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ABSTRACT. We present some identities related to the Cauchy-Schwarz inequality in complex
inner product spaces. A new proof of the basic result on the subject of strengthened Cauchy-
Schwarz inequalities is derived using these identities. Also, an analogous version of this result
is given for strengthened Holder inequalities.
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1. INTRODUCTION

In [1], the parallelogram identity in @&al inner product space, is rewritten in Cauchy-
Schwarz form (with the deviation from equality given as a function of the angular distance
between vectors) thereby providing another proof of the Cauchy-Schwarz inequality in the real
case. The first section of this note complements this result by presenting related identities for
complex inner product spaces, and thus a proof of the Cauchy-Schwarz inequality in the com-
plex case.

Of course, using angular distances is equivalent to using angles. An advantage of the angular
distance is that it makes sense in arbitrary normed spaces, in addition to being simpler than the
notion of an angle. And in some cases it may also be easier to compute. Angular distances are
used in Section]2 to give a proof of the basic theorem in the subject of strengthened Cauchy-
Schwarz inequalities (Theorégm B.1 below). We also point out that the result is valid not just for
vector subspaces, but also for cones. Strengthened Cauchy-Schwarz inequalities are fundamen-
tal in the proofs of convergence of iterative, finite element methods in numerical analysis, cf.
for instancel[8]. They have also been considered in the context of wavelets, cf. for example [4],
(3], [6].

Finally, Sectiorj § presents a variant, for cones and in the Holder caselwhen < oo, of
the basic theorem on strengthened Cauchy-Schwarz inequalities, cf. Theorem 4.1.
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2. IDENTITIES RELATED TO THE CAUCHY-SCHWARZ INEQUALITY IN COMPLEX
INNER PRODUCT SPACES

It is noted in [1] that in aeal inner product space, the parallelogram identity

(2.1) Iz +ylI* + llo — ylI* = 2[l=|* + 2]yl

provides the following stability version of the Cauchy-Schwarz inequality, valid for non-zero
r Y

vectorsr andy:
2
[zl llyll )'

Basically, this identity says that the size(of 1)) is determined by the angular distaﬂh s

between: andy. In particular,(z,y) < ||z||||y||, with equality precisely when the angular dis-
tance is zero. In this section we present some complex variants of this identity, involving
and|(z,y)|; as a byproduct, the Cauchy-Schwarz inequality in the complex case is obtained.
Since different conventions appear in the literature, we point out that in this papgtis taken
to be linear in the first argument and conjugate linear in the second.

We systematically replace in the proofs nonzero vectoaady by unit vectorsu = x/||x||

andv = y/||y|.
Theorem 2.1. For all nonzero vectors andy in a complex inner product space, we have

@2 <wbmmwuﬂ

11 = Y 2
(2.3) Re(z,y) = ||z|llly| | 1 — = ||-— — —
@) = lallyl (1= |5 - 4
and
1| = 1y 2
(2.4) Im(x,y) = ||x]|||ly 1——‘——— .
(z,y) = [lz[lly] 2 Tl ~ Tl

Proof. Let ||u|| = ||v|| = 1. From [2.1) we obtain
4= lu—vl* = flu+ v
=2+ (u,v) + (v,u)
=24 (u,v) + (u,v) = 2+ 2Re(u, v).

Thus,Re(u,v) =1—1 |lu — v||>. The same argument, applied|to + iv||?, yieldsIm(u, v) =
1— 3w — | O

Writing (z,y) = Re(z,y) + i Im(z, y) we obtain the following:

Corollary 2.2. For all nonzero vectors andy in a complex inner product space, we have

L = Y 2 ) 1| = 1y 2
@25)  (r,9) = |elly uﬂ—_— +«p¢___ |
2|7l ™ Tl 2 [Tl Tl
Thus,
x Y T 1y
26 @yl = lzllyl wﬂ———--%kﬂ___ |
2| Tell ™ Tl 2 T~ Tl
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Next we find some shorter expressions [far, y)|. Let Arg ~ denote the principal argument
of 2 € C,z # 0. Thatis,0 < Argz < 2, and in polar coordinates, = ¢’ 8%, We choose
the principal argument for definiteness; any other argument will do equally well.

Theorem 2.3.Letx andy be nonzero vectors in a complex inner product space. Then, for every
a € R we have

; 2
11|le"x Y
(2.7) lz[llyll {1—3 -
2zl
1 efiArg(x,y)l, y 2
< |z y)l = llzllllyll {1 -5 - :
2 | [yl

Proof. By a normalization, it is enough to consider unit vector@ndv. Let « be an arbitrary
real number, and sét= Arg(u, v), so(u,v) = e'r in polar form. Using[(2.8) we obtain

1— % |e"u — sz = Re(e"™u,v) < |(e"u,v)|

= |(u,v)] = r = (e "u,v)

= Re(e "u,v) =1 — % e " u — UHQ.

O

The preceding result can be regarded as a variational expressign,fgy|, since it shows
that this quantity can be obtained by maximizing the left hand side df (2.7)cowar in other
words, by minimizing overa.

eor _ y
[l llll
Corollary 2.4 (Cauchy-Schwarz inequalityJor all vectorsz andy in a complex inner prod-
uct space, we havgz,y)| < |[|z] ||y||, with equality if and only if the vectors are linearly
dependent.

Proof. Of course, if one of the vectors y is zero, the result is trivial, so suppose otherwise and
normalize, writingu = z/||z|| andv = y/||y||. From [2.7) we obtain, first(u,v)| < 1, second,

e~ Are(u)y — o if | (u, v)| = 1, so equality implies linear dependency, and thifd, v)| = 1 if
ey, = v for somea € R, so linear dependency implies equality.

3. STRENGTHENED CAUCHY-SCHWARZ |INEQUALITIES

Such inequalities, of the forftz, y)| <~ ||z|| ||y|| for some fixedy € [0, 1), are fundamental
in the proofs of convergence of iterative, finite element methods in numerical analysis. The basic
result in the subject is the following theorem (see Theorem 2.1 and Remark 213 of [8]).

Theorem 3.1.Let H be a Hilbert space, let’ C H be a closed subspace, and létC H be a
finite dimensional subspace.AfN V' = {0}, then there exists a constant= ~(V, F') € [0,1)
such that for every € V" and everyy € F,

(@, y)| <yl Iyl

There are, at least, two natural notions of angles between subspaces. To see this, consider a
pair of distinct 2 dimensional subspadésaand¥ in R3. They intersect in a liné,, so we may
consider that they are parallel in the direction of the subspaand thus the angle between
them is zero. This is the notion of angle relevant to the subject of strengthened Cauchy-Schwarz
inequalities.
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Alternatively, we may disregard the common subspacand (in this particular example) de-
termine the angle between subspaces by choosing the minimal angle between their unit normals.
Note however that the two notions of angle suggested by the preceding example coincide when
the intersection of subspaceqis (cf. [7] for more information on angles between subspaces).

From the perspective of angles, or equivalently, angular distances, what Thegrem 3.1 states is
the intuitively plausible assertion that the angular distance betwesamd F' is strictly positive
provided that?" is closed,V is finite dimensional, and’ N V' = {0}. Finite dimensionality of
one of the subspaces is crucial, though. Itis known that if botimd 7' are infinite dimensional,
the angular distance between them can be zero, even if both subspaces are closed.

Define the angular distance betwdérand F’ as

(3.1) R(V,F) :=inf{|lv —wl| : v € V,w € F, and|jv|| = ||w|| = 1}.

The proof (by contradiction) of Theoregm B.1 presented_in [8] is not difficult, but deals only
with the case where botii and F' are finite dimensional. And it is certainly not as simple as
the following

Proof. If either V' = {0} or F = {0} there is nothing to show, so assume otherwise. Let
S(V') be the unit sphere of the finite dimensional subspéceand letv € S. Denote by
f(v) the distance fromv to the unit spheres(F') of F. Then f(v) > 0 sinceF is closed
andv ¢ F. Thus, f achieves a minimum value > 0 over the compact sef(1"). By the
right hand side of formulg (2.7), for evety € V \ {0} and everyy € F \ {0} we have

(2, )] < (1= r2/2) ||| [lyl] m

In concrete applications of the strengthened Cauchy-Schwarz inequality, a good deal of effort
goes into estimating the size of= cos 6, wheref is the angle between subspaces appearing
in the discretization schemes. Since we also have 1 — x?/2, this equality can provide an
alternative way of estimating, via the angular distancerather than the angle.

Next we state a natural extension of Theofen) 3.1, to which the same proof applies (so we
will not repeat it). Consider two nonzero vectorsv in a real inner product spade, and let
S be the unit circumference in the plane spanned by these vectors. The angle between them
is just the length of the smallest arc 8fdetermined by:/||u|| andv/||v||. So to speak about
angles, or angular distances, we only need to be able to multiply nonzero vetipsositive
scalars\ = 1/||z||. This suggests that the natural setting for Thedrefn 3.1 is that of cones, rather
than vector subspaces. Recall thais aconein a vector space over a field containing the real
numbers if for everyr € C and everyh > 0 we havelz € C. In particular, every vector
subspace is a cone. (f; andC; are cones in a Hilbert space, the angular distance between
them can be defined exactly as before:

(3.2) k(C1, Cy) = inf{||lv —wl|| : v € C,w € Cy, and||v|| = ||w|| = 1}.

Theorem 3.2.Let H be a Hilbert space with unit sphef(H ), and letC,, C, C H be (topo-
logically) closed cones, such th&y N S(H) is a norm compact set. {f; N Cy = {0}, then
there exists a constant= ~(Cy, Cy) € [0, 1) such that for every: € C, and everyy € Cs,

(@ )| < izl yll-

Example 3.1.Let H = R?, C, = {(z,y) € R? : z = —y} andCy = {(x,y) € R? : 2y > 0},

that is,C; is the one dimensional subspace with slepeand(C, is the union of the first and

third quadrants. Here we can explicitly see thaf, Cy) = cos(r/4) = 1/v/2. However,

if Cy is extended to a vector spabg then the conditior”; N V' = {0} no longer holds and

~v(Cy, V) = 1. So stating the result in terms of cones rather than vector subspaces does cover
new, nontrivial cases.
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4. A STRENGTHENED HOLDER INEQUALITY

Forl < p < oo, itis possible to give aiv” — L7 version of the strengthened Cauchy-Schwarz
inequality. Here; := p/(p — 1) denotes the conjugate exponenpoiVe want to find suitable
conditions onC; C L? andC, C L7 so that there exists a constant +(C1, Cy) € [0, 1) with
1fgll < v II£ll, llgll, for every f € C; and everyg € C,. An obvious difference between the
Holder and the Cauchy-Schwarz cases is that in the paiifing := | fg, the functionsf and
g belong to different spaces (unlgss- ¢ = 2). This means that the hypothesis N C; = {0}
needs to be modified. A second obvious difference is that Holder’s inequality actually deals
with | f| and|g| rather than withf andg. So when finding angular distances we will also deal
with |f| and|g|. Note thatf € C; does not necessarily imply that| € C; (consider, for
instance, the second quadraniiif).

We make standard nontriviality assumptions on measure sgaced, ;): X contains at
least one point and the (positive) measurés not identically zero. We writd.? rather than
LP(X, A, ).

To compare cones in differedt’ spaces, we map them inf@ via the Mazur map. Let us
write sign z = ¢ whenz = re? # 0, andsign 0 = 1 (so|sign z| = 1 always). The Mazur map
Vs o L” — L* is defined first on the unit sphefg L") by ¥, ,(f) := |f|"/*sign f, and then
extended to the rest di” by homogeneity (cf.[[3, pp. 197-199] for additional information on
the Mazur map). More precisely,

Grs(f) = 1 Ietrs (PN Nle) = NFIET/5LF17% sign f.
By definition, if A > 0 theni, s(Af) = A\, s(f). This entails that iilC C L" is a cone, then

,s(C') C L*is acone. Given a subsétC L", we denote byA| the sefA| := {|f| : f € A}.
Observe that ifd is a cone then so isi|.

Theorem 4.1.Let1 < p < oo and denote by := p/(p — 1) its conjugate exponent. Let
Cy C LP andC, C L7 be cones, le5(L?) stand for the unit sphere df* and let|C,| and
|C,| denote the topological closures [@f;| and |Cy|. If |C1| N S(LP) is norm compact, and

Y, 2(|C1]) N1,2(]Ca]) = {0}, then there exists a constant= v(C, Cy) € [0, 1) such that for
everyf € C, and every € (s,

(4.1) 1 gllx < v ILFIL, lgllg-
In the proof we use the following result, which is partlof [1, Theorem 2.2].

(4.2) 19l < £ llpllgllq (1 -

max{p, q}. If f € L#, g € L*, and| | . |gll, > 0. then
2
2 2 :
MR gl )

Theorem 4.2. Let1 < p < oo, letq = p/(p — 1) be its conjugate exponent, and lef =
[fIP2 gl

A different proof of inequality[(4]2) (with the slightly weaker constavit = p + ¢, but

sufficient for the purposes of this note) can be found in [2]. Next we prove Thegorém 4.1.

Proof. If either C; = {0} or C; = {0} there is nothing to show, so assume otherwise. Note
that sincgC, | and|Cs| are cones, the same happens with their topological closures. The cones
V,2(|C1]) and, 2(]Cy]) are also closed, as the following argument shows: The Mazur maps
Y, s are uniform homeomorphisms between closed balls, and also between spheres, of any fixed
(bounded) radius (cf. [3, Proposition 9.2, p. 198], and the paragraph before the said proposi-

tion). In particular, if{ f, } is a Cauchy sequenceif »(|C:|) (for instance) then it is a bounded
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sequence id.?, so¢;21 = 12, maps it to a Cauchy sequence@, with limit, say,h. Then

lim,, f,, = ¥y2(h) € ¥,2(]Cs]). Likewise, 1, o(|C1]) is closed.

The rest of the proof proceeds as before. d-et,»(|C;|) N S(L?) and denote by’ (v) the

distance fromv to ¢, »(|Cs|) N S(L?). ThenF(v) > 0, soF’ achieves a minimum value > 0

over the compact set, »(|C; ) N S(L?), and now|(4.11) follows fron] (4]2). O
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