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Abstract: This paper is devoted to the semilocal convergence, using centered hypotheses, of
a third order Newton-type method in a Banach space setting. The method is free of bilinear
operators and then interesting for the solution of systems of equations. Without imposing
any type of Fréchet differentiability on the operator, a variant using divided differences is
also analyzed. A variant of the method using only divided differences is also presented.
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1. Introduction

For the approximation of a solution of a nonlinear equation F (x) = 0, Newton-type methods are
the first option. Under some regularity assumptions, the methods are at least second order convergent.
The classical third order schemes, such as Halley or Chebyshev methods, evaluate second order Fréchet
derivatives [1–3]. These evaluations are very time-consuming for systems of equations. Indeed, let us
observe that for a nonlinear system of m equations and m unknowns, the first Fréchet derivative is a
matrix with m2 entries, while the second Fréchet derivative has m3 entries. This implies a huge amount
of operations in order to evaluate every iteration. In particular, these methods are hardly used in practice.
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In this paper we study the following two-step method [4,5] that improves the order of Newton’s
method up to third order, but without evaluating any second Fréchet derivative:

yn = xn + F
′
(xn)−1F (xn)

xn+1 = yn − F
′
(xn)−1F (yn) (1)

The basic advantage of this method is that, as the matrix that appears at each iteration is the same,
only one LU decomposition is computed. In most real problems, the computational cost of solving a
linear system is more expensive than some extra evaluations of the operator. Moreover, from a dynamical
point of view [6] the method seem better than the classical two-point Newton method, that is

yn = xn − F
′
(xn)−1F (xn)

xn+1 = yn − F
′
(xn)−1F (yn) (2)

since the regions of non convergence are reduced.
The main assumption for obtaining convergence of third order iterative methods [2,7,8], is a Lipschitz

condition in the second Fréchet derivatives,

‖F ′′(x)− F ′′(y)‖ ≤ c ‖x− y‖ (3)

With this hypothesis, and by choosing an initial guess such that F ′
(x0)

−1 exists and ||F (x0)|| is
sufficiently close to zero, cubic convergence is obtained. The Lipschitz condition (3) can be relaxed to a
p-Hölder condition

‖F ′′(x)− F ′′(y)‖ ≤ c ‖x− y‖p (4)

or even to someω-condition
‖F ′′(x)− F ′′(y)‖ ≤ ω(||x− y||) (5)

where ω : R+ −→ R+ is a nondecreasing continuous function.
By means of this type of conditions we can ensure the convergence of the scheme (1).
Alternatively, since the scheme (1) only uses first derivatives, we could also consider the possibility

of obtaining convergence by assuming the main condition just in the first derivatives, instead of in the
second derivatives. There are many theories on the local and semilocal convergence of Newton’s type
methods, see for instance [9–18].

Following [19–22], in [5] the semilocal convergence of (1) under ω-conditioned divided differences
was analyzed. Remember that a continuous bounded linear operator [x, y;F ] associated to a nonlinear
operator F : B ⊂ X → Y , is called a divided difference of first order for the operator F on the points
x and y if [x, y;F ](x− y) = F (x)− F (y). If F is Fréchet differentiable, then F

′
(x) = [x, x;F ] for all

x ∈ B. Moreover, a divided difference satisfies anω-condition if

||[x, y;F ]− [v, w;F ]|| ≤ ω(||x− v||, ||y − w||), x, y, v, w ∈ B (6)

where ω : R+ × R+ −→ R+ is a continuous function, which is nondecreasing in both variables.
In this paper, following [23], we expand the applicability of (1) relaxing the hypotheses of

convergence. We also analyze a modification of scheme (1) using divided differences:

yn = xn + [xn − αnF (xn), xn + αnF (xn);F ]−1F (xn),

xn+1 = yn − [xn − αnF (xn), xn + αnF (xn);F ]−1F (yn). (7)
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Here, the parameters αn can be considered as a control of the good approximation to the first
Fréchet derivative. For this method we are able to obtain convergence without assuming any Fréchet
differentiability in the operator F .

Other higher order methods, in some cases with a better behavior in the real case, have been proposed
during the last few years [24–27]. The main advantage of the schemes studied in this paper is that it is
not necessary to evaluate any bilinear operator (second order Fréchet derivatives or their approximations
using divided differences).

The rest of the paper includes the semilocal convergence of both schemes using centered hypotheses
expanding their applicability.

2. Semilocal Convergence Using Centered Hypotheses

Convergence theorems for Newton-type methods establish sufficient conditions on the operator and
the first approximation to the solution in order to ensure that the sequence of iterates converges to a
solution of the equation. In some works such as [19–22,28], convergence is established by assuming as
a main hypothesis that the divided difference satisfies an ω-condition (6). In [5] we extend this theory
to the method (1). Now we expand the applicability using centered hypotheses.

As pointed out in [5], we observe that this type of strategies to derive convergence are not applicable
to the scheme (1) directly. The problem is the sign ‘+’ in the first step. In general, the iteration yn is not
closer to the solution than xn. In order to obtain convergence, we rewrite the scheme as a Newton-secant
type method of one step, instead of the original two steps version of the scheme.

By using the definition of divided differences and the original form of the method

yn = xn + F
′
(xn)−1F (xn)

xn+1 = yn − F
′
(xn)−1F (yn) (8)

we obtain the following Newton-secant formula:

xn+1 = xn + F
′
(xn)−1(F (xn)− F (yn))

= xn + F
′
(xn)−1([xn, yn;F ](xn − yn))

= xn + F
′
(xn)−1([xn, yn;F ](−F ′

(xn)−1F (xn)))

= xn − F
′
(xn)−1[xn, yn;F ]F

′
(xn)−1F (xn) (9)

We will use the following notations:

Γn = F
′
(xn)

Φn = Γn[xn, xn + Γ−1n F (xn);F ]−1Γn

Theorem 1. Let X, Y be two Banach spaces. Let B be a convex open subset of X , and suppose that
there exists a first order divided difference of the Fréchet differentiable operator F : B ⊂ X → Y

satisfying
||[x, y;F ]− [v, w;F ]|| ≤ ω(||x− v||, ||y − w||), x, y, v, w ∈ B (10)
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and
||[x, y;F ]− [x0, x0;F ]|| ≤ ω0(||x− x0||, ||y − x0||), x, y ∈ B (11)

where ω : R+ × R+ −→ R+ ω0 : R+ × R+ −→ R+ are continuous functions, nondecreasing in
both variables, such that ω(0, x) = ω(x, 0) = 1

2
ω(x, x) and ω0(0, x) = ω0(x, 0) = 1

2
ω0(x, x). By

definitionω0(x, y) ≤ ω(x, y).
Let x0 ∈ B. Assume that

(1) ||Γ−10 || ≤ β.
(2) max(||Γ−10 F (x0)||, ||Φ−10 F (x0)||) ≤ η.
(3) The equation

t(1− m

1− β(ω(t, t) +ω0(t, t))
)− η = 0 (12)

has a smallest positive root R, where m = βω0(η,η).
If β(ω(R,R) + 2ω0(R,R)) < 1 and B(x0, R) ⊂ B, then M := m

1−β(ω(R,R)+ω0(R,R))
∈ (0, 1) and

the method (9) is well defined, it remains in B(x0, R) and converges to the unique solution of F (x) = 0

in B(x0, R).

Proof.
From the initial hypothesis, it follows that x1 is well defined and

||x1 − x0|| ≤ η < R

Thus, x1 ∈ B(x0, R).
Sinceω0 is a nondecreasing function, we have

||I − Γ−10 Γ1|| ≤ ||Γ−10 || · ||Γ0 − Γ1||
≤ ||Γ−10 ||ω0(||x1 − x0||, ||x1 − x0||)
≤ βω0(η,η) ≤ βω0(R,R) < 1

Hence, Γ−11 is well defined and

||Γ−11 Γ0|| ≤
1

1− βω0(η,η)

||Γ−11 || ≤
β

1− βω0(η,η)

In particular, Φ−11 and x2 are well defined.
Similarly,

||I − Γ−10 [x0, y0;F ]|| ≤ βω0(0,η) ≤ βω0(R,R) < 1

Hence, [x0, y0;F ]−1 is well defined and

||[x0, y0;F ]−1|| ≤ β

1− βω0(0,η)
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By the definition of the method (9) and of the divided differences, we get

F (x1) = F (x1)− F (x0) + F (x0)

= F (x1)− F (x0)− Φ0(x1 − x0)

= ([x1, x0;F ]− Φ0)(x1 − x0)

Thus,

||x2 − x1|| = ||Φ−11 F (x1)||
= ||Φ−11 Γ1Γ

−1
1 F (x1)||

≤ ||Φ−11 Γ1|| · ||Γ−11 F (x1)||
≤ ||Φ−11 Γ1|| · ||Γ−11 ([x1, x0;F ]− Φ0)|| · ||x1 − x0||

Now, we need to bound the first two terms adequately.

• A bound for ||Γ−11 ([x1, x0;F ]− Φ0)||

From

||I − [x0, y0;F ]−1Γ0|| = ||[x0, y0;F ]−1([x0, y0;F ]− Γ0)||
≤ ||[x0, y0;F ]−1|| · ||[x0, y0;F ]− Γ0||

≤ βω0(0,η)

1− βω0(0,η)
< 1

we obtain

||Γ−11 ([x1, x0;F ]− Φ0)|| = ||Γ−11 ([x1, x0;F ]− Φ0 + Γ0 − Γ0)||
≤ ||Γ−11 || · ||[x1, x0;F ]− Γ0||

+||Γ−11 Γ0|| · ||[x0, y0;F ]−1Γ0 − I||

≤ βω0(η, 0)

1− βω0(η,η)
+

βω0(0,η)

(1− βω0(η,η))(1− βω0(0,η))

=
βω0(η,η)

2− 2βω0(η,η)
· 4− βω0(η,η)

2− βω0(η,η)
< 1

• A bound for ||Φ−11 Γ1||

First, note that

||y1 − x1|| = ||Γ−11 F (x1)||
= ||Γ−11 ([x1, x0;F ]− Φ0)(x1 − x0)||
≤ ||Γ−11 ([x1, x0;F ]− Φ0)|| · ||(x1 − x0)||
< η

Besides, we have

||I − Γ−11 [x1, y1;F ]|| = ||Γ−11 (Γ1 − [x1, y1;F ])||
≤ ||Γ−11 || · ||Γ1 − [x1, y1;F ]||

≤ βω(0,η)

1− βω0(η,η)
< 1
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Thus, we get

||[x1, y1;F ]−1Γ1|| ≤
1

1− βω(0,η)
1−βω0(η,η)

=
1

1−
β
2
ω(η,η)

1−βω0(η,η)

=
2− 2βω0(η,η)

2− β(ω(η,η) + 2ω0(η,η))

and

||[x1, y1;F ]−1|| ≤ β

1− βω0(η,η)
· 2− 2βω0(η,η)

2− β(ω(η,η) + 2ω0(η,η))

=
2β

2− β(ω(η,η) + 2ω0(η,η))

Finally

||I − Γ−11 Φ1|| = ||I − [x1, y1;F ]−1Γ1||
≤ ||[x1, y1;F ]−1|| · ||[x1, y1;F ]− Γ1||

≤ βω(η,η)

2− β(ω(η,η) + 2ω0(η,η))
< 1

and therefore

||Φ−11 Γ1|| ≤
1

1− βω(η,η)
2−β(ω(η,η)+2ω0(η,η))

=
2− β(ω(η,η) + 2ω0(η,η))

2− 2β(ω(η,η) +ω0(η,η))

On the other hand, the relation

2− β(ω(η,η) + 2ω0(η,η))

2− 2β(ω(η,η) +ω0(η,η))
· βω0(η,η)

2− 2βω0(η,η)
· 4− βω0(η,η)

2− βω0(η,η)
<

βω0(η,η)

1− β(ω(η,η) +ω0(η,η))

is equivalent to

(2− β(ω(η,η) + 2ω0(η,η)))(4− βω0(η,η)) < 4(1− βω0(η,η))(2− βω0(η,η))

By definitionω0(x, y) ≤ ω(x, y) then

(2−β(ω(η,η) + 2ω0(η,η)))(4−βω0(η,η)) < (2−β(ω0(η,η) + 2ω0(η,η)))(4−βω0(η,η))

Moreover

(2− β(ω0(η,η) + 2ω0(η,η)))(4− βω0(η,η)) < 4(1− βω0(η,η))(2− βω0(η,η))

since
−2βω0(η,η)− (βω0(η,η))2 < 0
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Therefore,

||x2 − x1|| = ||Φ−11 F (x1)|| = ||Φ−11 Γ1Γ
−1
1 F (x1)||

≤ ||Φ−11 Γ1|| · ||Γ−11 ([x1, x0;F ]− Φ0)|| · ||x1 − x0||

≤ 2− β(ω(η,η) + 2ω0(η,η))

2− 2β(ω(η,η) +ω0(η,η))
· βω0(η,η)

2− 2βω0(η,η)
· 4− βω0(η,η)

2− βω0(η,η)
||x1 − x0||

≤ βω0(η,η)

1− β(ω(η,η) +ω0(η,η))
||x1 − x0||

≤ Mη

Then, using (12) and M < 1, we obtain

||x2 − x0|| ≤ (M + 1)η < R

Thus, x2 ∈ B(x0, R).

By using the same arguments together with an induction strategy we can prove the following facts:

• ||xn − x0|| ≤
∑n−1

k=0 M
kη < R, that is, xn ∈ B(x0, R)

• From the estimate
||xn − xn−1|| ≤Mn−1||x1 − x0||

we conclude that {xn} is a Cauchy sequence, and hence it converges to some x∗ ∈ B(x0, R).

• Since
||F (xn)|| ≤ ||Γn|| · ||xn − xn−1||

and ||xn − xn−1|| → 0 when n → +∞, we obtain that F (x∗) = 0. Let us remark that, by (10),
||Γn|| ≤ ||Γ0||+ω0(R,R).

Moreover, if y∗ is another solution of F (x) = 0 in B(x0, R), we have

||I − Γ−10 [x∗, y∗;F ]|| ≤ ||Γ−10 || · ||Γ0 − [x∗, y∗;F ]||
≤ βω0(R,R) < 1

Therefore, the operator [x∗, y∗;F ] is invertible. In particular, we have x∗ = y∗.

The main restriction in the theorem β(ω(R,R) + 2ω0(R,R)) < 1 replaces the original restriction
used in [5] that writes 3βω(R,R) < 1.

We can find simple numerical examples where only the centered hypotheses are satisfied, see
for instance [23].
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3. A Variant Using Only Divided Differences

For applications involving not Fréchet differentiable operators, we can consider a modification of the
proposed method by using divided differences. Specifically, we will consider

yn = xn + [xn − αnF (xn), xn + αnF (xn);F ]−1F (xn)

xn+1 = yn − [xn − αnF (xn), xn + αnF (xn);F ]−1F (yn) (13)

where αn ∈ [0, 1] is computed in practice to satisfy

tolc << ||αnF (xn)|| ≤ toluser

Here, tolc is related to the computer precision and toluser is a free parameter for the user, see [20,29].
Denoting

Υn = [xn − αnF (xn), xn + αnF (xn);F ]

and
Ψn = Υn[xn, yn;F ]−1Υn

the method (13) can be written alternatively as

xn+1 = xn −Ψ−1n F (xn) (14)

By using a similar strategy to the one in Section 2, we can derive its semilocal convergence, but in
this case without assuming any differentiability of the operator.

A possible theorem should be:

Theorem 2. Let X, Y be two Banach spaces. Let B be a convex open subset of X , and suppose that
there exists a first order divided difference of the operator F : B ⊂ X → Y satisfying

||[x, y;F ]− [v, w;F ]|| ≤ ω(||x− v||, ||y − w||), x, y, v, w ∈ B (15)

and
||[x, y;F ]− [x0, x0;F ]|| ≤ ω0(||x− x0||, ||y − x0||), x, y ∈ B (16)

where ω : R+ × R+ −→ R+ ω0 : R+ × R+ −→ R+ are continuous functions, nondecreasing
in both variables, such that ω(0, x) = ω(x, 0) = 1

2
ω(x, x) and ω0(0, x) = ω0(x, 0) = 1

2
ω0(x, x).

By definitionω0(x, y) ≤ ω(x, y).
Let x0 ∈ B. Assume that

(1) ||Υ−10 || ≤ β.
(2) max(||Υ−10 F (x0)||, ||Ψ−10 F (x0)||) ≤ η.
(3) The equation

t(1− m

1− β(ω(t + 2toluser, t + 2toluser) +ω0(t + 2toluser, t + 2toluser))
)− η = 0 (17)

has a smallest positive root R, where m = βω0(η+ toluser,η+ toluser).
If β(ω(R + 2toluser, R + 2toluser) + 2ω0(R + 2toluser, R + 2toluser)) < 1 and B(x0, R) ⊂ B, then

M := m
1−β(ω(R+2toluser,R+2toluser)+ω0(R+2toluser,R+2toluser))

∈ (0, 1) and the method (14) is well defined, it

remains in B(x0, R) and converges to the unique solution of F (x) = 0 in B(x0, R).
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4. Numerical Example

We consider

x(s) = 1 +

∫ 1

0

G(s, t)x(t)2dt, s ∈ [0, 1] (18)

where x ∈ C[0, 1] and the kernel G is the Green function in [0, 1]× [0, 1].
We use a discretization process and transform Equation (18) into a finite dimensional problem and we

obtain the following system of nonlinear equations:

F (x) ≡ x− 1− Avx = 0, F : R8 → R8 (19)

where

a = (x1, x2, . . . , x8)
T , 1 = (1, 1, . . . , 1)T , A = (aij)

8
i,j=1, vx = (x2

1, x
2
2, . . . , x

2
8)

T

We use the divided difference of first order of F as [u, v;F ] = I − B, where B = (bij)
8
i,j=1 with

bij = aij(uj + vj).
If we choose the starting points x−1 = ( 7

10
, 7
10
, . . . , 7

10
)T and x0 = (18

10
, 18
10
, . . . , 18

10
)T , method (9)) with

the max-norm, we obtain β = 1.2938442 . . ., η = 0.474572 . . .,

w(s, t) = 0.04381 . . . s + 0.04381 . . . t

w0(s, t) = 0.021905 . . . s + 0.021905 . . . t

and
m = 0.0269002 . . . .

The solutions of Equation (12) are

r1 = 0.488915 . . . and r2 = 5.70809 . . . .

Then, by denoting R = 0.488915 . . . it is easy to see that the following condition is verified

β(w(R,R) + 2w0(R,R)) = 0.110853 . . . < 1

and
M = 0.0293395 ∈ (0, 1)

So, all the conditions of Theorem 1 are satisfied and a consequence we can ensure the convergence of
method (9).
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