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Abstract

Iterated splittings seem attractive in view of consistency and local accuracy. In this note it will be shown, however, that for stiff
systems the stability properties are quite poor. Specific Runge–Kutta implementations can improve stability, but this leads to classes
of methods that are better studied in their own right.
© 2006 Elsevier B.V. All rights reserved.
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1. Iterated splitting

In this short note we consider an iterated splitting procedure applied to stiff systems of ordinary differential equations
(ODEs) in RM . The system is written as

u′(t) = F(t, u(t)), u(0) = u0, (1.1)

with a time integration interval [0, T ]. In applications these systems are often obtained by spatial discretizations of
initial-boundary value problems for partial differential equations (PDEs); such a semi-discretization leads to stiff
systems (1.1) of very large dimension M. Often it is possible to decompose F into two simpler functions

F(t, v) = F1(t, v) + F2(t, v) for t �0, v ∈ RM . (1.2)

Splitting methods are based on such a decomposition. In the following we denote by � > 0 the step size and un ≈ u(tn)

stands for the numerical approximation at time level tn = n�, n�0.
We study the following iterated splitting scheme: on each time interval [tn, tn+1] we start with a prediction v0(t) for

the solution and then solve for i = 1, 2, . . . , m subsequently

v̄′
i (t) = F1(t, v̄i (t)) + F2(t, vi−1(t)), v̄i(tn) = un, (1.3a)

v′
i (t) = F1(t, v̄i (t)) + F2(t, vi(t)), vi(tn) = un, (1.3b)

∗ Corresponding author. Tel.: +34 948168055; fax: +34 948169521.
E-mail address: laura.portero@unavarra.es (L. Portero).

0377-0427/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2006.02.008

http://www.elsevier.com/locate/cam
mailto:laura.portero@unavarra.es


W. Hundsdorfer, L. Portero / Journal of Computational and Applied Mathematics 201 (2007) 146–152 147

giving the approximation un+1 = vm(tn+1) at the new time level tn+1. In this note we consider fixed, low values of m,
in particular m = 1 or m = 2. Moreover, we shall primarily consider autonomous problems with initial approximation
v0(t) = un; for non-autonomous problems arising from PDEs with time-dependent boundary conditions the initial
approximation should be adapted to match the boundary conditions.

Compared to standard fractional step methods, this approach offers the advantage that all stages remain consistent
with the full equation (1.1). If we take one step beginning on the exact solution un = u(tn) and v0(t) = un, then it is
not too difficult to show that u(tn+1) − un+1 =O(�2m+1), that is, consistency of order 2m. Of course, the steps in (1.3)
should also be solved numerically with sufficient high accuracy.

This type of iterated splitting was recently considered by Kanney et al. [6] and by Faragó and Geiser [3]. However,
in these papers stability estimates for stiff systems are lacking. The object of this note is to show that the stability
properties of (1.3) are quite poor in general. This makes the approach unattractive for stiff systems.

As we shall see, specific discretizations of (1.3) are possible that have better stability properties than the continuous
system (1.3) itself, but these lead to splitting methods of the fractional step Runge–Kutta type [1,2] that are better
studied in their own right without reference to (1.3).

2. Stability for linear equations

2.1. Recursions

Stability will be studied for linear problems with

Fk(t, v) = Akv, k = 1, 2. (2.1)

We consider some suitable vector norm ‖ · ‖ on RM , together with its induced operator norm. The matrix exponential
of Z ∈ RM×M will be denoted by eZ . It will be assumed that

‖e�Ak‖�1 for all � > 0, k = 1, 2. (2.2)

In terms of logarithmic matrix norms, see for example [5], this means that �(Ak)�0. This implies �(A1 +A2)�0 and
therefore ‖e�(A1+A2)‖�1, so the system (1.1) itself will be stable.

For the linear problems (2.1) we can employ the variation of constants formula; elimination of the intermediate
functions v̄i then gives

vi(t) =
(

e(t−tn)A2 +
∫ t

s=tn

e(t−s)A2A1e(s−tn)A1 ds

)
un

+
∫ t

s=tn

∫ s

s′=tn

e(t−s)A2A1e(s−s′)A1A2vi−1(s
′) ds′ ds. (2.3)

The double integral
∫ t

s=tn

∫ s

s′=tn
can be evaluated as

∫ t

s′=tn

∫ t

s=s′ , because the functions involved are continuous, and this
will be used below for the commuting case.

2.2. Commuting operators

The formula (2.3) is not very transparent. If the operators A1 and A2 commute with well-conditioned system of
eigenvectors, we can consider the eigenvalues �k of Ak instead of the operators Ak themselves.

Replacing Ak by �k , k = 1, 2, it follows from (2.3) after some calculations that

vi(t) = �1e(t−tn)�1 − �2e(t−tn)�2

�1 − �2
un + �1�2

�1 − �2

∫ t

tn

(e(t−s)�1 − e(t−s)�2)vi−1(s) ds. (2.4)

Note that this relation is symmetric in �1 and �2. Hence, interchanging the operators A1 and A2 does not change the
iteration errors in this commuting case.
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Denote zk = ��k , k = 1, 2. Starting with v0(t) = un, we will then obtain

vm(tn+1) = Sm(z1, z2)un, (2.5)

where Sm is the stability function of the scheme with m iterations. Using (2.4) it follows by some calculations that

S1(z1, z2) = 1 + z1 + z2

z1 − z2
(ez1 − ez2), (2.6)

S2(z1, z2) = S1(z1, z2) + z1z2(z1 + z2)

(z1 − z2)
2

(
ez1 + ez2 − 2

ez1 − ez2

z1 − z2

)
. (2.7)

2.2.1. A(�)-stability
Let us consider the eigenvalues in a wedge

W� = {� ∈ C : | arg(−�)|��},
with angle �. Instead of z ∈ W0 (the non-positive real line) we shall simply write z�0. It would be ideal to have
|Sm(z1, z2)|�1 whenever z1, z2 ∈ W�/2, which would amount to A-stability in both components z1 and z2. However,
this will not hold with these iterated splitting schemes.

In fact, it appears that |Sm(z1, z2)|�1 if z1, z2 �0, but this linear stability property is lost as soon as one of the zk is
allowed to be in a wedge W� with positive angle � > 0.

Theorem 2.1. For both m = 1, 2, we have

max
z1∈W�,z2 �0

|Sm(z1, z2)|�1 �⇒ � = 0.

Proof. Considering a fixed z1 = z and z2 → −∞, we obtain

S1(z, −∞) = 1 − ez, S2(z, −∞) = 1 − (1 − z)ez.

If z = x + iy, it follows that

|S1(z, −∞)|�1 ⇐⇒ ex �2 cos y.

This cannot hold for arbitrary z ∈ W� if � > 0, since the imaginary part of such z can assume any value, and in particular
we may have cos y < 0. In the same way the result for S2 follows. �

3. Discretized forms

To test the behaviour of the iterated splittings, numerical experiments were performed for simple linear reaction–
diffusion systems, with both A1 and A2 having real non-positive eigenvalues, and the fractional steps were discretized
with various Runge–Kutta methods. Even for this case with real eigenvalues, instabilities were often observed, due to
the discretizations.

3.1. Example: discretizations with �-methods

We consider discretizations with �-methods. To model the application of different methods for (1.3a) and (1.3b),
we may take different values of the method parameter � in the stages. So, consider m = 1, and let �1, �2 � 1

2 . For
autonomous problems, assume the two stages in (1.3) are discretized as

ūn+1 = un + �(1 − �1)(F1(un) + F2(un)) + ��1(F1(ūn+1) + F2(un)),

un+1 = un + �(1 − �2)(F1(un) + F2(un)) + ��2(F1(ūn+1) + F2(un+1)). (3.1)
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As noted before, for non-autonomous problems arising from PDEs with time-dependent boundary conditions, the initial
guess v0(tn+1) should be adapted to match the boundary conditions. Application to the linear systems (2.1), using the
notation Zk = �Ak , gives

un+1 = (I − �2Z2)
−1(I − �1Z1)

−1Z1(I + (�2 − �1)Z1)un + (I − �2Z2)
−1(I + (1 − �2)Z2)un

+ (I − �2Z2)
−1�2Z1(I − �1Z1)

−1Z2un. (3.2)

For any fixed Z2, and �1 �= �2, the first term on the right-hand side will become unbounded if one or more eigenvalues
of Z1 tend to −∞. This means that even for one single step, conditions on the step size need to be imposed to prevent
instability.

On the other hand, if we take �1 and �2 equal, say �k = �, k = 1, 2, then

un+1 = (I + (I − �Z2)
−1(I − �Z1)

−1(Z1 + Z2))un. (3.3)

In fact, the scheme (3.1) then reduces to the Douglas splitting scheme, which is A-stable for �� 1
2 ; see e.g., [5]. It is

rather surprising that the stability properties of this discrete version are much better than for (2.6).

Remark 3.1. The most interesting case is � = 1
2 , for which the scheme will be of order two. For that scheme stability

can also be shown for non-commuting operators. Setting ûn = (I − 1
2Z2)un, we have

ûn+1 =
(
I − 1

2Z1

)−1 (
I + 1

2Z1

) (
I + 1

2Z2

) (
I − 1

2Z2

)−1
ûn.

Assuming (2.2) with an inner-product norm, it follows that the norms of (I − 1
2Zk)

−1 and (I − 1
2Zk)

−1(I + 1
2Zk)

are all bounded by 1. (This is just unconditional stability of the implicit Euler method and trapezoidal rule.) Hence
‖ûn+1‖�‖ûn‖, and

‖un‖�
∥∥∥(

I − 1
2Z2

)
u0

∥∥∥ for all n�0.

This gives a stability result provided that ‖Z2u0‖�C‖u0‖. We note that in PDE applications, if A2 is a discretized
spatial derivative operator, then A2u0 will be bounded if the initial solution is smooth and satisfies the proper boundary
conditions for t = 0.

3.2. Discretizations with DIRK methods

As we saw in the above example, stability properties of discretized forms of (1.3) can be better than for the continuous
version. A natural way to obtain discretized forms is to use diagonally implicit Runge–Kutta (DIRK) methods, possibly
together with continuous extensions (dense output formulas). Examples for such methods are found in [4,7] and below
we shall use a simple second-order DIRK method for a numerical illustration.

We shall consider two approaches using DIRK methods. The first approach is based on continuous extensions, and
different methods can be chosen for each equation in (1.3a), (1.3b). The second approach is to use one single DIRK
method for the whole system (1.3). In all cases the step size for the DIRK methods will be chosen as � = tn+1 − tn.
Smaller sub-time steps could be taken, but formally that is the same as taking one step with some DIRK method with
more stages.

Approach (A): The equations (1.3a), (1.3b) can be solved successively by continuous DIRK methods, producing ap-
proximations V̄i(t) and Vi(t) for v̄i (t), vi(t), i =1, . . . , m, respectively. Note that the approximation V̄i(t) will produce
the source term F1(t, V̄i(t)) for (1.3b), and likewise Vi−1(t) will give the proper source term for equation (1.3a).

This approach is interesting, at least potentially, since different methods could be used for each Eq. (1.3a) and (1.3b).
Hence the methods could be chosen only on the basis of their suitability to solve the particular sub-problem. However,
in our attempts this approach did lead to schemes that become unstable if the stiffness is increased. An illustration is
provided below. In view of the above example for �-methods with �1 �= �2 this unfavourable behaviour is not really
surprising anymore.

Approach (B): Another possible implementation is to apply one DIRK method directly to the whole system (1.3)
written out with i = 1, . . . , m. If the DIRK methods has s stages, this leads directly to a splitting method with 2sm
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stages, each of which is implicit in either F1 or F2. The order of the scheme is then pm = min(2m, p) where p is the
order of the DIRK method itself. Continuous extensions are not needed here.

3.2.1. Numerical test with a two-stage DIRK method
For a numerical illustration we consider a simple two-stage DIRK method. Using the same Runge–Kutta notation

as in [4, p. 100], the method is given by the Butcher tableau

(3.4)

with the continuous extension coefficients

b1(�) = 1

2
�

2 − 2	 − �

1 − 2	
, b2(�) = 1

2
�

� − 2	

1 − 2	
. (3.5)

For the step from tn to tn+1 these coefficients will give approximations in tn+� = tn + ��, � ∈ [0, 1], and for � = 1
we recover the weights b1 = 1

2 , b2 = 1
2 of (3.4). Although in approach (A) different methods might be used for each

Eq. (1.3a) and (1.3b), we consider here only the method with parameter value 	 = 1 + 1
2

√
2. With this parameter the

DIRK method is L-stable, and both (3.4) and (3.5) are then second-order accurate.
The test problem is given by the reaction–diffusion equations

ut = D1uxx − k1u + k2v + s1(x),

vt = D2vxx + k1u − k2v + s2(x), (3.6)

for 0 < x < 1 and 0 < t �T = 1
2 , with initial- and boundary conditions

u(x, 0) = 1 + sin( 1
2�x), v(x, 0) = k1

k2
u(x, 0),

u(0, t) = 1, v(0, t) = k1

k2
, ux(1, t) = vx(1, t) = 0. (3.7)

The parameters and source terms are set to

D1 = 0.1, D2 = 0, k1 = 1, k2 = 104, s1(x) = 1, s2(x) = 0. (3.8)

Further we use standard second-order differences for the spatial derivative with 100 grid points xj = jh, h = 1
100 . This

leads to an ODE system (1.1) of dimension M = 200. For the splitting we consider F1 to be the discretized diffusion
together with the inhomogeneous boundary condition, and F2 denotes the reaction term plus source term. The errors
for the splitting schemes are measured in the maximum norm (i.e., maximum over the two components and the grid
points) at time T with respect to a time-accurate integration of the ODE system.

Table 1 gives the temporal errors of the iterated splittings with m = 1 and the two approaches: approach (A) (using
dense output) and approach (B) (direct application of the DIRK method). Also results for a variant approach (A′) are

Table 1
Errors versus step size � for the reaction–diffusion test

Approach (A) Approach (A′) Approach (B)

� = 1
10 2.14 · 1019 6.67 · 1017 2.17 · 10−3

� = 1
20 2.88 · 1037 2.81 · 1034 6.71 · 10−4

� = 1
40 8.99 · 1067 8.56 · 1061 1.91 · 10−4
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added; here we take instead of the dense output formula (3.5) simply linear interpolation between tn and tn+1 for any
intermediate point tn+� = tn + ��. This is only first-order accurate, but it is the most stable interpolation possible.

We see that the direct approach (B) produces satisfactory results, but the approach (A) and its variant give huge
errors. Moreover, it was observed that with smaller mesh widths h these errors become even larger. Therefore, we can
conclude that the approach (A) is not stable for the case that eigenvalues of A1 tend to −∞. This is completely similar
to formula (3.2) for the �-methods with �1 �= �2.

Taking k2 =1 (non-stiff reaction) did give essentially the same results. Only if we interchange reaction and diffusion,
that is, F1 being reaction plus source term and F2 being discretized diffusion with boundary condition, then this case
with non-stiff reaction produced good results for the approach (A) and (A′). We did not elaborate the stability functions
for these schemes, but it is obvious from the numerical results that we will get an expression somewhat similar to (3.2)
for �1 �= �2, with a bounded behaviour in Z2 and an unbounded behaviour in Z1 if eigenvalues tend to −∞.

The experiments for approach (A) were repeated with other methods, for example, the continuous DIRK method
presented in [4, p. 100], but the results were essentially the same as for the two-stage method.

Finally we remark that the above linear test problem was set up such that for D1 �= D2 the operators A1 and A2 do not
commute. It turned out, however, that the instabilities already appeared with equal diffusion coefficients D1 =D2 �= 0.

Remark 3.2. The DIRK method with approach (B) appears to be stable in this example, similar to (3.2) with �1 = �2.
If we consider the linear, scalar test equation u′ = (�1 + �2)u and an s-stage Runge–Kutta method with coefficient
matrix A = (aij ) ∈ Rs×s , weight vector b = (bi) ∈ Rs and e = (1, 1, . . . , 1)T ∈ Rs , then after m iterations we will
have un+1 = Rm(z1, z2)un with zk = ��k and stability function Rm. For m = 1, 2, it follows by some calculations that

R1(z1, z2) = 1 + (z1 + z2)b
T(I − z1A)−1(I − z2A)−1e, (3.9)

R2(z1, z2) = R1(z1, z2) + z1z2(z1 + z2)b
T(I − z1A)−2(I − z2A)−2A2e, (3.10)

which are the discrete counterparts of (2.6) and (2.7) with approach (B). However, a full analysis of these functions is
still difficult. Since it will be clear from the following that we do not advocate these methods anyway, this issue will
not be pursued here any further.

3.2.2. Relations with additive and fractional step Runge–Kutta methods
The above experiment has also been performed for approach (B) with higher order DIRK methods, in particular with

m = 2, s = 4 and order p = 4. This gives in total 16 stages, eight of them implicit in F1 and eight implicit in F2. Again
the results were good, with fourth-order convergence. So, in this respect the approach (B) seems interesting.

However, looking more carefully at schemes obtained in this way, it becomes clear that they are in fact special
cases of the so-called fractional step Runge–Kutta methods. Stable schemes of this type with fewer stages than in the
above construction are known; see [1,2]. Therefore, the schemes obtained in this way via the iterated splitting approach
are not optimal in terms of number of stages versus the order of accuracy, and also stability is an issue that needs
careful study.

For applications, the iterated splitting would have been more interesting if the discretizations of (1.3a) and (1.3b)
could have been chosen only on the basis of their suitability to solve the particular sub-problem, but, as we saw, such
attempts did lead to unstable schemes.

The above discussion on instabilities with iterated splittings applies to problems where both F1 and F2 give rise to
stiffness, necessitating implicit treatment for both these terms. If F1 is a non-stiff term, or a mildly stiff one, a better
stability behaviour could be expected. However, also then the iterated splitting approaches would lead to schemes with
many stages that seem not competitive with existing combinations of implicit and explicit methods; see for example
the additive Runge–Kutta schemes presented in [7] or IMEX schemes based on multistep, Runge–Kutta or Rosenbrock
methods [5].

4. Conclusions

At first sight, the iterated splitting scheme (1.3) seems to have some attractive features. For example, different
Runge–Kutta methods might be employed for the different fractional steps, while maintaining consistency with the full
system (1.1).
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However, the stability properties of (1.3) turn out to be quite poor, even for simple linear systems without discretization
of (1.3a) and (1.3b). This result already makes the iterated splitting less attractive for stiff systems.

Discretized forms with different methods for the different fractional steps (1.3a), (1.3b) turned out to be unstable
in general.

Specific discretizations are possible that have better stability properties than the continuous system (1.3), but these
lead to well-known splitting methods that are better studied in their own right without reference to (1.3).
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