worth noting that the efficacy of machine learning algorithms
heavily relies on the employed features [43]. Tools that can
train classification models from raw images, such as Auto-
Keras [36] and AutoML cloud services [42], also have draw-
backs. Auto-Keras is both data–demanding and requires the
usage of GPUs to search the best architecture in a reasonable
time. In the case of AutoML cloud services, these services
are not free to use, might be difficult to configure, and raise
concerns about privacy.

In this paper, we address all these challenges with the
development of FrImCla, an open-source tool that can auto-
matically construct image classification models from a small
dataset of annotated images using transfer learning and
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FIGURE 1. Workflow of the FrImCla framework.

traditional computer vision techniques. Namely, the contri-
butions of this work are:

• We have developed FrImCla, an AutoML tool for
image classification based on transfer learning. More-
over, we have designed FrImCla as a modular tool (see
Section III). Therefore, it is possible to easily incor-
porate new feature extractors, classification algorithms,
or tuning algorithms without modifying the current
code.

• In addition, FrImCla tackles two of the main drawbacks
to employ deep learning methods: the amount of data
and the usage of special-purpose hardware like GPUs
(see Section IV).

• Finally, we have conducted a comprehensive evaluation
where we have analysed the performance and features
of FrImCla with respect to other AutoML tools (see
Section V).

III. FRIMCLA DESCRIPTION
FrImCla (that stands for Framework for Image Classifica-
tion) is an open-source library that has been implemented in
Python. This framework relies on several third-party open-
source libraries that have been employed and tested by
large communities; namely, scikit-learn [44], for machine
learning methods and parallelisation techniques; scikit-
multilearn [45], for multi-label classification algorithms;
OpenCV [46], to extract traditional computer vision features;
Keras [37], to extract deep learning features; and cPickle [47],
to serialize objects.

The workflow of the FrImCla framework is depicted
in Figure 1 and can be summarised as follows. First of
all, the user selects the image dataset to be studied and
some configuration parameters (mainly the feature extraction
and machine learning methods to be used). Subsequently,
FrImCla extracts features from the dataset using the set of
fixed feature extractor methods given by the user; and a
dataset of features is created for each of them. On these

datasets of features, FrImCla trains the selected machine
learning algorithms, and a statistical analysis is conducted to
select the best combination of features and machine learn-
ing algorithm. From such a winner combination, a model is
created for further usage. Apart from the first step — that is,
the selection of feature extraction methods and algorithms to
be tried — the rest of the process is carried out automatically
by FrImCla without any user intervention.

The rest of this section is devoted to explain these steps
more thoroughly.

A. FRIMCLA INPUT
FrImCla has been developed for different types of users.
Non-expert users have at their disposal tools that make its
execution easier, whereas more advanced users can integrate
FrImCla in their own programs. For all users, documentation
is available in the project web page explaining the different
parts of the framework, the dependencies of the framework
and so on.

Expert users can use FrImCla as a Python library, and
invoke the methods to create their own model for predictions.
For this kind of users this framework can be installed via
pip [48]. Non-expert users can use FrImCla in a different
way. In this case, the users have to create a JSON file with
the parameters of the program where they have to fix seven
parameters: the dataset of images, the output path, a selection
of methods for feature extraction, the supervised learning
algorithms, the metric to measure the performance of the
generated models, the kind of problem (single-label or multi-
label), and whether the output will be the best model or an
ensemble of models.

Despite the simplicity of JSON files, there may still
be users who find it difficult to create. For this type of
users, we have developed a set of Jupyter notebooks [49].
This is a very useful tool since the user has a detailed
explanation of each step that must be executed to use
FrImCla.
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B. iFEATURE EXTRACTION
FrImCla offers several feature extractor methods (employ-
ing both traditional and transfer-learning techniques) to
describe the dataset of images. In the case of traditional
computer vision feature extractors, FrImCla includes LAB
and HSV histograms [50], Haralick features [51] and HOG
features [52] — this functionality has been implemented
using the OpenCV library. In the case of transfer learn-
ing methods, we employ the output from the last layer of
several deep learning networks, trained for the ImageNet
challenge [53], as feature extractors; namely, the user can
select among VGG16 [54], VGG19 [54], DenseNet [11],
ResNet [13], Inception [55], GoogleNet [12], Overfeat [56]
and Xception [57]. Moreover, FrImCla has been designed to
easily include other feature extraction methods. In particular,
we distinguish two ways of adding a new feature extractor
to FrImCla. The first option consists in defining a function
that given an image returns a list of features — this approach
should be employed when the feature extractor is based on
the expert knowledge. The second option takes as input any
trainedKerasmodel and applies transfer learning using such a
network— as explained for the previous networks trained for
the ImageNet challenge. The features extracted from images
are used to train the classification models.

C. CLASSIFICATION MODELS
Similarly to the case of feature extraction methods, FrImCla
users can select among several supervised learning algo-
rithms including SVM [58], KNN [59], Neural networks [60],
Gradient Boost [61], Logistic Regression [62], Random
Forest [63] and Extremely Randomised Trees [64] for
single-label datasets. In the case of multi-label datasets,
FrImCla users can employ all the aforementioned algo-
rithms through the binary relevance [65], the classifier
chain [66], and the label powerset [45] methods; and,
additionally, the ML-KNN [67] and the MLTSVM [68]
methods are provided. In both cases, the list of algo-
rithms can be easily extended to incorporate other
techniques.

The machine learning algorithms are trained using a strat-
ified 10-fold cross validation. The cross-fold validation con-
sists in dividing the dataset into 10 parts, one of them is used
for testing and the other parts are used for training the model.
The hyperparameters of each machine learning algorithm
are chosen using a randomised search on the parameters
distributions. The framework uses the test part to know the
performance of the model. The process is repeated until each
of the 10 parts are used for testing. The user can also choose
among several metrics to measure the performance of the
models including accuracy, F1-score, recall, precision and
AUC.

The information obtained from the cross-validation
is employed to select the best combination of feature
extractor and classification algorithm using a statistical
analysis.

D. STATISTICAL ANALYSIS
The 10-fold cross validation procedure explained previously
is enough for selecting the overall best combination of fea-
ture extractor and machine learning algorithm. In addition,
FrImCla provides a statistical method, that does not pro-
duce any computational overhead, to find whether there are
significant differences among the constructed models. This
procedure is widely employed in several fields [69]–[71].

In order to determine whether the difference between the
results of the different combinations of feature extractors and
classification algorithms are statistically significant, several
null hypothesis tests are performed using the methodology
presented in [14], [15]. In order to choose between a para-
metric and non-parametric test to compare the models, three
conditions are checked: independency, normality and hetero-
cedasticity; the use of a parametric test is only appropriate
when the three conditions are satisfied.

The independence condition is fulfilled because different
runs following a stratified 10-fold cross-validation approach
are applied before separating the data with a prior random
reshufling of the samples. We use the Shapiron andWilk [72]
to check normality — with the null hypothesis being that the
data follow a normal distribution — and a Levene test [73]
to check heteroscedasticity — with the null hypothesis being
that the results are heteroscedastic.

When comparing two models, the Student’s t-test [14] is
employed when the parametric conditions are satisfied, and
a Wilcoxon’s test [14] is employed otherwise. In both cases
the null hypothesis is that the two models have the same
performance. If we compare more than two models, ANOVA
test [15] is employed when the parametric conditions are
fulfilled, and a Friedman test [15] otherwise. In both cases,
the null hypothesis is that all the models have the same per-
formance. Once the test for checking whether the models are
statistically different among them has been conducted, a post-
hoc procedure is employed to address the multiple hypothesis
testing between the different models. A Bonferroni-Dunn
post-hoc procedure [15], in the parametric case, or a Holm
post-hoc procedure [74], in the non-parametric case, is used
for detecting significance of the multiple comparisons [14],
[15] and the p values should be corrected and adjusted.
We perform our experimental analysis with a level of con-
fidence equal to 0.05. In addition, the size effect is measured
using Cohen’s [75] and Eta Squared [76]. This process is
performed twice. The first analysis collects the best machine
learning algorithm for each feature extractor and the second
analysis is focused on knowing which is the overall best
combination.

E. OUTPUT OF THE FRAMEWORK
FrImCla has two output modes: best classifier and ensemble
of models. In the former, once the results of the statisti-
cal analysis are obtained, FrImCla analyses which one is
the best combination of feature extractor and classification
algorithm. From that combination, the algorithm is retrained
with the whole dataset to be further used. FrImCla generates
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documentation about the choice of the best model such as the
accuracy or the measure selected for the training process, and
it also informs the user about the time taken throughout the
execution. In the latter mode, the best algorithm for each fea-
ture extractor is retrained, and it is used as a component of an
ensemble based on the majority voting scheme [77] — this
technique uses all the models to predict the classes of the
images; and, the class with the majority of the votes is the
one that results from the prediction. Normally, the ensemble
mode gives better results than using just onemodel for predic-
tion [77]; however, it takes more time because it uses several
models to obtain the final result.

The framework generates a model that can be used in
several ways. For expert users, they can use the command
line or the Python functions provided for such an aim. These
users can also exploit the model within their own libraries.
Another option to interact with the generated model is using
the Jupyter notebooks. With this option the user can read and
learn what the model needs. The last option is a simple web
application. This option is focused on the users that only want
to predict the class of their images. FrImCla asks the users if
they want to generate automatically a web application using
the model resulting from the previous process.

IV. RESULTS
In order to test the suitability of FrImCla, we consider four
different scenarios. First, we perform a thorough analysis
of two biomedical dataset of images: the MIAS dataset
of images [78] (devoted to study whether an abnormal-
ity appears in a mammographic image) and a malaria
dataset [79]. Subsequently, we analyse the performance
of different feature extractors for a variety of single-label
datasets coming from different fields and with various sizes.
Finally, we perform a similar analysis for multi-label datasets.
All the experiments presented in this section were run in a
computer under Linux OS on a machine with CPU Intel Core
i5-8250U 3.60GHz and 7.7 GiB of RAM.

A. MIAS
The MIAS dataset consists of a set of 161 pairs of mammo-
graphic images. It has 322 photos that can be classified in
several ways. The photos are in grayscale and they have an
average size of 150× 150. The images can be classified into
two classes (normal or abnormal) or they can be classified
into three classes (normal, benign or malign) depending on
the severity of the abnormality. There are 113 abnormal
images and 209 normal. The dataset is divided into 80% for
training and 20% for testing to know the performance of the
framework.

Using FrImCla, we have performed a thorough study by
combining all the available feature extractors and machine
learning models. Namely, we employed as featured extrac-
tors: VGG16, VGG19, Resnet, Inception, GoogleNet, Over-
feat, DenseNet, LAB444, LAB888, HSV444 and HSV888
(where LABXYZ and HSVXYZ are respectively LAB and
HSV histograms using X,Y,Z bins per channel); and as

FIGURE 2. Scatter diagram of the MIAS dataset.

machine learning algorithms: SVM, KNN, Multilayer per-
ceptron (MLP), Gradient Boost (GB), Logistic Regression
(LR), Random Forest (RF), and Extremely Randomised
Trees (ET).

In order to compare all the possible combinations, we anal-
yse the statistical study performed by FrImCla. The analysis
has two steps, the former serves to determine the best machine
learning algorithm for each feature extractor; whereas, the lat-
ter determines which is the best overall combination. From
the first analysis, see Table 1 and Figure 2, we can observe
that using transfer learning features, we can easily obtain
an accuracy higher than 80% but only with a few of them
we can achieve an accuracy over 90%. On the contrary,
models trained using traditional features are far from the
80% accuracy. This shows the importance of trying different
models. In the second analysis, see Table 2 and Figure 3,
we compare the best model for each feature extractor, and we
check whether the three conditions (independence, normality
and heteroscedasticity) are fulfilled. As the conditions are not
fulfilled, a Friedman test is performed and gives us a ranking
of the compared models assuming as null hypothesis that all
themodels have the same performance.We obtain differences
(F = 11.36; p = 6.97×10−9) among themodels, with a large
size effect η2 = 0.593969 (see Table 2). As a result of the
analysis, we see that the best combination of feature extractor
and machine learning algorithm is Overfeat with Logistic
Regression (although similar results are obtained with other
methods) with an accuracy of 93.6%. The result with the test
set is a 92.53% accuracy and a 90.95% AUC.

Now, we compare our results with the state-of-the-art
models for the MIAS dataset. The best model in the lit-
erature for the MIAS dataset was presented in [80] and
achieved an accuracy of 98% using fine-tuning — a transfer
learning technique. In [80], they fine-tuned the networks
VGG16, Resnet50 and Inception v3 for the MIAS dataset;
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TABLE 1. Mean accuracy (and standard deviation) of the different studied models for the MIAS dataset. The best result for each model in italics, the best
result in bold face. ∗∗p < 0.01;∗∗∗p < 0.001; >: there are significant differences; ': there are not significant differences.

FIGURE 3. Box diagram of the MIAS dataset.

but, instead of applying transfer learning from natural images,
they fine-tuned the networks previously trained in othermam-
mographical datasets. This shows the importance of transfer-
ring the knowledge from closer domains. However, such an
approach requires networks trained in similar datasets with
more than 6100 images and the use of GPUs, two restrictions
that are not always fulfilled.

Up to the best of our knowledge, the best model for the
MIAS dataset built only from images of this dataset was
presented in [81], and also used transfer-learning from natural

TABLE 2. Adjusted p-values with Holm, and Cohen’s d for best models in
MIAS dataset. Control technique: Overfeat-LR.

images, as in our case. In [81], the networks Inception,
Xception and MobileNet were fine-tuned achieving an accu-
racy of 90% in the test set using the same percentage split
employed in our work. Such an accuracy is lower than ours,
and was obtained using GPUs.

B. MALARIA PARASITE CLASSIFICATION
In our second case study, we consider the Malaria parasite
classification dataset that consists of 27,558 cells images. The
images are in colour and have an average size of 150× 150.
These images can be classified into two classes: parasitized
and uninfected. There are 13,779 for each class. For this
example, we use only 2,000 images (1,000 images per class)
for training and the rest of the dataset for testing.

We apply the two-stage analysis employed previously.
When comparing the best model for each feature extractor,
as the parametric conditions are not fulfilled, a Friedman
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TABLE 3. Mean accuracy (and standard deviation) of the different studied models for the Malaria dataset. The best result for each model in italics,
the best result in bold face. ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05; >: there are significant differences; ': there are not significant differences.

TABLE 4. Adjusted p-values with Holm, and Cohen’s d for best models in
Malaria dataset. Control technique: LAB888-GB.

TABLE 5. Datasets used for single-label classification.

test is performed and give us a ranking of the compared
models assuming as null hypothesis that all the models have
the same performance, see Table 3. We obtain differences
(F = 52.53; p = 1.11 × 10−16) among the models, with
a large size effect η2 = 0.942912 (see Table 4). As a result

FIGURE 4. Scatter diagram of the Malaria dataset.

of the analysis, the best combination of feature extractor and
machine learning algorithm is LAB888 with Gradient Boost
(although similar results are obtained with other methods)
with an accuracy of 94.8%. In this example, we can see how
deep learning models do not always give us the best results
and, therefore, it is important to study other alternatives.
As we can see in the Figure 4, classical computer algorithms
obtain better results than deep learning algorithms. This result
highlights the importance of testing all models, because there
is not one that produces the best results for all problems.
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TABLE 6. Results obtained by FrImCla in the single-label datasets.

FIGURE 5. Box diagram of the Malaria dataset.

After conducting the statistical analysis using 2000 images,
we employed the rest of the dataset for testing, obtaining
a 95.4% accuracy using LAB888 as feature extractor and
Gradient Boost as classifier model.

The malaria dataset was released recently, and the best
model for this dataset was presented in [79] also using trans-
fer learning. In that work, they used the networks AlexNet,
VGG16, Xception, Resnet andDenseNet as feature extractors
to subsequently train a fully-connected network. They use
the entire dataset with a five-fold cross-validation obtaining a
95.7% accuracy employing GPUs. On the contrary, we only
needed 2000 images of the dataset to obtain a similar accuracy
of 95.4% and without using special purpose hardware.

C. SINGLE-LABEL DATASETS
In the two previous sections, we have performed a thorough
analysis of the performance of FrImCla on two biomedical
datasets. Now, we consider 9 datasets coming from differ-
ent fields and that have a variety of sizes and number of

TABLE 7. Results obtained by FrImCla in the multi-label datasets.

classes — a summary of those datasets is provided in Table 5.
Using the two-stage procedure previously presented, we have
analysed the performance of FrImCla on those datasets using
VGG16, VGG19, Resnet, Inception, GoogleNet, Overfeat,
Xception, and HOG as feature extractors; and SVM, KNN,
Multilayer perceptron, Gradient Boost, Logistic Regres-
sion, Random Forest, and Extremely Randomised Trees as
machine learning algorithms.

In this study, we provide a summary of the results obtained
using FrImCla; namely, in Table 6, we include the best model
constructed with each feature extractor. From that table,
we can notice that, even if there is not a single feature extrac-
tor that obtains the best results for all datasets, the Overfeat
feature extractor stands out since it achieves the best accuracy
in 6 out of the 9 datasets. Something similar happens with the
classification algorithm, since in 6 out of 9 datasets the SVM
classifier produces the best results. Therefore, we can claim
that, in general, the Overfeat feature extractor captures better
the underlying representation of images from different fields.

D. MULTI-LABEL DATASETS
We finish this section by analysing the results obtained by
FrImCla in three multi-label datasets. Namely, we employ
the Scenes dataset [91] (2000 natural scene images, with
5 distinct class labels and with 1.24 class labels per image
on average), the UCMerced archive [92] (2100 geospatial
images, with 17 distinct class labels and with 3.33 class
labels per image on average), and the Apparel dataset [93]
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TABLE 8. Features of AutoKeras, Devol, FrImCla and Ludwig for constructing image classification models.

(11385 images of cloths, with 11 distinct class labels and with
2 class labels per image).

As in the previous sections, we have applied a two-stage
analysis to find the best model for each dataset. In this
scenario, we have employed 8 feature extractors (VGG16,
VGG19, Resnet, Inception, GoogleNet, Overfeat, Xcep-
tion, and Haralick) and 23 classifiers (the binary relevance,
the classifier chain, and the label powerset methods applied to
SVM, KNN, Multilayer perceptron, Gradient Boost, Logis-
tic Regression, Random Forest, and Extremely Randomised
Trees; and, the ML-KNN and MLTSVM classifiers).

The results obtained in the second stage of the procedure
are summarised in Table 7. Similarly to the results pre-
sented in the previous section, the Overfeat feature extractor
produces the best results for both the Apparel and Scenes
datasets, and there are not significant differences between the
results obtained with this feature extractor and those obtained
with the best extractor for the UCMerced archive. On the
classifier side, the best algorithm depends on the concrete
problem, binary relevance combined with Logistic regression
for the Apparel dataset, label powerset using a Multilayer
perceptron for the Scenes dataset, and label powerset using
Logistic regression for the UCMerced archive.

V. DISCUSSION
FrImCla is aligned with the research related to AutoML.
The main difference of FrImCla with respect to the major-
ity of AutoML tools, such as Auto-sklearn [25] or Auto-
WEKA [23], is that, instead of working with structured data,
FrImCla works with raw datasets of images. Such a feature
is only available, at least up to the best of our knowledge,
in other four open-source tools: AutoKeras [36], Devol [38],
Ludwig [39], and WND-CHARM [94]. In this section,
we compare the characteristics, and performance, of these
five tools. We start by analysing the methods employed by
each of these systems.

Despite the fact that the five tools can be employed to
construct image classification models, they take different
paths to achieve such an aim. The only tool that employs
traditional image features and machine learning algorithms
is WND-CHARM; the rest of the tools employ deep learn-
ing methods. The underlying technique of both AutoKeras
and Devol is neural architecture search — using Bayesian
optimisation to conduct the search in the case of AutoKeras,
and a genetic algorithm in the case of Devol. In the case of

TABLE 9. Datasets used for comparing AutoML tools.

FrImCla and Ludwig, they use transfer learning — the main
difference being that FrImCla carries out a thorough analysis
of different architectures to find the best possible solution for
each particular problem, and, on the contrary, Ludwig only
uses either the ResNet or VGG architecture as encoder to
construct a model. In order to decide the best explored model,
AutoKeras and Devol use the holdout method (that is, part
of the dataset is only used for validating the performance of
themodels),WND-CHARMuses k-fold cross validation, and
FrImCla employs the thorough statistical analysis discussed
in Section III.

The underlying techniques of these systems have an impact
on the computational resources that are required to run them:
AutoKeras and Devol can only be executed using a computer
with a GPU, due to the computational intensive nature of
the neural architecture search algorithms; while FrImCla,
Ludwig and WND-CHARM can be run just using a CPU; in
addition, both FrImCla and Ludwig can take advantage of a
GPU if it is available in the user’s computer. Since Ludwig
does not explore different alternatives and WND-CHARM
explores less alternatives, they are faster than FrImCla. It is
worth mentioning that in spite of using different techniques
for constructing image classification models, the four tools
that employ deep learning methods (that is, AutoKeras,
Devol, FrImCla, and Ludwig) rely on the Keras library to
implement them, a point that facilitates the installation of
these libraries.

An instrumental aspect of AutoML tools is their usability,
and this starts with their installation. AutoKeras, Devol, FrIm-
Cla, and Ludwig can be installed on any operating system
which has Python available on it — that is, they can be
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TABLE 10. Comparison of the performance of AutoKeras, Devol, FrImCla, Ludwig, and WND-CHARM for constructing image classification models
in 11 image classification problems. The best result is highlighted in bold face.

easily installed in Windows, Linux and Mac. In the case of
AutoKeras, FrImCla and Ludwig by using the pip package
installer; and by cloning a Git repository in the case of
Devol. The installation of WND-CHARM might be more
challenging, especially for Windows users, since it requires
a C++ compiler and several C++ libraries.
With respect to their usage, AutoKeras and Devol can only

be invoked as Python libraries; so, they require some coding
experience. On the contrary, Ludwig only requires a JSON
file that should be provided as a parameter of a command
invoked from the console; and, similarly, WND-CHARM is
invoked from a command line interface, and it only requires
as parameters the paths to the folders containing the images.
In the case of FrImCla, we support different executionmodes:
FrImCla can be used as a library, as AutoKeras and Devol;
by means of a JSON file, as Ludwig; or by means of Jupyter
notebooks, that provide a detailed explanation of each step
that must be executed. Finally, the last usability aspect that we
consider is the interaction required from the users. In WND-
CHARM, users do not provide any configuration parame-
ter; in AutoKeras, users provide the maximum time that the
search can be run; in Devol, users fix the population size and
the number of generations that the genetic algorithm is run;
in Ludwig, they select the encoder algorithm, either ResNet
or VGG; and, in FrImCla, users choose the feature extraction
and classification algorithm, but it is also possible to explore
all the possible alternatives automatically.

We finish this section by comparing the performance of
AutoKeras, Devol, FrimCla, Ludwig, andWND-CHARM by
using 11 datasets from different types of image classification
problems (these datasets were studied in [95]) — the sizes
of the training sets, test sets, and the number of classes in
each dataset are listed in Table 9. The accuracy achieved by
each tool is presented in Table 10. The execution environment
used for the tests has been Google Colab with the GPU option
activated for AutoKeras, Devol, and FrimCla; and for Ludwig
and WND-CHARM, the experiments were run in a computer
under Linux OS on a machine with CPU Intel Core i5-8250U
3.60GHz and 7.7 GiB of RAM.

As we can see, FrImCla obtains better results in most
datasets, and in several cases the improvement is very notice-
able. There are only three datasets where other tools achieve
a better accuracy, and even in those cases, the best accu-
racy and FrImCla’s accuracy are close. It is worth noting
that in most datasets, AutoKeras, Devol, and Ludwig tend
to overfit, whereas the models constructed by FrimCla and
WND-CHARM generalise properly.

VI. CONCLUSION
In this paper, we have presented FrImCla, an open-source
framework that allows users to easily create image classifi-
cation models. This is achieved by automating all the steps
required to train an image classification model. Namely,
FrImCla is able to select the best combination of feature
extractor and classification algorithm by conducting a com-
prehensive statistical study.

FrImCla can be framed in the context of AutoML tools,
but it has several advantages with respect to the existing
tools. First of all, FrImCla automatises the whole pipeline to
construct classification models from raw images. In addition,
it reduces the amount of data and computational resources
that are required to train those classification models thanks
to the use of transfer learning. Furthermore, the accuracy
achieved by the models constructed with FrImCla is superior
to the accuracy obtained using other AutoML tools. In fact,
FrImCla models can achieve close results to state-of-the-art
models specific for concrete problems by using a general
method that can be applied to any dataset.

To summarise this work, FrImCla aims to help users with-
out a deep understanding about machine learning or computer
vision, but that are interested in building image classification
models for their problems. Thanks to FrImCla, users from
several contexts can use state-of-the-art techniques and build
accurate models from small datasets, and without requiring
any special hardware. In the future, we plan to extend the
FrImCla framework to deal not only with the problem of
classification, but also with other important problems such
as localisation, detection and semantic segmentation.
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