
symmetryS S

Article

Convergence and Dynamics of a
Higher-Order Method

Alejandro Moysi 1 , Ioannis K. Argyros 2, Samundra Regmi 2 , Daniel González 3 ,
Á. Alberto Magreñán 1,* and Juan Antonio Sicilia 4

1 Universidad de la Rioja, Av. de la Paz, 93-103, 26006 Logroño, La Rioja, Spain; alejandromoysi@yahoo.es
2 Department of Mathematical Sciences, Cameron University, Lawton, OK 73505, USA;

iargyros@cameron.edu (I.K.A.); samundra.regmi@cameron.edu (S.R.)
3 Escuela de Ciencias Físicas y Matemáticas, Universidad de las Americas, Avda. de los Granados y Colimes,

Quito 170125, Ecuador; daniel.gonzalez.sanchez@udla.edu.ec
4 Universidad Internacional de la Rioja (UNIR), Av. de la Paz 137, 26006 Logroño, La Rioja, Spain;

juanantonio.sicilia@unir.net
* Correspondence: angel-alberto.magrenan@unirioja.es

Received: 31 December 2019; Accepted: 17 February 2020; Published: 5 March 2020
����������
�������

Abstract: Solving problems in various disciplines such as biology, chemistry, economics, medicine,
physics, and engineering, to mention a few, reduces to solving an equation. Its solution is one of
the greatest challenges. It involves some iterative method generating a sequence approximating the
solution. That is why, in this work, we analyze the convergence in a local form for an iterative method
with a high order to find the solution of a nonlinear equation. We extend the applicability of previous
results using only the first derivative that actually appears in the method. This is in contrast to either
works using a derivative higher than one, or ones not in this method. Moreover, we consider the
dynamics of some members of the family in order to see the existing differences between them.

Keywords: high-order iterative method; convergence; dynamics

1. Introduction

Mathematics is always changing and the way we teach it also changes, as can be seen in the
literature. Moreover, in advanced mathematics we need to use different alternatives since we all know
the different problems that students encounter. In this paper, we present a study on iterative methods
that can be used in postgraduate studies in order to teach them.

In the present work, we are focused on the problem of solving the equation

g(x) = 0, (1)

giving an approximating solution x∗, where g : Ω ⊆ S→ S is differentiable and S = R or C. There exist
several studies related to this problem, since we need to use iterative methods to find the solution.
We refer the reader to the book by Petkovic et al. [1] for a collection of relevant methods. The method
of interest is in this case:

yn = xn −
g(xn)

g′(xn)
,

tn = yn −
g(yn)(g(xn) + ρg(yn))

g′(xn)(g(xn) + (ρ− 2)g(yn))
, (2)

xn+1 = tn − δ
K(tn)

g′(xn)
,
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where a starting point x0 is chosen, parameters ρ, δ ∈ S, and

K(tn) = g(xn) + g′(xn)
(tn − yn)2(tn − xn)

(yn − xn)(xn + 2yn − 3tn)

+g′(tn)
(tn − yn)(xn − tn)

xn + 2yn − 3tn
− g[xn; yn]

(tn − xn)3

(yn − xn)(xn + 2yn − 3tn)
.

If we consider only the first two steps of the method in Equation (2), we obtain the King’s class
of methods. This method has an order of 4 [2]. However, Equation (2) has limited usage, since its
convergence assumes the existence of fifth order derivatives not appearing in the method. Moreover,
no computable error bounds on ||xn − x∗|| or uniqueness results are given. Furthermore, the initial
point x0 is a shot in the dark. As an example consider function

g(x) =

{
x3 ln x2 + x5 − x4, x 6= 0
x = 0.

Then g′′′(x) is unbounded on Ω = [− 1
2 , 3

2 ]. Hence, there is no guarantee that the method in
Equation (2) converges to x∗ = 1 under the results in [2].

Our technique can also be used to extend the applicability of other methods defined in [1–3].
The novelty of our work, compared to other such as [4–18], is that we give weaker conditions, only in
the first derivative, to guarantee the convergence of the described method. Those conditions are given
in Section 2 and the dynamical study appears in the Section 3.

2. Local Convergence Analysis

In this section we study the local convergence analysis of the method in Equation (2). If v ∈ I‖R
and µ > 0, we can define U(v, µ) and U(v, µ), respectively, the open and closed balls in R. Besides,
we require the parameters L0 > 0, L > 0, M0 > 0, M > 0, γ0 > 0, µ, and δ ∈ I‖R. We need to define
some parameters and functions to analyze the local convergence. Consider functions on the interval[

0,
1
L0

)
by

g1(t) =
Lt

2(1− L0t)

ḡ1(t) =
L0

2
t + M|ρ− 2|g1(t)

h1(t) = ḡ1(t)− 1

Then, h1(0) = −1 < 0 and h1(t)→ +∞ as t→ 1
L0

−
. Function h1 has zeros in the interval

(
0,

1
L0

)
by the intermediate value theorem. Let r1 be the smallest such zero. Define functions g2 and h2 on the
interval [0, r1) by

g2(t) =
[

1 +
M2(1 + |ρ|g1(t))

(1− L0t)(1− g(t))

]
g1(t)

and
h2(t) = g2(t)− 1.
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By these definitions, h2(0) = −1 < 0 and h2(t)→ +∞ as t→ r−1 . For this reason, function h2 has
a smallest zero r2 ∈ (0, r1). Moreover, define functions on [0, r2) by

g3(t) = g2(t) + M|δ|
[

1
1− L0t

+
βγM3g2

1(t)(1 + |ρ|g1(t))

(1− L0t)(1− L0
2 t)(1− ḡ1(t))2

+
βγM2g1(t)(1 + |ρ|g1(t))
(1− L0t)2(1− ḡ1(t))

+
βM0M3(1 + |ρ− 1|g1(t) + |ρ|g2

1(t))
2

(1− L0t)2(1− L0
2 t)(1− ḡ1(t))2

]
,

and
h3(t) = g3(t)− 1.

Suppose that
M|δ|(1 + βM0M3) < 1. (3)

We can see that h3(0) = M|δ|(1 + βM0M3)− 1 < 0 and h3(t)→ +∞ as t→ r−1 .

Characterize by r3 the smallest such zero of h3(t) = 0 in (0, r−1
1 ). Set r = min{r1, r2, r3}. Then,

we have that
0 ≤ g1(t) < 1 (4)

0 ≤ ḡ1(t) < 1 (5)

0 ≤ g2(t) < 1 (6)

and
0 ≤ g3(t) < 1 for each t ∈ [0, r). (7)

We can express the method in Equation (2) in a different way as

yn = xn −
g(xn)

g′(xn)

tn = yn −
g(yn)

g′(xn)

(g(xn) + ρg(yn))

(g(xn) + (ρ− 2)g(yn))

xn+1 = tn − δ(An + Bn + Cn + Dn),

provided

An = − g(xn)

g′(xn)
,

Bn = − (tn − yn)2(tn − xn)

(yn − xn)(xn + 2yn − 3tn)
, (8)

Cn = − g(tn)(tn − yn)(xn − tn)

g′(xn)(xn + 2yn − 3tn)

and

Dn =
g[xn; yn](tn − xn)3

g′(xn)(yn − xn)(xn + 2yn − 3tn)
.
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Moreover, by simple algebraic manipulations we can write the previous Bn, Cn and Dn in view of
the definition of xn, yn, tn, Bn, and Cn as

Bn =
g(yn)2(g(xn) + ρg(yn))2( f 2(xn) + (ρ− 1)g(xn)g(yn) + ρ f 2(yn))

g(xn)(g(xn) + (ρ− 2)g(yn))2( f 2(xn) + (ρ + 1)g(xn)g(yn) + 3ρ f 2(yn))
(9)

Cn =
g′(tn)g(yn)(g(xn) + ρg(yn))( f 2(xn) + (ρ− 1)g(xn)g(yn) + ρ f 2(yn))

g′(xn)(g(xn) + (ρ− 2)g(yn))( f 2(xn) + (ρ + 1)g(xn)g(yn) + 3ρ f 2(yn))
(10)

and

Dn =
g[xn; yn]( f 2(xn) + (ρ− 1)g(xn)g(yn) + ρ f 2(yn))3

g(xn)g′(xn)2(g(xn) + (ρ− 2)g(yn))2( f 2(xn) + (ρ + 1)g(xn)g(yn) + 3ρ f 2(yn))
· (11)

Next, we can give the local convergence result for the method in Equation (2) using the preceding
notation.

Theorem 1. Let D ⊆ IR be a convex subset and f : D → IR a differentiable function. Consider the divided
difference of order one g[.; .] : D× D → L(D), x∗ ∈ D and for each x, y ∈ D the constants L0 > 0, L > 0,
M0 > 0, M > 0, γ > 0, ρ, δ ∈ IR, and β > 1 such that

M|δ|(1 + βM0M3) < 1, (12)

0 < ρ0 ≤ ρ, max{ρ0, 3− 2
√

2} ≤ ρ ≤ 3 + 2
√

2, (13)

g(x∗) = 0, g′(x∗) 6= 0, ||g′(x∗)−1|| ≤ γ, (14)

||g′(x∗)−1(g′(x)− g′(x∗))|| ≤ L0||x− x∗||, (15)

||g′(x∗)−1(g′(x)− g′(y))|| ≤ L||x− y||, (16)

||g′(x∗)−1g′(x)|| ≤ M (17)

||g′(x∗)−1g[x; y]|| ≤ M0 (18)

and
U(x∗, r) ⊆ D, (19)

where the radius r is given previously

ρ0 =
(1 + β)2

(β− 1)(2
√

2(β− 1)(3β− 1) + (5β− 3))
. (20)

Then, for x0 ∈ U(x∗, r)− {x∗} the method in Equation (2) generates a well defined sequence {xn}, all its
terms are in U(x∗, r) (n = 0, 1, 2, . . .), and the sequence converges to x∗. Furthermore, the following estimates
are verified

||yn − x∗|| ≤ g1(||xn − x∗||)||xn − x∗|| < ||xn − x∗|| < r, (21)

||tn − x∗|| ≤ g2(||xn − x∗||)||xn − x∗|| < ||xn − x∗|| (22)

and

||xn+1 − x∗|| ≤ g3(||xn − x∗||)||xn − x∗|| < ||xn − x∗||, (23)
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using the functions g1, g2 and g3 is defined above Theorem 1. Besides, x∗ is the only solution of F(x) = 0 in
U(x∗, T) for T ∈

[
r, 2

L0

)
such that U(x∗, T) ⊆ D.

Proof. We shall show estimates of Equations (21)–(23) using mathematical induction. We get, through
hypothesis x0 ∈ U(x∗, r)− {x∗}, the definition of r and Equation (15) that

||g′(x∗)−1(g′(x0)− g′(x∗))|| ≤ L0||x0 − x∗|| < L0r < 1. (24)

From the Banach Lemma on invertible operators and Equation (24) it follows that g′(x0) is
invertible and

||g′(x0)
−1g′(x∗)|| ≤ 1

1− L0||x0 − x∗|| · (25)

Then, y0 is well defined by the method in Equation (2) for n = 0. Then, we can write

y0 − x∗ = x0 − x∗ − g′(x0)
−1g(x0) (26)

So, we get, using Equations (4), (16), (25), and (26) that

||y0 − x∗|| ≤ ||g′(x0)
−1g′(x∗)||

∥∥∥∥ ∫ 1

0
g′(x∗)−1(g′(x∗ + θ(x0 − x∗))− g′(x0))(x0 − x∗)dθ

∥∥∥∥
≤ L||x0 − x∗||2

2(1− L0||x0 − x∗||) = g1(||x0 − x∗||)||x0 − x∗||

< ||x0 − x∗|| < r,

(27)

which shows y0 ∈ U(x∗, r) and Equation (21) for n = 0.Using Equation (14), we can express

g(x0) = g(x0)− g(x∗) =
∫ 1

0
g′(x∗ + θ(x0 − x∗))(x0 − x∗)dθ. (28)

We get, in view of Equations (17) and (28), that

||g′(x∗)−1g(x0)|| =
∥∥∥∥ ∫ 1

0
g′(x∗)−1g′(x∗ + θ(x0 − x∗))(x0 − x∗)dθ

∥∥∥∥ ≤ M||x0 − x∗||, (29)

and similarly
||g′(x∗)−1g(y0)|| ≤ M||y0 − x∗||. (30)

At this point, we have that, by Equation (18),

||g′(x∗)−1g[x0; y0]|| ≤ M0. (31)
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Hence, g(x0) + (ρ− 2)g(y0) is invertible. We get, using Equations (5), (14), (15), (27), and (30), that

||(g′(x∗)(x0 − x∗))−1(g(x0)− g(x∗)− g′(x∗)(x0 − x∗) + (ρ− 2)g(y0))||

≤ ||x0 − x∗||−1
[∥∥∥∥ ∫ 1

0
g′(x∗)−1g′(x∗ + θ(x0 − x∗)− g′(x∗))(x0 − x∗)dθ||+ ||g′(x∗)−1g(y0)

∥∥∥∥]

≤ ||x0 − x∗||−1
(

L0

2
||x0 − x∗||2 + |ρ− 2|M||y0 − x∗||

)

≤ ||x0 − x∗||−1
(

L0

2
||x0 − x∗||2 + |ρ− 2|Mg1(||x0 − x∗||)||x0 − x∗||

)
= ḡ1(||x0 − x∗||) < 1.

(32)

Then, by Equation (32) the function g(x0) + (ρ− 2)g(y0) is invertible and

||(g(x0) + (ρ− 2)g(y0))
−1g′(x∗)|| ≤ 1

||x0 − x∗||(1− ḡ1(||x0 − x∗||)) · (33)

It also follows that t0 is well defined from the method in Equation (2) for n = 0. Then, using the
method in Equation (2) for n = 0, Equations (6), (25), (29), (30), and (33), we have that

||t0 − x∗|| ≤ ||y0 − x∗||+
∥∥∥∥ g′(x∗)−1g(y0)g′(x∗)−1(g(x0) + ρg(y0))

g′(x∗)−1g(x0)g′(x∗)−1(g(x0) + (ρ− 2)g(y0))

∥∥∥∥
≤ ||y0 − x∗||+ M2||y0 − x∗||(||x0 − x∗||+ |ρ|||y0 − x∗||)

(1− L0||x0 − x∗||)||x0 − x∗||(1− ḡ1(||x0 − x∗||))

≤
[

1 +
M2(||x0 − x∗||+ |ρ|g1(||x0 − x∗||)||x0 − x∗||)

(1− L0||x0 − x∗||)||x0 − x∗||(1− ḡ1(||x0 − x∗||))

]
||y0 − x∗||

= g2(||x0 − x∗||)||x0 − x∗|| < ||x0 − x∗|| < r,

(34)

which shows Equation (22) for t0 ∈ U(x∗, r) and n = 0. Next, we define estimates on ||A0||, ||B0||,
||C0||, and ||D0||. Assume that g(x0) 6= 0. We take into account the expressions f 2(x0) + (ρ +

1)g(x0)g(y0) + 3ρ f 2(y0) and f 2(x0) + (ρ− 1)g(x0)g(y0) + ρ f 2(y0) as quadratic polynomials in g(y0)

(or g(x0)). At this point, the discriminants are formed, respectively, by (ρ2 − 10ρ + 1) f 2(x0) and
(ρ2 − 6ρ + 1) f 2(x0), which are less than zero by Equation (13). Consequently,

f 2(x0) + (ρ + 1)g(x0)g(y0) + 3ρ f 2(y0) > 0 (35)

and
f 2(x0) + (ρ− 1)g(x0)g(y0) + ρ f 2(y0) > 0. (36)

Then, x1 is well defined. Besides, we have, by Equations (35) and (36), that∣∣∣∣ f 2(x0) + (ρ− 1)g(x0)g(y0) + ρ f 2(y0)

f 2(x0) + (ρ + 1)g(x0)g(y0) + 3ρ f 2(y0)

∣∣∣∣
=

f 2(x0) + (ρ− 1)g(x0)g(y0) + ρ f 2(y0)

f 2(x0) + (ρ + 1)g(x0)g(y0) + 3ρ f 2(y0)
≤ β,

(37)

so Equation (37) reduces to exhibiting that for λ = g(y0)
g(x0)
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ϕ(λ) ≤ 0, (38)

where
ϕ(t) = (1− 3β)ρt2 + (ρ− 1− β(ρ + 1))t + 1− β.

The inequality of Equation (38) is satisfied for all t ∈ IR, if 1− 3β < 0 (i.e. β > 1
3 ), and the

discriminant ∆ of ϕ is
∆ ≤ 0

or
ψ(ρ) ≤ 0,

where,
ψ(t) = (β− 1)2t2 − 2(β− 1)(5β− 3)t + (β + 1)2.

But the discriminant ∆1 of ψ is given by

∆1 = 32(β− 1)3(3β− 1) > 0, if β > 1.

Moreover, we have (β− 1)(5β− 3) > 0 for β > 1. Then, by the Descartes rule of signs ψ has
two positive zeros. Denote by ρ0 the smallest such zero, which can be given in closed form using
the quadratic formula to arrive at the definition of ρ0 given in Equation (20). Hence, Equation (38)
holds for all λ ∈ IR provided that Equation (13) is satisfied. Then, x1 is well defined by the method in
Equation (2) for n = 0 and we get, using Equations (8), (25), and (29), that

||A0|| ≤
M||x0 − x∗||

1− L0||x0 − x∗|| . (39)

Next, using inequalities from Equations (9), (14), (25), (27), (30), (33), and (37), we have that

||B0|| ≤
γβM4||y0 − x∗||(||x0 − x∗||+ |ρ|||y0 − x∗||)2

||x0 − x∗||(1− L0||x0−x∗ ||
2 )||x0 − x∗||2(1− ḡ1(||x0 − x∗||))2(1− L0||x0 − x∗||)

≤
γβM4g2

1(||x0 − x∗||)(1 + |ρ|g1(||x0 − x∗||))||x0 − x∗||
(1− L0

2 ||x0 − x∗||)(1− ḡ1(||x0 − x∗||))2(1− L0||x0 − x∗||)
.

(40)

Through Equations (10), (14), (25), (27), (30), (33), and (37), we obtain that

||C0|| ≤
γβM3||y0 − x∗||(||x0 − x∗||+ |ρ|||y0 − x∗||)

(1− L0||x0 − x∗||)2||x0 − x∗||(1− ḡ1(||x0 − x∗||))

≤ γβM3g1(||x0 − x∗||)(1 + |ρ|g1(||x0 − x∗||))||x0 − x∗||
(1− L0||x0 − x∗||)2(1− ḡ1(||x0 − x∗||))

(41)

Then, we obtain, by Equations (11), (14), (18), (25), (27), (30), (33), and (37) that

||D0|| ≤
βM0M4(||x0 − x∗||2 + |ρ− 1|||x0 − x∗||||y0 − x∗||+ |ρ|||y0 − x∗||2)2

(1− L0||x0 − x∗||)2||x0 − x∗||3(1− L0||x0−x∗ ||
2 )(1− ḡ1(||x0 − x∗||))2

≤
βM0M4(1 + |ρ− 1|g1(||x0 − x∗||) + |ρ|g2

1(||x0 − x∗||))2||x0 − x∗||
(1− L0||x0 − x∗||)2(1− L0||x0−x∗ ||

2 )(1− ḡ1(||x0 − x∗||))2

(42)

Then, using Equations (7), (34) and (39)–(42), and the method in Equation (2) for n = 0,
we obtain that
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||x1 − x∗|| ≤ ||t0 − x∗||+ |δ|(||A0||+ ||B0||+ ||C0||+ ||D0||)

≤ g3(||x0 − x∗||)||x0 − x∗|| < ||x0 − x∗|| < r,
(43)

which shows the inequality in Equation (23) for n = 0. By simply replacing x0, y0, t0, x1 by xk, yk, tk, xk+1
in the previous estimates we have that the estimates in Equations (21)–(23) hold. Then, from ||xk+1 −
x∗|| ≤ a, a = g3(||x0 − x∗||) ∈ [0, 1), ||xk − x∗|| < r, we get that lim

k→∞
xk = x∗ and xk+1 ∈ U(x∗, r).

At last, to show the uniqueness part, let us suppose that there exists y∗ ∈ U(x∗, T) with g(y∗) = 0.
Define Q =

∫ 1
0 g′(y∗ + θ(x∗ − y∗))dθ. We get, using Equation (15), that

||g′(x∗)−1(Q− g′(x∗))|| ≤ L0

∫ 1

0
||y∗ + θ(x∗ − y∗)− x∗||dθ

≤ L0

∫ 1

0
(1− θ)||x∗ − y∗||dθ

=
L0

2
T < 1.

(44)

It follows from Equation (44) that Q is invertible. Then, we conclude that x∗ = y∗ from the
estimate 0 = g(x∗)− g(y∗) = Q(x∗ − y∗).

As an example, consider g(x) = e∗ − 1, Ω = U(0, 1) with x∗ = 0 and g[x; y] =
∫ 1

0 g′(y + θ(x−
y))dθ. Then, we have γ = 1, L0 = e− 1, L = e, M = e, M0 = e

2 . Then choosing ρ = 2.0, δ = 0.001,
β = 1.01 conditions Equations (12) and (13) are satisfied. The radii obtained are: r1 = 1.16395,
r2 = 0.0585945, and r3 = 0.0530484, so as a consequence we obtain r = r3 = 0.0530484.

3. Dynamical Analysis

In this section, the method in Equation (2) is applied to three different families of functions and
its behavior has been analyzed by changing the δ parameter using techniques that appear in [19–22].

3.1. Exponential Family

The method has been applied to the function g(x) = ex − 1 by considering the corresponding
equation g(x) = 0. This equation has a solution at the point x = 0, which is the only one attractive
fixed point of the method. In Figure 1 we observe how the method changes with the δ parameter.
Dynamical planes represent the behavior of the method in the complex domain.

In Figure 2 the symmetry of the region of convergence to the solution x = 0 with respect to the
imaginary axis is observed. Small islands of convergence appear out of the main region. It is necessary
to increase the maximum number of iterations to achieve convergence with high values of δ.

(a) (b)

Figure 1. Cont.
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(c) (d)

Figure 1. Method Representation. (a) ρ = 0.01 δ = 0. (b) ρ = 0.01 δ = 0.01. (c) ρ = 0.01 δ = 0.1. (d) ρ = 0.01 δ = 1.

(a) (b)

(c) (d)

Figure 2. Dynamical planes associated with the method. (a) ρ = 0.01 δ = 0.01 maxiter = 10. (b) ρ = 0.01
δ = 0.1 maxiter = 10. (c) ρ = 0.01 δ = 1 maxiter = 10. (d) ρ = 0.01 δ = 1 maxiter = 20.

3.2. Sinus Family

The method can be applied to the function g(x) = sin(x) with equation g(x) = 0. In this case, the
equation has a periodical solutions x = −π, x = 0, x = π, and . . ., coinciding with the fixed points of
the method. In Figure 3 how the method changes with the δ parameter is shown. Dynamical planes
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represent the behavior of the method in the complex domain as it appears in Figure 4, where with high
values of δ the region of convergence is reduced.

(a) (b)

(c) (d)

Figure 3. Method Representation. (a) ρ = 0.01 δ = 0. (b) ρ = 0.01 δ = 0.01. (c) ρ = 0.01 δ = 0.1. (d) ρ = 0.01 δ = 1.

(a) (b)

Figure 4. Cont.
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(c) (d)

Figure 4. Dynamical planes associated with the method. (a) ρ = 0.01 δ = 0.01 maxiter = 10. (b) ρ = 0.01
δ = 0.1 maxiter = 10. (c) ρ = 0.01 δ = 1 maxiter = 10. (d) ρ = 0.01 δ = 10 maxiter = 10.

3.3. Polynomial Family

The method was applied to the function g(x) = (x− 1)(x + 1) with equation g(x) = 0. The sink
fixed points obtained in this case using the method are x = −1, x = 1, the solutions of the previous
equation. In Figure 5 how the method changes with the δ parameter is shown. Dynamical planes
represent the behavior of the method in the complex domain as it appears in Figure 6, where with
larger values of δ the region of convergence is more complex.

(a) (b)

Figure 5. Cont.
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(c) (d)

Figure 5. Method Representation. (a) ρ = 0.01 δ = 0. (b) ρ = 0.01 δ = 0.01. (c) ρ = 0.01 δ = 0.1. (d) ρ = 0.01 δ = 1.

(a) (b)

(c) (d)

Figure 6. Dynamical planes associated with the method. (a) ρ = 0.01 δ = 0.01 maxiter = 10. (b) ρ = 0.01
δ = 0.1 maxiter = 10. (c) ρ = 0.01 δ = 1 maxiter = 10. (d) ρ = 0.01 δ = 10 maxiter = 25.

4. Conclusions

The study of high-order iterative methods is very important, since problems from all disciplines
require the solution of some equations. This solution is found as the limit of sequences generated
by such methods, since closed form solutions can rarely be found in general. The convergence order
is usually found in the literature using expensive Taylor expansions, high-order derivatives, and
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without computable error estimates on ||xn − x∗|| or uniqueness results. It is worth noticing that the
high-order derivatives do not appear in these methods. Moreover, the initial point is a “shot in the
dark”. Hence, the applicability of these methods is very limited. To address all these problems, we
have developed a technique using hypotheses only on the first derivative that actually appears on the
method and Lipschitz-type conditions. This allows us to: extend the applicability of the method; find a
radius of convergence as well as computable error estimates and uniqueness results based on Lipschitz
constants. Although we demonstrated our technique on the method in Equation (2), clearly it can be
used to extend the applicability of other methods along the same lines. In view of the involvement of
parameters on the method, the dynamics of it have also been explored in many interesting cases.
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