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ABSTRACT. We present some identities related to the Cauchy-Schwarz inequality in complex
inner product spaces. A new proof of the basic result on the subject of strengthened Cauchy-
Schwarz inequalities is derived using these identities. Also, an analogous version of this result
is given for strengthened Hölder inequalities.
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1. I NTRODUCTION

In [1], the parallelogram identity in areal inner product space, is rewritten in Cauchy-
Schwarz form (with the deviation from equality given as a function of the angular distance
between vectors) thereby providing another proof of the Cauchy-Schwarz inequality in the real
case. The first section of this note complements this result by presenting related identities for
complex inner product spaces, and thus a proof of the Cauchy-Schwarz inequality in the com-
plex case.

Of course, using angular distances is equivalent to using angles. An advantage of the angular
distance is that it makes sense in arbitrary normed spaces, in addition to being simpler than the
notion of an angle. And in some cases it may also be easier to compute. Angular distances are
used in Section 2 to give a proof of the basic theorem in the subject of strengthened Cauchy-
Schwarz inequalities (Theorem 3.1 below). We also point out that the result is valid not just for
vector subspaces, but also for cones. Strengthened Cauchy-Schwarz inequalities are fundamen-
tal in the proofs of convergence of iterative, finite element methods in numerical analysis, cf.
for instance [8]. They have also been considered in the context of wavelets, cf. for example [4],
[5], [6].

Finally, Section 4 presents a variant, for cones and in the Hölder case when1 < p < ∞, of
the basic theorem on strengthened Cauchy-Schwarz inequalities, cf. Theorem 4.1.
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2 J. M. ALDAZ

2. I DENTITIES RELATED TO THE CAUCHY -SCHWARZ I NEQUALITY IN COMPLEX

I NNER PRODUCT SPACES

It is noted in [1] that in areal inner product space, the parallelogram identity

(2.1) ‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2

provides the following stability version of the Cauchy-Schwarz inequality, valid for non-zero
vectorsx andy:

(2.2) (x, y) = ‖x‖‖y‖

(
1− 1

2

∥∥∥∥ x

‖x‖
− y

‖y‖

∥∥∥∥2
)
.

Basically, this identity says that the size of(x, y) is determined by the angular distance
∥∥∥ x
‖x‖ −

y
‖y‖

∥∥∥
betweenx andy. In particular,(x, y) ≤ ‖x‖‖y‖, with equality precisely when the angular dis-
tance is zero. In this section we present some complex variants of this identity, involving(x, y)
and |(x, y)|; as a byproduct, the Cauchy-Schwarz inequality in the complex case is obtained.
Since different conventions appear in the literature, we point out that in this paper(x, y) is taken
to be linear in the first argument and conjugate linear in the second.

We systematically replace in the proofs nonzero vectorsx andy by unit vectorsu = x/‖x‖
andv = y/‖y‖.

Theorem 2.1.For all nonzero vectorsx andy in a complex inner product space, we have

(2.3) Re(x, y) = ‖x‖‖y‖

(
1− 1

2

∥∥∥∥ x

‖x‖
− y

‖y‖

∥∥∥∥2
)

and

(2.4) Im(x, y) = ‖x‖‖y‖

(
1− 1

2

∥∥∥∥ x

‖x‖
− iy

‖y‖

∥∥∥∥2
)
.

Proof. Let ‖u‖ = ‖v‖ = 1. From (2.1) we obtain

4− ‖u− v‖2 = ‖u+ v‖2

= 2 + (u, v) + (v, u)

= 2 + (u, v) + (u, v) = 2 + 2 Re(u, v).

Thus,Re(u, v) = 1− 1
2
‖u− v‖2 . The same argument, applied to‖u+ iv‖2, yieldsIm(u, v) =

1− 1
2
‖u− iv‖2 . �

Writing (x, y) = Re(x, y) + i Im(x, y) we obtain the following:

Corollary 2.2. For all nonzero vectorsx andy in a complex inner product space, we have

(2.5) (x, y) = ‖x‖‖y‖

((
1− 1

2

∥∥∥∥ x

‖x‖
− y

‖y‖

∥∥∥∥2
)

+ i

(
1− 1

2

∥∥∥∥ x

‖x‖
− iy

‖y‖

∥∥∥∥2
))

.

Thus,

(2.6) |(x, y)| = ‖x‖‖y‖

√√√√(1− 1

2

∥∥∥∥ x

‖x‖
− y

‖y‖

∥∥∥∥2
)2

+

(
1− 1

2

∥∥∥∥ x

‖x‖
− iy

‖y‖

∥∥∥∥2
)2

.

J. Inequal. Pure and Appl. Math., 10(4) (2009), Art. 116, 6 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


CAUCHY-SCHWARZ INEQUALITY 3

Next we find some shorter expressions for|(x, y)|. Let Arg z denote the principal argument
of z ∈ C, z 6= 0. That is,0 ≤ Arg z < 2π, and in polar coordinates,z = ei Arg zr. We choose
the principal argument for definiteness; any other argument will do equally well.

Theorem 2.3.Letx andy be nonzero vectors in a complex inner product space. Then, for every
α ∈ R we have

(2.7) ‖x‖‖y‖

(
1− 1

2

∥∥∥∥eiαx

‖x‖
− y

‖y‖

∥∥∥∥2
)

≤ |(x, y)| = ‖x‖‖y‖

(
1− 1

2

∥∥∥∥e−i Arg(x,y)x

‖x‖
− y

‖y‖

∥∥∥∥2
)
.

Proof. By a normalization, it is enough to consider unit vectorsu andv. Let α be an arbitrary
real number, and sett = Arg(u, v), so(u, v) = eitr in polar form. Using (2.3) we obtain

1− 1

2

∥∥eiαu− v
∥∥2

= Re(eiαu, v) ≤ |(eiαu, v)|

= |(u, v)| = r = (e−itu, v)

= Re(e−itu, v) = 1− 1

2

∥∥e−itu− v
∥∥2
.

�

The preceding result can be regarded as a variational expression for|(x, y)|, since it shows
that this quantity can be obtained by maximizing the left hand side of (2.7) overα, or, in other

words, by minimizing
∥∥∥ eiαx
‖x‖ −

y
‖y‖

∥∥∥ overα.

Corollary 2.4 (Cauchy-Schwarz inequality). For all vectorsx andy in a complex inner prod-
uct space, we have|(x, y)| ≤ ‖x‖ ‖y‖, with equality if and only if the vectors are linearly
dependent.

Proof. Of course, if one of the vectorsx, y is zero, the result is trivial, so suppose otherwise and
normalize, writingu = x/‖x‖ andv = y/‖y‖. From (2.7) we obtain, first,|(u, v)| ≤ 1, second,
e−i Arg(u,v)u = v if |(u, v)| = 1, so equality implies linear dependency, and third,|(u, v)| = 1 if
eiαu = v for someα ∈ R, so linear dependency implies equality. �

3. STRENGTHENED CAUCHY -SCHWARZ I NEQUALITIES

Such inequalities, of the form|(x, y)| ≤ γ ‖x‖ ‖y‖ for some fixedγ ∈ [0, 1), are fundamental
in the proofs of convergence of iterative, finite element methods in numerical analysis. The basic
result in the subject is the following theorem (see Theorem 2.1 and Remark 2.3 of [8]).

Theorem 3.1.LetH be a Hilbert space, letF ⊂ H be a closed subspace, and letV ⊂ H be a
finite dimensional subspace. IfF ∩ V = {0}, then there exists a constantγ = γ(V, F ) ∈ [0, 1)
such that for everyx ∈ V and everyy ∈ F ,

|(x, y)| ≤ γ ‖x‖ ‖y‖.

There are, at least, two natural notions of angles between subspaces. To see this, consider a
pair of distinct 2 dimensional subspacesV andW in R3. They intersect in a lineL, so we may
consider that they are parallel in the direction of the subspaceL, and thus the angle between
them is zero. This is the notion of angle relevant to the subject of strengthened Cauchy-Schwarz
inequalities.
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4 J. M. ALDAZ

Alternatively, we may disregard the common subspaceL, and (in this particular example) de-
termine the angle between subspaces by choosing the minimal angle between their unit normals.
Note however that the two notions of angle suggested by the preceding example coincide when
the intersection of subspaces is{0} (cf. [7] for more information on angles between subspaces).

From the perspective of angles, or equivalently, angular distances, what Theorem 3.1 states is
the intuitively plausible assertion that the angular distance betweenV andF is strictly positive
provided thatF is closed,V is finite dimensional, andF ∩ V = {0}. Finite dimensionality of
one of the subspaces is crucial, though. It is known that if bothV andF are infinite dimensional,
the angular distance between them can be zero, even if both subspaces are closed.

Define the angular distance betweenV andF as

(3.1) κ(V, F ) := inf{‖v − w‖ : v ∈ V,w ∈ F, and‖v‖ = ‖w‖ = 1}.
The proof (by contradiction) of Theorem 3.1 presented in [8] is not difficult, but deals only

with the case where bothV andF are finite dimensional. And it is certainly not as simple as
the following

Proof. If either V = {0} or F = {0} there is nothing to show, so assume otherwise. Let
S(V ) be the unit sphere of the finite dimensional subspaceV , and letv ∈ S. Denote by
f(v) the distance fromv to the unit sphereS(F ) of F . Thenf(v) > 0 sinceF is closed
andv /∈ F . Thus,f achieves a minimum valueκ > 0 over the compact setS(V ). By the
right hand side of formula (2.7), for everyx ∈ V \ {0} and everyy ∈ F \ {0} we have
|(x, y)| ≤ (1− κ2/2) ‖x‖ ‖y‖. �

In concrete applications of the strengthened Cauchy-Schwarz inequality, a good deal of effort
goes into estimating the size ofγ = cos θ, whereθ is the angle between subspaces appearing
in the discretization schemes. Since we also haveγ = 1 − κ2/2, this equality can provide an
alternative way of estimatingγ, via the angular distanceκ rather than the angle.

Next we state a natural extension of Theorem 3.1, to which the same proof applies (so we
will not repeat it). Consider two nonzero vectorsu, v in a real inner product spaceE, and let
S be the unit circumference in the plane spanned by these vectors. The angle between them
is just the length of the smallest arc ofS determined byu/‖u‖ andv/‖v‖. So to speak about
angles, or angular distances, we only need to be able to multiply nonzero vectorsx by positive
scalarsλ = 1/‖x‖. This suggests that the natural setting for Theorem 3.1 is that of cones, rather
than vector subspaces. Recall thatC is aconein a vector space over a field containing the real
numbers if for everyx ∈ C and everyλ > 0 we haveλx ∈ C. In particular, every vector
subspace is a cone. IfC1 andC2 are cones in a Hilbert space, the angular distance between
them can be defined exactly as before:

(3.2) κ(C1, C2) := inf{‖v − w‖ : v ∈ C1, w ∈ C2, and‖v‖ = ‖w‖ = 1}.

Theorem 3.2. LetH be a Hilbert space with unit sphereS(H), and letC1, C2 ⊂ H be (topo-
logically) closed cones, such thatC1 ∩ S(H) is a norm compact set. IfC1 ∩ C2 = {0}, then
there exists a constantγ = γ(C1, C2) ∈ [0, 1) such that for everyx ∈ C1 and everyy ∈ C2,

|(x, y)| ≤ γ ‖x‖ ‖y‖.

Example 3.1. LetH = R2, C1 = {(x, y) ∈ R2 : x = −y} andC2 = {(x, y) ∈ R2 : xy ≥ 0},
that is,C1 is the one dimensional subspace with slope−1 andC2 is the union of the first and
third quadrants. Here we can explicitly see thatγ(C1, C2) = cos(π/4) = 1/

√
2. However,

if C2 is extended to a vector spaceV , then the conditionC1 ∩ V = {0} no longer holds and
γ(C1, V ) = 1. So stating the result in terms of cones rather than vector subspaces does cover
new, nontrivial cases.
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4. A STRENGTHENED HÖLDER I NEQUALITY

For1 < p <∞, it is possible to give anLp−Lq version of the strengthened Cauchy-Schwarz
inequality. Hereq := p/(p − 1) denotes the conjugate exponent ofp. We want to find suitable
conditions onC1 ⊂ Lp andC2 ⊂ Lq so that there exists a constantγ = γ(C1, C2) ∈ [0, 1) with
‖fg‖1 ≤ γ ‖f‖p ‖g‖q for everyf ∈ C1 and everyg ∈ C2. An obvious difference between the
Hölder and the Cauchy-Schwarz cases is that in the pairing(f, g) :=

∫
fg, the functionsf and

g belong to different spaces (unlessp = q = 2). This means that the hypothesisC1 ∩C2 = {0}
needs to be modified. A second obvious difference is that Hölder’s inequality actually deals
with |f | and|g| rather than withf andg. So when finding angular distances we will also deal
with |f | and |g|. Note thatf ∈ Ci does not necessarily imply that|f | ∈ Ci (consider, for
instance, the second quadrant inR2).

We make standard nontriviality assumptions on measure spaces(X,A, µ): X contains at
least one point and the (positive) measureµ is not identically zero. We writeLp rather than
Lp(X,A, µ).

To compare cones in differentLp spaces, we map them intoL2 via the Mazur map. Let us
write sign z = eiθ whenz = reiθ 6= 0, andsign 0 = 1 (so| sign z| = 1 always). The Mazur map
ψr,s : Lr → Ls is defined first on the unit sphereS(Lr) by ψr,s(f) := |f |r/s sign f , and then
extended to the rest ofLr by homogeneity (cf. [3, pp. 197–199] for additional information on
the Mazur map). More precisely,

ψr,s(f) := ‖f‖rψr,s(f/‖f‖r) = ‖f‖1−r/s
r |f |r/s sign f.

By definition, if λ > 0 thenψr,s(λf) = λψr,s(f). This entails that ifC ⊂ Lr is a cone, then
ψr,s(C) ⊂ Ls is a cone. Given a subsetA ⊂ Lr, we denote by|A| the set|A| := {|f | : f ∈ A}.
Observe that ifA is a cone then so is|A|.

Theorem 4.1. Let 1 < p < ∞ and denote byq := p/(p − 1) its conjugate exponent. Let
C1 ⊂ Lp andC2 ⊂ Lq be cones, letS(Lp) stand for the unit sphere ofLp and let |C1| and
|C2| denote the topological closures of|C1| and |C2|. If |C1| ∩ S(Lp) is norm compact, and
ψp,2(|C1|) ∩ ψq,2(|C2|) = {0}, then there exists a constantγ = γ(C1, C2) ∈ [0, 1) such that for
everyf ∈ C1 and everyg ∈ C2,

(4.1) ‖fg‖1 ≤ γ ‖f‖p ‖g‖q.

In the proof we use the following result, which is part of [1, Theorem 2.2].

Theorem 4.2. Let 1 < p < ∞, let q = p/(p − 1) be its conjugate exponent, and letM =
max{p, q}. If f ∈ Lp, g ∈ Lq, and‖f‖p, ‖g‖q > 0, then

(4.2) ‖fg‖1 ≤ ‖f‖p‖g‖q

1− 1

M

∥∥∥∥∥ |f |p/2

‖f‖p/2
p

− |g|q/2

‖g‖q/2
q

∥∥∥∥∥
2

2

 .

A different proof of inequality (4.2) (with the slightly weaker constantM = p + q, but
sufficient for the purposes of this note) can be found in [2]. Next we prove Theorem 4.1.

Proof. If eitherC1 = {0} or C2 = {0} there is nothing to show, so assume otherwise. Note
that since|C1| and|C2| are cones, the same happens with their topological closures. The cones
ψp,2(|C1|) andψq,2(|C2|) are also closed, as the following argument shows: The Mazur maps
ψr,s are uniform homeomorphisms between closed balls, and also between spheres, of any fixed
(bounded) radius (cf. [3, Proposition 9.2, p. 198], and the paragraph before the said proposi-
tion). In particular, if{fn} is a Cauchy sequence inψq,2(|C2|) (for instance) then it is a bounded
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6 J. M. ALDAZ

sequence inL2, soψ−1
q,2 = ψ2,q maps it to a Cauchy sequence in|C2|, with limit, say,h. Then

limn fn = ψq,2(h) ∈ ψq,2(|C2|). Likewise,ψp,2(|C1|) is closed.
The rest of the proof proceeds as before. Letv ∈ ψp,2(|C1|) ∩ S(L2) and denote byF (v) the

distance fromv to ψq,2(|C2|) ∩ S(L2). ThenF (v) > 0, soF achieves a minimum valueκ > 0

over the compact setψp,2(|C1|) ∩ S(L2), and now (4.1) follows from (4.2). �
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