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Abstract 

In this work, we present a real case study of optimization of waste collection routes. In our particular case, the 

collection area is La Rioja (a region of Spain with an area of 5.045 km^2 and a population of ca. 300.000 people). 

The starting point of our study was some unstructured data that The Circular Lab 

(https://www.thecircularlab.com/en/) handed us from the routes that were being used, as well as some particular 

instances of these routes that had been completed by trucks in their daily routine. From that particular routes we 

generated our own data model, a middleware and a connection to specialised computing services that allowed us 

to optimise the routes. These optimisations gave place in some particular cases to savings of up to 40% (either in 

the distance, the time, or the CO2 emissions required to complete the routes). 
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1. Introduction 

Waste collection requires heavy investments in time, fuel and human resources. It is also a challenging task since 

its optimisation is known to be an NP-hard problem, Lenstra and Kan (1981), which means that for ‘big’ instances 

(in other words, real world cases) its optimal solution cannot be computed in a reasonable amount of time. 

 

The nature and modelisation of the problem varies among particular cases. Some modelisations require the starting 

point and the depot to be different points (in some others they coincide), some other admit several depots or 

intermediary collection points, and some other have various trucks with different capacities; a daily periodicity 

can be also included in the problem; then some other modelisations include periodicities in a time range (for 

instance, a collection point has to be visited twice every week). These differences, together with the computational 

complexity of the problem, lead to particular solutions being proposed for particular instances of the problem. 

 

In our particular case, the region of interest is La Rioja, a region in the north of Spain of 5.045km^2 and ca. 300.000 

habitants. The population is distributed in some cities and in a relevant number of small villages and rural regions. 

In this project, that we develop in collaboration with The Circular Lab (an innovation center located in La Rioja 

for best practices about packaging and recycling), we will focus in paper and plastic collection. There are more 

than 2300 collection points distributed along 130 villages or towns, and three trucks to perform the collection. The 

starting point and the depot are located at the same place. The input information of our project was some raw data 

(in csv format) about the routes being performed at that moment, as well as a small number of routes completed 

that have been obtained from some GPS located in the trucks in a few particular days. 

 

These data provided us information about the routes being completed and also about the time and distance that 

was being completed at that time. Our proposal was developing a general framework that could be  used for similar 

problems in waste collection; the framework consists in a set of libraries to retrieve information about the distances 

among collection points and villages, a data model (that we implemented in MongoDB) to store data about the 

routes, geographical information and also our computations; a middleware that is used to invoke in a unified way 

different computations tools (such as OR-Tools, Gurobi and CPLEX) and that can be easily adapted to 

communicate with new tools, and also a server that uses geovisualisation tools and APIs to present the results and 

comparisons among routes. 

 

The utility and scalability of the framework is illustrated with our case study, where more than 30GB of data has 

been generated (both from converting the original data and storing the relevant parts of our computations), and are 

stored in our database, and time and distance reductions of 30% (mean value along the different routes) have been 

obtained in the routes that were being completed before our study. 

 

The paper will be divided in four sections. In Section 2 we present the application that we have developed to store 

the original data as well as the rest of the information generated by the system. In Section 3 we present the different 

modelisations of the problem that can be used to optimise route computation, as well as their implementation. 

Then, in Section 4 we present a comparison of the total times from the original routes and from the routes computed 

in our work. 

 

2. Data model and architecture of the application. 

This section will be divided in two parts. In Subsection 2.1 we present the data model that we generated from the 

information that we got from our costumer, and that shall be applicable to similar problems. In Subsection 2.2 we 

present the architecture of the application that we have developed to retrieve geographical information, store it, 

compute routes, and present the routes to the user. 

2.1. Data model. 

The raw data for this project, provided by The Circular Lab, was in csv format. For better processing, we 

transformed it to MongoDB, which allows to include flexibility in the data structure (avoiding having to start with 

an initial data structure that limits changes in the database) and increase efficiency when viewing and editing data 

(comparing with relational databases, such as those that use SQL). The data structure that we designed and 
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implemented is shown in Fig. 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

In this data model we can see several data collections that provide different information to the framework. Some 

of these collections are mainly descriptive, like “ContainerType”, “CollectionPoint” or “Locality”, where we save 

information about the technical features of the container and its installation or about the region we are considering. 

The rest of the collections are necessary for the computations, like route optimization and the comparison of the 

results of these optimizations with the original routes, or for the geographical presentation of the information, such 

as “Route”, “CoveredRoute”, “DistanceMatrix” and “Coordinates”. 

  

The input data is from La Rioja waste collection routes made with trucks, but we could use this model with other 

regions waste collection routes or even with another type of routes. The data model is general enough to be also 

useful in different case studies with routes performed with any type of vehicle that has to collect something at 

certain points. 

 

2.2. Architecture of the system. 

We obtained information about the routes, coordinates of each container, days and periodicity when a collection 

point is visited, and so on, from the company that provides this service in La Rioja. In order to obtain the distance 

and time matrices for the coordinates, to use them in the optimization of the time or distance of the routes, we 

needed to know the travelling time and distance between each available coordinate. To get this information we 

used both the Google Maps and the Open Street Map information services; since there were significant differences 

between both services we had to make some assumptions (in general, Google Maps seemed to contain more 

accurate information than Open Street Map, but Open Street Map is less restrictive, without limitations on the 

amount of API queries per day).  

  

In order to use these services to obtain new data we use the appropriate APIs for each case, OSRM (Open Source 

Routing Machine) for Open Street Map and Google Maps Directions API for Google Maps (official API). With 

these services, besides getting travelling time and distance between coordinates, we obtained the driving directions 

to go from one coordinate to other, useful to later visualize the routes on a map in greater detail, rather than with 

Figure 1. Data model of the system. 
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straight lines between coordinates. 

 

The technologies that we have used in the different parts of our project (see the image below) are:  

 

• Python, as the general programming language for the framework;  

• JavaScript, used for route visualization within a map;  

• MongoDB, used to generate the data model;  

• Some optimization solvers used with Python like OR-Tools (a Google tool for linear programming) and 

Gurobi (one of the best-known mathematical optimization solvers).  

  

The mathematical models that we implemented followed the formulations presented in the seminal work by Öncan 

et al (2009). These formulations were implemented by us in the optimized software OR-Tools and Gurobi. We 

present some more details in Sect. 3 about these formulations. We present the architecture of our framework in 

Fig. 2: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As we can see in the previous figure Python is the application’s main language. It is the one in charge of 

communicating the rest of the modules, the database, the JavaScript client and the optimisation solvers.  

  

In addition to optimize the routes, we can show the original and optimized routes in a map and compare them. For 

this, we have used the open source JS libraries for geovisualization “Leaflet” and “IDERioja” to display the routes 

in a web browser. 

  

Apart from that, the development is general enough to support other Linear Programming modules (in addition to 

OR-Tools and Gurobi solvers) such as the well-known IBM solution CPLEX or also particular solutions. It should 

be emphasized that when using different solvers for the same optimization problem we do not need to change 

anything in the data model or for routes visualization, the only thing that changes is the service that optimizes the 

route. 

  

As we commented in the previous subsection, this architecture has been proven with a specific case, but we can 

use it with similar transport problems. For example, to optimize or view the route that a motorbike makes to deliver 

some orders. 

 

3. Modelisation of the problem and computation of the solutions. 

This section is divided into two parts. In Subsection 3.1 we describe the different mathematical modelisations that 

can be used for the problem of route optimisation. In Subsection 3.2 we present the implementation of the 

modelisations presented in Subsection 3.1 as well as the tools that we have used to solve them. 

3.1. Mathematical modelisation of the problem. 

The computational part of the project is the most challenging one, partly because of the complexity of the 

optimisation problem being tackled. 

Figure 2. Architecture of the application.  
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Our approach is as follows. In a first stage, we decided to study individually each one of the routes that we were 

handed. This amounts to 51 routes with 150 to 300 collection points each, and collection times ranging from 4 to 

9 hours. The routes vary in three different ways: 

 

- There are different collection routes for the different geographical subregions of our region; 

- There are different collection routes for each day of the week (Monday to Saturday, some with periodicity 

equal to one week and some with periodicity equal to two weeks); 

- There are different collection routes during the summer (“high season”) and during the rest of the year. 

 

Therefore, in order to approach the optimisation problem, we first considered each route individually and tried to 

optimize it by means of an asymmetric Travelling Salesman Problem (ATSP). The asymmetricity is originated by 

some points whose distances depend on the particular order they are traversed. There are different formulations of 

the ATSP; we closely followed the formulations surveyed by Öncan et al (2009). We present some details about 

the implementation in the next subsection. The results obtained by means of this formulation are presented in Sect. 

4. 

 

In a second stage, we considered all the collection points that are visited in a stretch of two weeks, their individual 

periodicity, and all the available vehicles (three in our particular case study) and formulated the problem as a 

Periodic Vehicle Routing Problem (PVRP). Our modellisation of the problem follows the one by Christofides and 

Beasley (1984). We present its implementation in the following subsection and the results achieved in Section 4. 

 

The previous formulation proved to be a hard-computational problem, and the results obtained were far from 

optimal (and also worse than the ones obtained by means of the ATSP). In that situation, we decided to step back 

and formulate the problem as a Vehicle Routing Problem (VRP), where the traversing of the collection points is 

to be computed, but the day of the week in which each collection point must be visited is decided beforehand. In 

fact, this is a well-known strategy -- see, for instance, Carravilla et al. (2011) -- to tackle the PVRP when 

computational cost is too high. 

 

Our formulation of the Vehicle Routing Problem follows the one presented by Bettinnelli (2010) which is 

originally the one labelled as “VRP4” (or three-index vehicle flow formulation) in the seminal survey by Toth and 

Vigo (2001), and is presented in the next subsection, and whose results are presented in Section 4. 

 

3.2. Implementation of the modelisations. 

As we have stated in Subsection 3.1, we propose three different modelisations of the collection process. The first 

one, as a Travelling Salesman Problem (TSP); the second one as a Vehicle Routing Problem (VRP) and the third 

one as a PVRP. In this subsection we present the mathematical formulations that we have used of each one of the 

problems, and that we later implemented in Gurobi (a specialised software to optimise Linear Programming 

problems). 

 

The ATSP admits several modelisations that have been surveyed in various works. We closely followed the survey 

by Öncan et al. (2009) and implemented some of the modelisations presented there. We chose the formulations 

DFJ (Dantzig et al. (1954)), MTZ (Miller et al. (1960)), SCF (Gavish and Graves (1978)), DL (Desrochers and 

Laporte (1991)), SD (Sherali and Driscoll (2002)), MCF (Wong (1980)), CLAUS (Claus (1984)) and CLAUS GP 

(Gouveia and Pires 2001). There are two parameters that have to be taken into account when comparing different 

formalisations: the deviation between the relaxation bounds and the optimal solution, and the CPU times to obtain 

the optimisations. The reason to perform the comparison among the modelisations and the computations by 

ourselves was to find the modelisation that was best suited for our particular solver (Gurobi) and hardware. As a 

matter of example, CLAUS is known to obtain good deviations from the optimal solution, but its computing time 

is slower than that of DL or SD. 

 

In our particular setting, and with our example instances (obtained from TSPLIB), DFJ proved to be the best 

performing (summing up deviations and computing times) modelisation. Its mathematical formulation follows: 

 

Minimize:  ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1  
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subject to: ∑ 𝑥𝑖𝑗 = 1, 𝑖 = 1 … 𝑛𝑛
𝑗=1 , 

   

  ∑ 𝑥𝑖𝑗 = 1, 𝑗 = 1 … 𝑛𝑛
𝑖=1 , 

 

  0 ≤  𝑥𝑖𝑗  ≤ 1, 𝑖, 𝑗 = 1 … 𝑛, 
 

  𝑥𝑖𝑗 = 0, 1, 𝑖, 𝑗 = 1 … 𝑛, 
 

  ∑ 𝑥𝑖𝑗𝑖,𝑗 ∈ 𝑆 ≤  |𝑆| − 1, 𝑆 ⊆ {2, … . , 𝑛}, 2 ≤ |𝑆| ≤ 𝑛 − 1. 
 

The last constraint is used to avoid subtours in the solution. In practice, we only add them gradually, each time a 

solution with subtours is reached. Our computational tests in Gurobi with the examples of TSPLIB showed that 

DFJ performed better than the other formulations, especially when the number of collection points grew (the 

number of collection points ranging from 33 to 443 in our tests; in practice, DJF even solved to optimality some 

of the real routes containing more than 200 collection points). 

 

In order to solve the Periodical Vehicle Routing Problem, we implemented the formulation by Christofides and 

Beasly (1984). As they already announced, and our experiments confirmed, the formulation has a huge number of 

variables (do note that which truck has to visit each collection point in each day of a 14 days period has to be 

computed, in contrast to the TSP where only the order in which the collection points are to be visited was 

computed), and can be solved to optimality only in trivial examples. 

 

Therefore, we followed a two-step methodology. In a first stage, we assign collection points to days in the 14 days 

period. In a second stage, the Vehicle Routing Problem is computed for each day. This strategy is well-known in 

the literature (see, for instance, the work by Bianchi-Aguiar et al. (2011)). The modelisation of the VRP that we 

followed is the three-index model, but using the subtour elimination constraints by Fisher and Jaikurmar (1981): 

 

Minimize: ∑ ∑ 𝑐𝑖𝑗 ∑ 𝑥𝑖𝑗𝑘𝑘∈𝐾𝑗∈𝑁𝑖∈𝑁  

 

 

subject to: ∑ 𝑦𝑖𝑘 = 1, ∀𝑖 ∈ 𝑁𝑐𝑘∈𝐾 , 
   

  ∑ 𝑦0𝑘 = 𝐾𝑘 ∈ 𝐾 , 

 

  ∑ 𝑥𝑖𝑗𝑘𝑗∈𝑁 =  ∑ 𝑥𝑗𝑖𝑘 = 𝑦𝑖𝑘𝑗∈𝑁  ∀𝑖 ∈ 𝑁; 𝑘 ∈ 𝐾 

   

  ∑ 𝑊𝑖𝑦𝑖𝑘 ≤ 𝐶, ∀𝑘 ∈ 𝐾𝑖∈𝑁  

 

  ∑ ∑ 𝑥𝑖𝑗𝑘𝑗∈𝑄 ≤i∈ Q  |𝑄| − 1, ∀𝑄 ⊆ 𝑁, |𝑄| ≥ 2, 𝑘 ∈ 𝐾 

 

0 ≤  𝑥𝑖𝑗  ≤ 1, 𝑖, 𝑗 = 1 … 𝑛, 
 

  𝑥𝑖𝑗𝑘 ∈ {0, 1}, ∀𝑖, 𝑗 ∈ 𝑁, 𝑘 ∈ 𝐾 

 

  𝑦𝑖𝑘 ∈ {0, 1}, ∀𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾.  
 

The Boolean variable 𝑥𝑖𝑗𝑘 is 1 if vehicle 𝑘 traverses the arc(𝑖, 𝑗). The Boolean variable 𝑦𝑖𝑘 is 1 if vehicle 𝑘 goes 

through node 𝑖. 𝑁𝑐 is the set of collecting points, and 𝑁 the set of collecting points and the depot. The set of trucks 

is 𝐾, the capacity of the trucks is 𝐶 and 𝑑𝑖 represents the collection at point 𝑖. 
 

It is worth noting that this last optimization was performed not over collection points but over municipalities (in 

order to reduce the number of vertices in the graph) and then, once the optimized traversal among municipalities 

is known, the best sorting to traverse the collection points of each municipality has to be computed (by means of 

a small and solvable to optimality instance of the ATSP). 
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4. Results 

In Fig. 3 we present the comparison of the routing times (in minutes) required to complete the routes without 

optimisation (i.e., the original routes, shown in blue in the image) and after the optimisation process by means of 

the ATSP formulation (using the DFJ modelisation presented in Sect. 3, shown in orange in the image). The 

horizontal axis shows the 51 routes that are performed along the year. 

 

 

All the routes that we were handed admitted optimisation. The average improvement by means of the ATSP is 

31%, with some routes admitting optimisation close to 50%. A visual inspection of the original and optimised 

routes shows that the original routes usually traverse every village and collection point when heading to the most 

distant point of the depot, and then return directly to the depot (without performing any collection in their way 

back from the most distant collection point / village). On the other hand, the optimised routes do take advantage 

of their travel in both directions, when heading to the most distant point of the route, but also in their way to the 

depot. Some routes even do not collect every container in a village in their way to the most distant point, but divide 

the collection points into two subsets, one of them being collected when heading to the most distant point (with 

respect to the depot), and the other one being collected in their way back to the depot. Probably further 

optimisations are taking place that we have not detected by means of a visual inspection. 

 

We find particularly interesting the fact that 2136 hours of the 6875 hours required yearly can be saved by means 

of the routes that we have computed. This result shows that human intuition sometimes does not perform very well 

in optimisation problems (specially when the size of the problems grows). Moreover, this strengthens the idea that 

the VRP or PVRP probably will produce more interesting results (and more savings) than the ATSP. 

 

We have not presented here the experiments that we have performed with the PVRP by assigning first some dates 

to each collection point (without changing their periodicity), and then optimising the traversal of the collection 

points selected for each day. Due to the size of the problem, we had to group the containers in each village or town 

in “clusters” (the original 2300 collection points were reduced to 130 clusters) and compute the solutions with 

respect to these 130 clusters. Even so, the results obtained still do not improve on the presented results obtained 

by means of the ATSP, and thus we decided to not introduce them here. 

 

The previous results obtained with the ATSP show that human intuition sometimes does not always work properly 

in optimisation problems. Therefore, we think that the PVRP will produce further improvements with respect to 

the results obtained, once we obtain a sensible simplification of the problem, or enough computational power to 

reduce the gap among the results obtained with respect to the optimal solution. 

 

Further work 

Our first and foremost goal is to obtain advantage of the VRP optimisation with respect to the ATSP optimisation. 

It seems clear that this will require better computing resources than the ones we are using now. We are considering 

using a High-Performance Computing (HPC) facility. A sensible strategy to obtain the results has been presented 

in Sect 3. 

 

Figure 3. Comparison of the original and optimised routes, using ATSP 
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For the next framework version, and in order to obtain a secure record of the routes being completed and increase 

the integrity of the data being collected, so that they cannot be modified or deleted, we also plan to implement a 

Solidity Smart Contract that stores the information in the Ethereum Blockchain. 

 

We would also like to obtain data about the collection routes from some other regions with a size similar to our 

region (from Spain or from other countries) from which we can optimise routes being performed and that help to 

reduce traffic congestion and CO2 emissions. 

 

Another source of optimisation could be to organise the collection routes considering information about container 

fill rate, in such a way that containers are collected just in case their fill rate is above 2/3. This would require 

information (or predictions) about the container fill rate, that nowadays is not available. In any case, the tool 

presented in this work could be easily applied to the set of containers that satisfies a particular condition (such as 

their fill rate being above 2/3). 
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