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The genome of the spider mite Tetranychus urticae, a herbivore, is missing

important elements of the canonical Drosophila immune pathways necessary

to fight bacterial infections. However, it is not known whether spider mites

can mount an immune response and survive bacterial infection. In other che-

licerates, bacterial infection elicits a response mediated by immune effectors

leading to the survival of infected organisms. In T. urticae, infection by either

Escherichia coli or Bacillus megaterium did not elicit a response as assessed

through genome-wide transcriptomic analysis. In line with this, spider

mites died within days even upon injection with low doses of bacteria

that are non-pathogenic to Drosophila. Moreover, bacterial populations

grew exponentially inside the infected spider mites. By contrast, Sancassania
berlesei, a litter-dwelling mite, controlled bacterial proliferation and resisted

infections with both Gram-negative and Gram-positive bacteria lethal to

T. urticae. This differential mortality between mite species was absent when

mites were infected with heat-killed bacteria. Also, we found that spider

mites harbour in their gut 1000-fold less bacteria than S. berlesei. We show

that T. urticae has lost the capacity to mount an induced immune response

against bacteria, in contrast to other mites and chelicerates but similarly to

the phloem feeding aphid Acyrthosiphon pisum. Hence, our results reinforce

the putative evolutionary link between ecological conditions regarding

exposure to bacteria and the architecture of the immune response.
1. Introduction
To deal with infection, arthropods rely on several defensive mechanisms that

include behavioural avoidance, physical and chemical barriers, and the
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Figure 1. Bacterial infection severely affects survival of T. urticae.
(a) T. urticae adult females were infected with E. coli at ODs 0.1, 1 and
10 and with LB as control. There is a clear reduction in survival of T. urticae
after infection, independently of the bacteria concentration tested.
(b) T. urticae adult females were infected with B. megaterium at ODs 0.1,
1 and 10, with LB and E. coli at OD 0.1 as controls. A reduction in the survival
of T. urticae was observed after infection with B. megaterium with the two
highest concentrations tested, but not for OD 0.1. In (a,b), vertical bars
correspond to the standard errors of survival estimates, obtained from the
Cox proportional hazards models. (c) Hazard ratios between T. urticae
adults infected with LB or with bacteria (light grey, B. megaterium; dark
grey, E. coli). Vertical bars correspond to the 95% CIs of the estimated
hazard ratios. ***p , 0.001.
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immune response [1,2]. For example, virtually all arthropods

studied thus far mount some combination of cellular and

humoural responses against bacteria that rely on coagulation,

production of reactive oxygen species (ROS), melanization,

phagocytosis and the synthesis of antimicrobial peptides

(AMPs) and/or enzymes [3,4].

In the insect model system Drosophila, the humoural

response has been dissected genetically in great detail. It

relies strongly on the induction of two signalling pathways,

Toll and Imd, through the recognition of Lys-type or diami-

nopimelic acid (DAP) type peptidoglycans, present in

Gram-positive and Gram-negative bacteria, respectively,

and culminating in the production of AMPs [3,5].

Genomic analyses of other holometabolous insects have

revealed that most genes of the Toll and Imd pathways are

conserved, namely in mosquitoes, the honeybee and the

beetle Tribolium castaneum [6–8]. However, in the pea

aphid Acyrthosiphon pisum, a hemimetabolous insect, the

Imd pathway is incomplete and several genes coding

for receptors and common AMPs could not be identified.

Moreover, this aphid species does not mount an immune

response to bacterial infection [9,10]. Yet, this is not a

general feature of hemipterans, because the Toll and

Imd pathways along with several receptors and AMPs

were annotated in the genome of the brown planthopper,

Nilaparvata lugens, and several Toll pathway genes were

shown to be upregulated upon bacterial infection in this

species [11]. This pattern is also verified in another closely

related hemipteran, Rhodnius prolixus, in which activity of

the Imd pathway was experimentally confirmed [12].

Furthermore, Imd has been found in the genomes of other

hemipterans such as the large milkweed bug (Oncopeltus
fasciatus) and of the water strider Gerris buenoi (M van der

Zee 2015, personal communication). Taken together, these

observations suggest that, to a great extent, the immune

response in most insects is directly comparable to that of

the dipteran Drosophila.

In chelicerates, however, the Imd pathway seems to

be incomplete in all species thus far analysed [13,14].

Notwithstanding, in Carcinoscorpius rotundicauda, an

orthologue of the Drosophila NF-kB-like transcription factors,

Relish, has been described and implicated in the immune

response against Pseudomonas aeruginosa infection [15,16]. In

fact, in several studied chelicerates, a response is elicited through

the canonical production of antimicrobial compounds [17,18].

The two-spotted spider mite Tetranychus urticae feeds on

the cell contents of a multitude of plant species. Its genome

annotation failed to identify several canonical immunity

genes, amongst which an important part of the Imd pathway

and effectors such as haemolectins (von Willebrand

factor-like proteins) or defensins [13,14,19] (electronic sup-

plementary material, table S1). Two general hypotheses

may explain this observation: (i) the spider mite mounts an

immune response based on a different genetic basis, as do

other chelicerates or (ii) as in aphids, T. urticae does not

possess an inducible anti-bacterial immune response.

To distinguish between these hypotheses, we present

experimental data describing the response of mites to bac-

terial systemic infection, including host survival, bacterial

proliferation in the host and transcriptional responses.

Additionally, we tested the generality of our results by

repeating this characterization on the litter-dwelling grain

mite Sancassania berlesei [20].
2. Results
(a) Tetranychus urticae is susceptible to infection

with Escherichia coli and Bacillus megaterium
We tested survival of T. urticae following infection with

Escherichia coli, a Gram-negative bacterium, or the Gram-

positive Bacillus megaterium. Injecting spider mites with

E. coli at three different concentrations—ODs 0.1, 1 or 10—

significantly affected survival (Cox model, bacterial

concentration effect, x2
3 ¼ 19:213, p ¼ 0.0002; figure 1a).

A pairwise comparison of the hazard ratios between spider

mites injected with E. coli or with Luria broth (LB) confir-

med that spider mite survival was severely affected (OD 0.1:

z ¼ 9.828, p , 0.0001; OD 1: z ¼ 11.124, p , 0.0001 and OD

10: z ¼ 14.267, p , 0.0001; figure 1c).

Injecting spider mites with B. megaterium at three different

concentrations (ODs 0.1, 1 or 10) also significantly affected

survival (Cox model, bacterial concentration effect,

x2
4 ¼ 19:471; p , 0.0006; figure 1b). Hazard ratios revealed no

significant change in survival between mites injected with LB

or with B. megaterium at OD 0.1 (z ¼ 1.769; p ¼ 0.0769), but sur-

vival of T. urticae decreased significantly relative to the LB

control at OD 1 and OD 10 (B. megaterium OD 1: z ¼ 8.792,
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Figure 2. Spider mites do not trigger an induced immune response against
bacterial infection. T. urticae adult females were infected with E. coli,
B. megaterium and LB buffer by an injection method and collected 3, 6
or 12 h post-infection ( pi) to analyse the transcriptomic responses. Using
non-injected mites as a reference, the relative transcription levels of the
gene sets that showed significant differential expression in any time point
of each bacterial and LB-control treatment were subjected to hierarchical clus-
tering based on the distance calculated by dynamic time warping alignments.
Resulting clusters were grouped, of which the means (solid line) and confi-
dence interval (a: 0.05) (shaded regions) are shown for infections with E. coli
(in red) (a) or B. megaterium (in green) (b) together with their respective LB
controls (in black).
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p , 0.0001; B. megaterium OD 10: z ¼ 8.797, p , 0.0001;

figure 1c).

The high mortality rate in T. urticae caused by infection

with bacteria known to be non-pathogenic to Drosophila mela-
nogaster [21] raised the possibility that our bacterial strains

had an unexpected level of pathogenicity. To test this, we

infected D. melanogaster adult females with the same bacteria

and at the same concentrations applied to T. urticae. As pre-

viously reported [22,23], within the same time frame and

bacteria inoculum range as our experiment with T. urticae,
the survival of D. melanogaster was not reduced upon infection

with either bacterium (Cox model, bacterial concentration

effect, x2
6 ¼ 3:501, p ¼ 0.7439; electronic supplementary

material, figure S1).

(b) The transcriptomic profile of Tetranychus urticae
is unaltered upon infection

Next, we analysed genome-wide gene-expression patterns to

assess the effect of bacterial infection on spider mites using a

qPCR-validated microarray set-up [24]. Differential transcript

levels were determined in mites injected with E. coli or with

B. megaterium relative to mites injected with LB. Expression

levels were measured 3, 6 and 12 h post-injection. Only a lim-

ited number of genes showed significant differences in

expression between mites injected with or without bacteria

and displayed an inconsistent response to bacteria across

the three time points (electronic supplementary material,

table S2). Moreover, even though the 34 orthologues of

immunity-related Drosophila genes identified in the T. urticae
genome had multiple probes on the array, none of these

showed significant differential expression upon bacterial

infection (electronic supplementary material, table S2).

By contrast, a more pronounced transcriptional response

was observed between injected and non-injected mites. In

these comparisons, we observed altered transcription of a

total of 259 genes (out of 17 798 genes with probes on the

array). More specifically, transcriptomic comparisons of the

E. coli and B. megaterium injections, with their respective LB

controls, uncovered a total of 177 and 211 differentially

expressed genes, respectively, at any of the three time

points (figure 2 and electronic supplementary material,

figure S2). Only three genes were significantly differentially

expressed in a consistent manner across every time point of

every injection treatment (LB buffer, E. coli and B. megaterium).

These are tetur03g07900, tetur05g04720 and tetur19g00860,

none of which shows any significant homology to known

immunity genes (sequence data accessible at: http://bioinfor

matics.psb.ugent.be/orcae/overview/Tetur and http://www.

uniprot.org/proteomes/ under UP000015104). No ortholo-

gues of Drosophila genes classified as immunity-related were

present in any of these gene sets [19]. Of the 259 differentially

expressed genes that showed significant differential expression

in any comparison, 118 were given a Gene Ontology (GO) term

by Blast2GO analysis [25]. Fisher’s exact test showed that 16 and

12 GO terms were significantly over- and under-represented in

the differentially expressed gene set, respectively (electronic

supplementary material, table S3). No terms related to a

physiological response to wounding were observed.

As indicated by the hierarchical clustering analysis based

on time-series alignments of the relative transcription levels

across the different time points (figure 2) and by correspond-

ing gene-expression heatplots (electronic supplementary
material, figure S2), the transcriptional response to injection

did not appear to be time-dependent within the first 12 h.

Indeed, no strong linear differential expression across the

three time points was observed in any of the three injection

treatments. Moreover, the lack of consistent differential

expression across all time points of the different injection

treatments indicates that the injection procedure itself did

not elicit an immune response.

The transcriptional responses observed in individual

comparisons do show that our pipeline is capable of identify-

ing differential expression. Therefore, we interpret the lack of

significantly distinct transcript levels in the direct compari-

sons of bacterial-injected versus LB-injected mites as caused

by the virtual absence of immune response induction and

not by a technical artefact.
(c) Sancassania berlesei and Tetranychus urticae
respond differently to systemic bacterial infection

To test whether the lack of an induced immune response in

T. urticae is a general feature of the Acari, we mirrored the

infections performed on the spider mite in the grain mite,

S. berlesei.
Overall, infection with bacteria decreased significantly the

survival of S. berlesei (Cox model, bacterial concentration

effect, x2
6 ¼ 17:461, p ¼ 0.0077; figure 3a,b). A reduction in

survival was observed upon bacterial injection with either

bacterial species at all tested concentrations (E. coli OD 0.1:

z ¼ 3.513, p , 0.0022; E. coli OD 1: z ¼ 3.446, p ¼ 0.0022;

E. coli OD 10: z ¼ 3.559, p ¼ 0.0022; B. megaterium OD 0.1:

z ¼ 2.899, p ¼ 0.0037; B. megaterium OD 1: z ¼ 3.495, p ¼
0.0022; B. megaterium OD 10: z ¼ 3.414, p ¼ 0.0022; figure 3c).

http://bioinformatics.psb.ugent.be/orcae/overview/Tetur
http://bioinformatics.psb.ugent.be/orcae/overview/Tetur
http://bioinformatics.psb.ugent.be/orcae/overview/Tetur
http://www.uniprot.org/proteomes/
http://www.uniprot.org/proteomes/
http://www.uniprot.org/proteomes/
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adult females were infected with E. coli (a) or B. megaterium (b) at three
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However, when survival of S. berlesei and T. urticae is con-

trasted, it is unequivocal that the grain mite is far more capable

of surviving infection than the spider mite (compare figure 1a
with 3a and figure 1b with 3b). Finally, the same experiment

using heat-killed bacteria did not show a differential survi-

val of the two mite species (electronic supplementary

material, figure S3). This observation discards the possibility

of host inflammatory misregulation causing self-damage

independently of bacterial action [26,27].

(d) Bacterial proliferation correlates with host survival
We observed the dynamics of the bacterial inoculum after

infection of both mite species and D. melanogaster by counting

the number of colony-forming units (CFUs), over 4 days

(figure 4).

We found significant differences in the number of CFUs

between T. urticae and D. melanogaster (ANOVA, F1,20¼

134.066, p , 0.0001; figure 4a), across time points (ANOVA,

F4,20¼ 70.044, p , 0.0001), and in the interaction between
time point and species (ANOVA, F1,20 ¼ 25.131, p , 0.0001).

The latter indicates that bacterial populations have distinct

growth dynamics in T. urticae and in D. melanogaster. Indeed,

in T. urticae, the number of CFUs increased across time points

(figure 4a), whereas for D. melanogaster the number of CFUs

started to decrease 2–3 days after injection, reaching in the

last time point a value similar to the bacterial number initially

injected (t20¼ 20.201, p ¼ 0.8427). By contrast, no significant

differences were found between the dynamics of bacteria

infecting S. berlesei and D. melanogaster (ANOVA, F1,20¼ 0.51,

p ¼ 0.482; figure 4b), between time points (ANOVA, F4,20¼

2.287, p ¼ 0.0957) and in the interaction between time points

and species (ANOVA, F4,20 ¼ 0.069, p ¼ 0.9906).

This experiment provides a further line of evidence that

S. berlesei is capable of fighting bacterial proliferation, con-

trary to T. urticae.

(e) Tetranychus urticae has an impoverished gut microbiota
We proceeded to quantify the microbiota in both mite species

motivated by three important facts: (i) the ecological simi-

larities between T. urticae and the aphid, (ii) the genomic

evidence for the absence of the Imd gene and a general degener-

ation of the Imd pathway in the spider mite [13,14,19] and

(iii) the central role of this pathway in gut homeostasis regard-

ing regulation of the microbiota [28,29]. We quantified bacteria

in individuals that were (i) surface-sterilized in bleach and alco-

hol, which should not have bacteria in their external surface;

(ii) fed on rifampicin, which should not have bacteria in the

gut or (iii) both, which should have neither and (iv) mites

taken directly from their natural substrate, which should

present both internally and externally associated bacteria.

We homogenized individual adult females of T. urticae and

S. berlesei from each treatment and plated them on LB

agar plates (figure 4c) or extracted DNA to perform semi-

quantitative PCR for the 16S gene (electronic supplementary

material, figure S4). We found that the two mite species

harbour a significantly different number of bacteria capable

of growing on LB agar plates (ANOVA, mite species effect,

F1,72¼ 169.855, p , 0.0001) and that the treatments applied

significantly decreased the number of bacteria (ANOVA, treat-

ment effect, F3,72¼ 93.543, p , 0.0001; figure 4c). We found a

significant species by treatment interaction (ANOVA, F3,72 ¼

13.029, p , 0.0001), and the treatment with external steriliza-

tion and antibiotic treatment brings bacteria numbers to

non-significantly different levels in both species (t72 ¼ 1.924,

p ¼ 0.058). All other comparisons between treatments across

species are highly significant (t72 . 5.492, p , 0.0001). It is par-

ticularly striking that, once sterilized and only harbouring the

bacteria inside the gut, single crushed T. urticae individuals

only generate around 10 CFUs, a difference of three orders of

magnitude relative to their S. berlesei counterparts (figure 4c).

It is expected that an undetermined number of bacterial

species will not be detected with the specific culture con-

ditions used in this test. However, it is unlikely that,

between the two mite species, the distribution of bacterial

species, which can and cannot be grown in LB, will be signifi-

cantly different to change the qualitative conclusion we reach.

A semi-quantitative PCR provided independent confir-

mation that S. berlesei has a microbiota in the order of one

thousand times higher than that of T. urticae. Whereas ampli-

fication products are clearly visible using gDNA from

sterilized S. berlesei after 25 cycles, only after 35 cycles are

bands detectable from sterilized T. urticae (electronic
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supplementary material, figure S4). For example, contrasting

bands from the pool of 100 non-sterilized T. urticae females

(TP) at 35 cycles to the pool of 50 non-sterilized S. berlesei
females (SP) at 25 cycles show comparable amplification pro-

ducts in the two bacterial types (210¼ 1024). Despite the

poor quantitative power of this technique, its qualitative

interpretation provides a rough estimate of the difference in

bacteria present in either species, namely in their digestive

tracts. Importantly, this difference is hardly attributable to

any of the four most commonly described endosymbionts of

spider mites [30], which are absent from our tested populations

(electronic supplementary material, figure S5).

Together, these results concur in that most bacteria found

in these species are inside the mite gut and that between

T. urticae and S. berlesei their numbers differ by roughly

three orders of magnitude.

3. Discussion
(a) Spider mites are susceptible to bacterial infections
Using bacteria that are non-pathogenic to D. melanogaster, we

have shown that spider mites infected over a 100-fold concen-

tration range with both Gram-positive and Gram-negative

bacteria display high mortality when compared with controls

(both mock-infected and infected with heat-killed bacteria).

In addition, no qualitatively different transcriptional change

is induced consistently by the presence of bacteria. This is

in sharp contrast with Drosophila which displays a strong

upregulation of Imd and/or Toll pathways upon bacterial

infection [3,31,32]. Although individual transcriptomic

comparisons between injected and non-injected mites reveal

differential expression, no consistent response to injection

was observed across all time points and treatments. There-

fore, wounding itself does not seem to induce an immune

response. This is supported by the absence of enriched GO

terms related to wound response in lumped individual tran-

scriptomic responses (electronic supplementary material,

table S3). Finally, in T. urticae, bacterial proliferation is main-

tained steadily across 4 days post-injection in consonance

with its mortality profile. This strongly indicates that no resist-

ance or tolerance mechanisms are operating in the spider mite
and that uncontrolled bacterial proliferation caused the

observed mortality rates.

Our data are consistent with the absence of an induced

immune response but does not address the putative role of

other constitutive defences involving expression of effectors,

such as lysozymes, AMPs and ROS, or cellular immunity

and phagocytosis [33]. Be that as it may, we show that these

other candidate mechanisms in T. urticae are clearly insufficient

in face of bacterial infections that are innocuous to Drosophila
and other chelicerates such as ticks [34] or the wet grain

mite S. berlesei, which occupies a very different ecological

niche, namely bird litter and other substrates prone to bacterial

proliferation and infection [20].

Bacterial infection affected the survival of S. berlesei but to a

much lesser extent than that observed for T. urticae. Moreover,

unlike T. urticae, S. berlesei was capable of controlling and redu-

cing the bacterial load, and also mimicking the characterized

immune response in D. melanogaster [35,36]. The observation

that bacterial load in S. berlesei increases initially and decreases

over time suggests that this mite species mounts an immune

response against bacterial infection. The nature of this response

in S. berlesei, induced and/or constitutive, remains to be deter-

mined. An induced response is supported in other chelicerates

such as horseshoe crabs and spiders, which upregulate AMPs

upon bacterial challenge [17,37], possibly without resorting to

Imd or Toll pathways, as these are (at least partially) degener-

ated in genome-sequenced species [13,14]. In addition, anti-

bacterial response may rely on higher basal levels of immune

effectors such as circulating haemocyanin, C-reactive proteins

and a2-macroglobulin deployed upon infection [38].
(b) Life history correlates with immune degeneration
in spider mites

Genomic and physiological studies of the pea aphid A. pisum
uncovered a very similar pattern to our results on T. urticae
[9,10,39,40]. Similarly to T. urticae, the genome of A. pisum
misses important genes of the Imd pathway and several

other Drosophila immune genes [9]. Infected aphids, in which

lysozyme activity could be detected, did not upregulate

AMPs, suggesting that aphids do not deploy an induced
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immune response upon bacterial challenge [9,10]. Instead, pea

aphids seem to rely on another layer of defence, that is

provided by their endosymbionts, namely Regiella insecticola,

Rickettsia and Spiroplasma, to fight some fungal infections

[41,42] and Hamiltonella defensa against parasitoid attack [43].

Possibly, endosymbionts commonly detected in T. urticae
populations might also confer protection to attacks by fungi

and other natural enemies [30] but, to our knowledge, there

has been no report of endosymbiont protection against bac-

terial infections in arthropods (reviewed in [44]). In addition,

infection with E. coli also induces significant mortality in the

pea aphid [39]. In any case, by using bacteria-challenged

spider mites devoid of four common endosymbionts, we

aimed to specifically test the response on the host genomic

and physiological levels [30].

As shown for the pea aphid [9,11,12], the degenerated

immune genetic repertoire and immune response in T. urticae
is also a secondary loss. One hypothesis for the genomic and

physiological patterns observed in pea aphid immunity is

that the virtually aseptic phloem diet of aphids would relax

selection for the maintenance of costly immune response mech-

anisms [45]. This hypothesis may be extended to T. urticae as

this species also feeds on a seemingly bacterial-free resource,

the cytoplasmic content of leaf cells and phloem. This ecologi-

cal scenario is opposite to that of the house fly, where the

genomic expansion of immune-related genes may underlie its

adaptation to septic environments [46]. Moreover, the shared

degeneration of the Imd pathway in the spider mite and

aphid reinforces this notion because of the central role played

by this pathway in mediating the epithelial response to bac-

terial contacts in the gut and in the modulation of its

bacterial contents [31,47–49]. Recent work has shown that, in

addition to aphids, other phloem-sap feeders, such as white

flies and psyllids, carry a reduced gut microbiota in both lab-

oratory and natural populations [50]. Unfortunately, no

information is yet available regarding immune responses in

these insects.

The aseptic nature of the feeding source of spider mites is

supported by the rough comparative characterization of the

gut bacteria present in the two mite species studied here,

which differs by several orders of magnitude. This ecological

feature, by eliminating a constant necessity for balancing bac-

terial interactions (commensal or pathogenic), may relax the

pressure to evolve or maintain a transcriptionally induced

and regulated response. Further studies looking into immu-

nity in other arthropods with obligate endosymbionts and/

or with comparable dietary regimes will provide clearer

answers about the forces driving convergent degeneration

of this type of immune response.
4. Material and methods
(For most sections below, more detail is provided in electronic

supplementary materials and methods.)

(a) Arthropod and bacterial strains
(i) Tetranychus urticae
All spider mites used in this work are of the London strain, a refer-

ence line originally collected in Ontario, Canada. The line used

for the Spider Mite Genome Sequencing project [19] was derived

from this population. Spider mites were reared under laboratory

conditions (258C, 60% humidity and 16 L : 8 D photoperiod).
(ii) Sancassania berlesei
Grain mites (a kind gift from J. Radwan) were maintained in large

numbers in Petri dishes (6 cm diameter) with fly food under labora-

tory conditions (258C, 50% humidity and 12 L : 12 D photoperiod).

(iii) Drosophila melanogaster
The w1118 laboratory stock kept under standard laboratory

conditions was used in the survival assays and the dynamics

of bacterial infection.

(iv) Bacteria
Escherichia coli (Gram 2) and B. megaterium (Gram þ) stocks were

kept at 2808C and bacteria were plated onto Petri dishes with

LB. Per experiment, one colony was picked from selective

medium cultures, transferred to liquid LB and grown overnight

at 378C for E. coli and at 308C for B. megaterium.

(b) Survival assays
Tetranychus urticae, S. berlesei and D. melanogaster survival was

monitored after injection with E. coli or B. megaterium for up to

96 h at 24-h intervals. Individuals were injected with LB with or

without bacteria. For the former treatment, we used three different

concentrations of bacteria, OD 0.1, OD 1 and OD 10 measured with

a BioRad SmartSpec 3000. OD 10 corresponds to 5 � 109 cell ml21;

OD 1 and OD 0.10 were obtained by diluting bacteria at OD 10 in

LB at a 1 : 10 ratio and 1 : 100 ratio, respectively.

(c) Tetranychus urticae transcriptome analysis
Female adult spider mites were injected with E. coli or B. megater-
ium at OD 1 concentration with LB as a negative control, or were

left unmanipulated. Three, 6 and 12 h post-infection, four bio-

logical replicates of every injection treatment were collected.

Two biological replicates were collected from non-treated,

non-injected mites. Every RNA sample was extracted from a

pool of 300 mites and labelled with Cy5 or with Cy3. Significant

differential expression was identified by an empirical Bayes

approach employing cut-offs for the Benjamini–Hochberg FDR

adjusted p-values and log2-converted fold change at 0.05 and 1,

respectively [51]. The proxy, NbClust and dtw packages in R

were used in the distance matrix construction and clustering of

the transcriptomic responses. Distance measures were generated

through alignments of the relative transcription levels (injected

versus non-injected) using dynamic time warp algorithms.

This technique allows for the comparison of the transcriptomic

responses over time [52,53].

(d) Infection with heat-killed bacteria
Tetranychus urticae and S. berlesei survival was measured after

infection (injection or pricking, respectively) with live or heat-

killed E. coli or B. megaterium at OD 10. Three replicates of 30,

1- to 3-day-old, adult females were used per treatment: LB, live

E. coli, heat-killed E. coli, live B. megaterium and heat-killed

B. megaterium. Survival was monitored every 24 h over 4 days.

(e) Dynamics of bacterial growth
We infected 150 females of T. urticae, S. berlesei and D. melanogaster
with 5–100 CFUs of E. coli per individual. The dynamics of the

bacterial population was followed every 24 h from 0 to 96 h. At

each time point, three replicates of four individuals were hom-

ogenized in 50 ml of LB and serially diluted. Homogenates (4 ml)

were plated in triplicate on LB plates supplemented with

100 mg ml21 kanamycin and incubated overnight. The next day,

the number of CFUs was counted. For S. berlesei and D. melanoga-
ster, only the homogenates of the individuals alive were plated.
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However, for T. urticae, individuals collected and plated at 72 and

96 h were dead because no survivors could be recovered at those

time-points. The standard error was obtained by dividing the stan-

dard deviation of the three biological replicates datapoints (values

in log10 CFU), divided by the square root of three, the number of

samples for each time point/species.

( f ) Estimating the microbiota associated with each mite
species

(i) Sterilization and rifampicin treatments
To measure the approximate number of bacteria present either out-

side or inside each mite species, adult T. urticae and S. berlesei
females were exposed to one of four different treatments: no ster-

ilization, sterilization, feeding on rifampicin and feeding on

rifampicin plus sterilization. Single individuals were homogenized

in 50 ml of LB, plated (4 ml) in LB agar and incubated overnight at

308C. The next day, the number of CFUs was counted and used as a

proxy to estimate the microbiota associated with each mite (five

per treatment and per species).

(ii) Semi-quantitative PCR of bacterial 16S
DNA was extracted from individual mites after sterilization

(GenEluteTM Mammalian Genomic DNA Miniprep Kit, Sigma–

Aldrich Co., St Louis, USA). PCRs were performed using

standardized concentration of DNA templates (around

4.5 ng ml21) and using universal primers for the bacterial 16S

gene defined by Lane [54], 27f: GAG AGT TTG ATC CTG GCT

CAG and 1495r: CTA CGG CTA CCT TGT TAC GA. PCR amplifi-

cation conditions were as follows: 15 min at 958C, followed by

15/20/25/30 three-step cycles of 948C for 30 s, 588C for 1 min

30 s, 728C for 1 min followed by a final step of 10 min at 728C.

(g) Statistical analysis
Analyses were carried out using the R statistical package (v. 3.1.2).

To compare survival between uninfected and infected individuals,

we used Cox proportional hazards mixed-effect models (coxme,

coxme package). To compare the dynamics of bacterial infection,

a linear model on log10-transformed bacterial counts was

employed with species, time point and the interaction between

species and time point as fixed factors. To analyse the microbial

community of both mite species, a linear model on the log10-
transformed bacteria counts was employed with species and treat-

ment as fixed factors. In both tests, the significance of the

explanatory variables was tested using type I ANOVA. Pairwise

comparisons between time points or treatments were performed

using the lsmeans function of the package lsmeans. When a signi-

ficant interaction was found, comparisons were done separately

for each species or each treatment.

Data accessibility. Tetranychus urticae sequence data may be accessed at:
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