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Abstract: Under the hypotheses that a function and its Fréchet derivative satisfy some generalized
Newton–Mysovskii conditions, precise estimates on the radii of the convergence balls of Newton’s
method, and of the uniqueness ball for the solution of the equations, are given for Banach space-valued
operators. Some of the existing results are improved with the advantages of larger convergence
region, tighter error estimates on the distances involved, and at-least-as-precise information on the
location of the solution. These advantages are obtained using the same functions and Lipschitz
constants as in earlier studies. Numerical examples are used to test the theoretical results.
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1. Introduction

Let X and Y be Banach spaces. Let U(x, r) and U(x, r) stand, respectively, for the open and closed
ball in X with center x and radius r > 0. Denote by Ł(X,Y) the space of bounded linear operators
from X into Y. Further, let D ⊂ X be a nonempty set.

In the present paper, we are concerned with the problem of approximating a locally unique
solution x∗ of the equation

F(x) = 0, (1)

Where F is a Fréchet continuously differentiable operator, defined on D with values in Y.
Numerous applications from applied mathematics, optimization, mathematical biology, chemistry,

economics, physics, engineering, and other disciplines can be brought, in the form of Equation (1) by
mathematical modelling [1–9]. The solution of these equations can rarely be found in closed form.
Hence, the solution methods for these equations are iterative. In particular, the practice of numerical
analysis for finding such solutions is essentially connected to variants of iterative methods [1–23].
Research about the convergence issues of Newton methods involves two types: Semi-local and local
convergence analysis. The semi-local convergence issue is, based on the information around an initial
point, to give criteria ensuring the convergence of iterative methods; meanwhile, the local one is,
based on the information around a solution, to find estimates for the radii of the convergence balls.
We find, in the literature, several studies on the weakness and/or extension of the hypotheses made
on the underlying operators. There is a plethora on local, as well as semi-local, convergence results;
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we refer the reader to [1–23]. In this paper, we assume the existence of x∗, but do not address any
existence results.

Newton’s method is defined by the iterative procedure

x0 is an initial point
xn+1 = xn − F′(xn)−1 F(xn) for each n = 0, 1, 2, · · · ,

(2)

and is, undoubtedly, one of the most popular iterative processes for generating a sequence {xn}
approximating x∗. Here, F′(x) ∈ Ł(X,Y) denotes the Fréchet derivative of F at x ∈ U(x0, R).

Newton–Mysovskii-type conditions (see (10) ) have been used by several authors [4,7,9,12,21,22]
to provide a local, as well as a semi-local, convergence for Newton’s method and Newton-like methods.

A very important problem in the study of iterative procedures is the convergence region. Some
of the existing results provide conditions for the convergence, based on small regions under certain
conditions. Therefore, it is important to enlarge the convergence region without additional hypotheses.
Another important problem is to find more precise error estimates on the distance ‖xn − x∗‖, as well as
uniqueness of the solution results. These are our objectives in this paper.

In particular, we obtain the following advantages over earlier works:

(a1) At least as large a radius of convergence to at least as many choices of initial points;
(a2) At least as small a ratio of convergence, so at most as few iterates must be computed to obtain a

desired error tolerance; and
(a3) The information on the location of the solution is at least as precise.

It is worth noticing that these advantages are obtained, although more general and flexible
majorant-type conditions are used.

Indeed these advantages are obtained by specializing the new majorant functions. Hence,
the applicability of Newton’s method is extended. Our approach can be used to improve local and
semi-local results for Newton-like methods, secant-type methods, and other single- or multi-step
methods along the same lines.

The paper is structured as follows: Section 2 contains the local convergence analysis of Newton’s
method. Applications are given in the Section 3. Our findings are summarized in Section 4.

2. Local Convergence Analysis

We present the main local convergence result for Newton’s method.

Theorem 1. Let F : D ⊂ X → Y be a Fréchet-differentiable operator. Suppose:

(a) There exists x∗ ∈ D such that F(x∗) = 0 and F′(x)−1 ∈ Ł(Y,X) for all x ∈ D.

(b) There exists a function ϕ : [0,+∞)→ [0,+∞) with ϕ(0) = 0 such that ϕ(t)
t1+λ is continuous, where t 6= 0,

and is non-decreasing for some λ ≥ 0.
(c) For all x ∈ D

‖F′(x)−1(F(x)− F′(x)(x− x∗))‖ ≤ ϕ(‖x− x∗‖)‖x− x∗‖.

(d) There exists a minimal root $ > 0 of equation ϕ(t) = 1, such that

ϕ($)

$λ
≤ 1.

(e) U(x∗, $) ⊆ D.
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Then, the sequence {xn} generated for x0 ∈ U(x∗, $)− {x∗} by Newton’s method is well-defined, stays
in U(x∗, $) for all n = 0, 1, 2, . . ., and converges to x∗; which is the only root of the equation F(x) = 0 in
U(x∗, $). Moreover, the following estimate holds

‖xn − x∗‖ ≤ en, n = 0, 1, 2, . . . (3)

where
q =

ϕ(‖x0 − x∗‖)
‖x0 − x∗‖λ

∈ [0, 1), (4)

and en =

(
q

1
λ ‖x0 − x∗‖

)(1+λ)n

q
1
λ

.

Proof. By (b) and (d), and using (4), we have that

q =
ϕ(‖x0 − x∗‖)‖x0 − x∗‖

‖x0 − x∗‖1+λ
≤ ϕ($)

$1+λ
‖x0 − x∗‖

≤ ‖x0 − x∗‖
$

< 1.
(5)

If xk ∈ U(x∗, $), then, by Newton’s method, we can write

xk+1 − x∗ = xk − x∗ − F′(xk)
−1F(xk)

= −F′(xk)
−1(F(xk)− F′(xk)(xk − x∗)),

(6)

and so, by (c) and (6),
‖xk+1 − x∗‖ ≤ ϕ(‖xk − x∗‖)‖xk − x∗‖. (7)

If k = 0 in (7), we obtain, by (4) and (5), that

‖x1 − x∗‖ ≤ ϕ(‖x0 − x∗‖)‖x0 − x∗‖ < ‖x0 − x∗‖ < $.

Hence, x1 ∈ U(x∗, $); that is, (7) can be obtained for k = 0, 1, . . .. By mathematical induction,
all xk ∈ U(x∗, $) and ‖xk− x∗‖ decreases monotonically. Moreover, for all k = 0, 1, . . ., we consequently
obtain, from (b) and (7), that

‖xk+1 − x∗‖ ≤ ϕ(‖xk − x∗‖)
‖xk − x∗‖1+λ

‖xk − x∗‖1+λ‖xk − x∗‖

≤ ϕ(‖x0 − x∗‖)
‖x0 − x∗‖1+λ

‖xk − x∗‖1+λ‖xk − x∗‖

≤ ϕ(‖x0 − x∗‖)
‖x0 − x∗‖1+λ

‖x0 − x∗‖‖xk − x∗‖λ+1

=
ϕ(‖x0 − x∗‖)
‖x0 − x∗‖λ

‖xk − x∗‖λ+1

= q‖xk − x∗‖λ+1

≤ q(q‖xk−1 − x∗‖λ+1)λ+1

= q1+(λ+1)q‖xk−1 − x∗‖(λ+1)2
)

≤ . . .

≤ ek+1,

(8)
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which implies (3). Notice that, as q
1
λ ‖x0 − x∗‖ < 1, we have lim

n→∞
en = 0 and so lim

n→∞
xn = x∗.

Let y∗ ∈ U(x∗, $) with F(y∗) = 0. Replace x∗ by y∗ in (6)–(8). Then, we have that

‖xk+1 − y∗‖ ≤ q‖xk − y∗‖λ+1, (9)

and so lim
k→∞

xk = y∗. However, we showed that lim
k→∞

xk = x∗. Hence, we conclude that x∗ = y∗. �

Remark 1. Estimate (c) generalizes the Newton–Mysovskii-type conditions, already in the literature [4,7,9,12,21,22],
of the form

‖F′(z)−1(F(x)− F(y)− F′(x)(x− y))‖ ≤ K‖x− y‖µ, K > 0, µ ∈ [0, 2], (10)

for each x, y, z ∈ D, if we choose ϕ(t) = Ktµ−1. However, in this paper, we use the weaker condition

‖F′(x)−1(F(x)− F(x∗)− F′(x)(x− x∗))‖ ≤ K0‖x− x∗‖µ, K0 > 0.

Thus, the function ϕ specializes to ϕ0(t) = K0tµ−1 for z = x and y = x∗. Then, we have ϕ0(t) ≤ ϕ(t),
so K0 ≤ K. Moreover, (10) implies (c) in this case, but not necessarily vice versa. Hence, the new results,
in this case, are better than the old ones. It is worth noticing that these improvements are obtained under weaker
conditions (see also the numerical examples), since, as K0 ≤ K, the new radii are larger and the new ratio
is smaller.

In the case where (c) is difficult to verify, we have the following alternative.

Theorem 2. Let F : D ⊂ X → Y be a Fréchet-differentiable operator. Suppose:

(a) There exists an x∗ ∈ D and a function w0 : R+ → R+ which is continuous and nondecreasing,
with w0(0) = 0, such that

F(x∗) = 0, F′(x∗)−1 ∈ Ł(Y,X),

and, for all x ∈ D,
‖F′(x∗)−1(F′(x)− F′(x∗))‖ ≤ w0(‖x− x∗‖).

The equation
w0(t) = 1

has a minimal positive root, denoted by r0. Set D0 = D ∩U(x∗, r0).
(b) There exists a function w : R+ → R+ which is continuous and non-decreasing with w(0) = 0 such that,

for all x ∈ D0,
‖F′(x∗)−1(F(x)− F′(x)(x− x∗))‖ ≤ w(‖x− x∗‖)‖x− x∗‖.

(c) The equation
w(t) + (w0(t)− 1)tλ = 0, for some λ ≥ 0,

has a smallest root, r∗ ∈ [0, r0).

(d) The function w(t)
tλ(1−w0(t))

is continuous and nondecreasing on the interval (0, r0).

(e) U(x∗, r∗) ⊆ D.
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Then, the sequence {xn} generated for x0 ∈ U(x∗, r∗)−{x∗} by Newton’s method is well-defined, remains
in U(x∗, r∗) for all n = 0, 1, 2, . . ., and converges to x∗, which is the only root of the equation F(x) = 0 in
D2 = U(x∗, r∗) ∩ D. Moreover, the following estimates hold

‖xn+1 − x∗‖ ≤ w(‖xn − x∗‖)‖xn − x∗‖
1− w0(‖xn − x∗‖)

≤ w(‖xn − x∗‖)‖xn − x∗‖λ+1

‖xn − x∗‖λ(1− w0(‖xn − x∗‖))

≤ q0‖xn − x∗‖1+λ ≤ ‖xn − x∗‖ < r∗,

(11)

where

q0 =
w(‖x0 − x∗‖)

‖x0 − x∗‖λ(1− w0(‖x0 − x∗‖))
∈ [0, 1). (12)

Proof. We have that, for all x ∈ U(x∗, r∗),

‖F′(x∗)−1(F′(x)− F′(x∗))‖ ≤ w0(‖x− x∗‖) ≤ w0(r∗) < 1 (13)

by (a), (c), and the definition of r∗. It follows, from (13) and the Banach Lemma on invertible
operators [7,22], that F′(x)−1 ∈ Ł(Y,X) and

‖F′(x)−1F′(x∗)‖ ≤ 1
1− w0(‖x− x∗‖) . (14)

Define the function ϕ on the interval [0, r∗) by

ϕ(t) =
w(t)

1− w0(t)
. (15)

Then, the result follows from the proof of Theorem 1, by noticing that

‖xk+1 − x∗‖ = ‖[F′(xk)
−1F′(x∗)][F′(x∗)−1(F(xk)− F′(xk)(xk − x∗))]‖

≤ ‖F′(xk)
−1F′(x∗)‖‖F′(x∗)−1(F(xk)− F′(xk)(xk − x∗))‖

≤ w(‖xk − x∗‖)‖xk − x∗‖)
1− w0(‖xk − x∗‖) = ϕ(‖xk − x∗‖)‖xk − x∗‖).

�

The uniqueness of the solution x∗ depends on the functions w0 and w.
Next, we present a uniqueness result, using only the function w0.

Proposition 3. Suppose that D is a convex set. Moreover, we assume that

∫ 1

0
w0(θr)dθ < 1, r ≥ 0 (16)

and
‖F′(x∗)−1(F′(x)− F′(x∗))‖ ≤ w0(‖x− x∗‖),

for all x ∈ D3 = D ∩U(x∗, r0), where w0 : [0, ∞) → [0, ∞) is a continuous and non-decreasing function.
Then, the point x∗ is the only solution of the equation F(x) = 0 in D3.
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Proof. The convergence of Newton’s method to the root x∗ has been established in Theorem 2.
Let y∗ ∈ D3 with F(y∗) = 0. Define Q =

∫ 1
0 (F′(x∗ + θ(y∗ − x∗))dθ. Using (16), we have

‖F′(x∗)−1(Q− F′(x∗))‖ ≤
∫ 1

0
w0(‖θ(x∗ − y∗)‖)dθ ≤

∫ 1

0
w0(θr1)dθ < 1. (17)

Hence, by (17), Q−1 ∈ Ł(Y,X). Then, from the identity

0 = F(y∗)− F(x∗) = Q(y∗ − x∗),

we conclude that x∗ = y∗. �

Remark 2. (a) If r = r∗, then, by Theorem 2, we conclude that the root x∗ is unique in D3.
(b) The local results obtained in this study are better than the earlier results in [5,9,17,23–26], even if

specialized.
(c) Case of the Radius Lipschitz condition [9,26]:

‖F′(x∗)−1(F′(x)− F′(xθ))‖ ≤
∫ ‖x−x∗‖

θ‖x−x∗‖
L1(u)du, for all x ∈ D, (18)

where L1 is a positive integrable function and xθ = x∗ + θ(x− x∗).

Moreover, in light of (18), there exists a positive integrable function, L0, such that

‖F′(x∗)−1(F′(x)− F′(x∗))‖ ≤
∫ ‖x−x∗‖

0
L0(u)du, for all x ∈ D. (19)

Notice that
L0(t) ≤ L1(t), for all t ∈ [0, r0], (20)

and $0 is the minimal positive root of the equation

∫ t

0
L0(u)du = 1. (21)

The radius of convergence, r1, is obtained in [26] under (18), and is given as the root of the equation∫ r
0 L1(u)udu

r(1−
∫ r

0 L1(u)du)
= 1. (22)

The radius of convergence r∗ found by us, if D0 = D is the positive root of the equation, is∫ r
0 L1(u)udu

r(1−
∫ r

0 L0(u)du)
= 1. (23)

In view of (21)–(23), we have that
r1 ≤ r∗ (24)

Indeed, let the functions g0 and g1 be defined as

g0(r) =
∫ r

0
L1(u)udu + r

∫ r

0
L0(u)du− r
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and
g1(r) =

∫ r

0
L1(u)udu + r

∫ r

0
L1(u)du− r.

Then, in light of (21), we get
g0(r) ≤ g1(r),

and, for r = r1,
g0(r) ≤ g1(r) = 0,

by the definition of r1 leading to (24).

We can do even better, if D0 6= D. In this case, the function w (i.e., L1) depends on w0 (i.e., L0), and we
have that

‖F′(x∗)−1(F′(x)− F′(xθ))‖ ≤
∫ ‖x−x∗‖

θ‖x−x∗‖
L(u)du, for all x ∈ D0 and all θ ∈ [0, 1], (25)

where L is a positive integrable function.

Then, we have that
L(u) ≤ L1(u) for all u ∈ [0, $0], (26)

since D0 ⊆ D. In general, we do not know which of the functions L0 or L is smaller than the other
(see, however, the numerical examples). Then, the radius of convergence r∗ is the positive solution of
the equation ∫ r

0 L(u)udu

r(1−
∫ r

0 L0(u)du)
= 1, (27)

and we have, by (26), that
r∗ ≤ r∗, (28)

using a similar proof as the one below (24). Hence, we have that

r1 ≤ r∗ ≤ r∗. (29)

Inequality (29) can be strict, if (22) and (26) are strict inequalities. The corresponding ratios of convergence
are also improved (see the numerical examples).

Clearly, (18) (or (26) with r0 replaced by $0 in D0) is a special case of condition (b) in Theorem 2 and a
special case of condition (a) in Theorem 2.

(d) Case of Majorant conditions [5,17]:

‖F′(x∗)−1(F′(x)− F′(xθ))‖ ≤ f ′1(‖x− x∗‖)− f ′1(θ‖x− x∗‖), (30)

where f1 is a convex, strictly increasing function, with f1(0) = 0 and f ′1(0) = −1.

Notice that the following functions are convex, strictly increasing functions with f1(0) = 0, and
f ′1(0) = −1:

• f1 : R→ R with f1(t) = et − 2t− 1;
• f1 : [0, 1)→ R with f1(t) = −ln(1− t)− 2; and

• f1 : [0,
1
a
)→ R with f1(t) =

t
1− at

− 2t, a 6= 0.

In view of (30), there exists a function f0 with the same properties as f1, such that

‖F′(x∗)−1(F′(x)− F′(x∗))‖ ≤ f ′0(0)− f ′0(θ‖x− x∗‖), for all x ∈ D. (31)
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Thus, we can choose
w0(t) = f ′0(t)− f ′0(0). (32)

By comparing (30) and (31), we get

f ′0(t) ≤ f ′1(t), for all t ∈ [0, $̄0]. (33)

The radius of convergence r1 in [5,17], under (30), is given as the positive root of the equation

f1(t)− t f ′1(t)
t f ′1(t)

= 1. (34)

In our case, we have that r∗ solves the equation

f1(t)− t f ′1(t)
t f ′0(t)

= 1. (35)

Furthermore, by (33),
r1 ≤ r∗; (36)

see the proof in [5,17].

We can do better, if D0 ⊆ D strictly, and replacing (30) by

‖F′(x∗)−1(F′(x)− F′(xθ))‖ ≤ f ′(θ(‖x− x∗‖)− f ′(‖x− x∗‖) (37)

for all x ∈ D0.

Then, choose
w(t) = f ′(t)t− f (t).

By comparing (30) and (37), we get that

f ′(t) ≤ f ′1(t) for all t ∈ [0, r0]. (38)

Then, the radius r∗ is given as the root of the equation

f (r∗)− r∗ f ′(r∗)
t f ′0(r

∗)
= 1. (39)

Once more, we have shown that the new results improve the old ones, since (29) holds.
(e) We can obtain the radii in explicit form. Indeed, specialize the functions L1(t) = L1 > 0, L(t) = L > 0,

and L0(t) = L0 > 0 in (a), and f1(t) =
L1
2 t2 − t, f0(t) =

L0
2 t2 − t, and f (t) = L

2 t2 − t in (b). Then,
we have that

r1 = r1 =
2

3L1
, r∗ =

2
2L0 + L1

and r∗ =
2

2L0 + L
. (40)

Hence, we get (29). The inequality (29) is strict if

L0 < L < L1; (41)

see the third numerical example.

The radius r1 is due to Rheinboldt [23] and Traub [25], whereas r∗ is due to Argyros [1].
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The corresponding error bounds for the radii r1, r∗, and r∗ are given, respectively, by

‖xn+1 − x∗‖ ≤ L1‖xn − x∗‖2

2(1− L1‖xn − x∗‖) , (42)

‖xn+1 − x∗‖ ≤ L1‖xn − x∗‖2

2(1− L0‖xn − x∗‖) , (43)

and

‖xn+1 − x∗‖ ≤ L‖xn − x∗‖2

2(1− L0‖xn − x∗‖) . (44)

Hence, the error bounds (44) improve the earlier ones, (42) and (43). The same is true for the uniqueness
balls.

(f) The same advantages are obtained if we use Smale-type [25] conditions or those of Ferreira [5] or Wang [26].
Then, we choose

L1(t) =
2γ1

(1− γ1t)3 , L0(t) =
2γ0

(1− γ0t)3 , L(t) =
2γ

(1− γt)3 ,

f1(t) =
t

1− γ1t
− 2t, f0(t) =

t
1− γ0t

− 2t, f (t) =
t

1− γt
− 2t,

and r0 to be the solution of equation

(1− γ0t)2 =
1
2

,

with γ0 ≤ γ1 and γ ≤ γ1.

It is worth noticing that these advantages are obtained under the same computational cost, as, in practice,
the computation of the old functions L1 and f1 requires the computation of the functions L0, L, f0, and f as
special cases.

3. Numerical Examples

Example 4. Ammonia Problem [19,27] Let us consider the quartic equation that can describe the fraction
(or amount) of nitrogen–hydrogen feed that is turned into ammonia, known as fractional conversion. If the
pressure is 250 atmospheres and the temperature reaches a value of 500 Celsius degrees,

the equation is:
G(x) = x4 − 7.79075x3 + 14.7445x2 + 2.511x− 1.674.

We set S = R and D = [0, 1]. Then,

(a) We obtain:
w0(t) = 3/2

√
t,

r0 =
4
9

,

and
w(t) = 2

√
t.

Moreover, the equation
w(t) + (w0(t)− 1)t2/5 = 0

has a minimal root r∗ = 0.0338271 . . .. On the other hand, the function

w(t)
t2/5(1− w0(t))

=
4 10√t3

2− 3
√

t
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is continuous and non-decreasing on the interval [0, r∗). Finally, it is clear that U(x∗, r∗) ⊆ D. Then,
we can guarantee that the method (2) converges, due to Theorem 2.

(b) We obtain:
w0(t) = 2

√
t,

r0 =
1
4

,

and
w(t) = 2

√
t.

Moreover, the equation
w(t) + (w0(t)− 1)t2/5 = 0

has a minimal root r∗ = 0.0266048 . . .. On the other hand, the function

w(t)
t2/5(1− w0(t))

=
2 10√t3

1− 2
√

t

is continuous and non-decreasing on the interval [0, r∗). Finally, it is clear that U(x∗, r∗) ⊆ D. Then,
we can guarantee that the method (2) converges, due to Theorem 2.

Example 5. Planck’s Radiation Law Problem [4]
We consider the following problem:

ϕ(λ) =
8πcPλ−5

e
cP

λBT−1
,

which calculates the energy density within an isothermal blackbody. After some changes of variable, the problem
is similar to

1− x
5
= e−x.

Let us define
f (x) = e−x − 1 +

x
5

. (45)

We define D as the real interval [4, 6]. Then, we obtain:

w0(t) =
√

t,

r0 = 1,

and
w(t) =

√
t.

Moreover, the equation
w(t) + (w0(t)− 1)t2/5 = 0,

has a minimal solution r∗ = 0.060085 . . .. On the other hand, the function

w(t)
t1+λ(1− w0(t))

=
10
√

t
1−
√

t

is continuous and non-decreasing on the interval [0, r∗). Finally, it is clear that U(x∗, r∗) ⊆ D. Then, we can
guarantee that the method (2) converges, due to Theorem 2.
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Example 6. Boundary Value Problem
Let X = Y = Rn−1 for a natural integer n ≥ 2, where X and Y are equipped with the max-norm

‖x‖ = dist max1≤i≤n−1 |xi|. The corresponding matrix norm is

‖A‖ = max
1≤i≤n−1

n−1

∑
j=1
|aij|,

for A = (aij)1≤i,j≤n−1. On the interval [0, 1], we consider the following two-point boundary value problem{
v′′ + v2 = 0
v(0) = v(1) = 0.

(46)

To discretize the above equation, we divide the interval [0, 1] into n equal parts, with the length of each
part being h = 1/n and the coordinate of each point being xi = i h, for i = 0, 1, 2, . . . , n. A second-order finite
difference discretization of Equation (46) results in the following set of non-linear equations

F(v) :=

{
vi−1 + h2 v2

i − 2vi + vi+1 = 0

for i = 1, 2, . . . , (n− 1) and from (46) v0 = vn = 0
, (47)

where v = [v1, v2, . . . , v(n−1)]
T. For the above system of non-linear equations, we provide the Fréchet derivative

F′(v) =



2v1

n2 − 2 1 0 0 · · · 0 0

1
2v2

n2 − 2 1 0 · · · 0 0

0 1
2v3

n2 − 2 1 · · · 0 0
...

...
...

... · · ·
...

...

0 0 0 0 · · · 1
2v(n−1)

n2 − 2


.

Let n = 101 and x0 = [5, 5, . . . , 5]T. To solve the linear systems (step 1 and step 2 in the method (47)),
we employ the MatLab routine “linsolve”, which uses LU factorization with partial pivoting. We define the
initial guess to be x0 = linspace(0, 12, 100). Figure 1 plots our numerical solution.

Figure 1. Solution of the boundary value problem (46).
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Example 7. Radius Comparison Suppose that the motion of an object in three dimensions is governed by the
system of differential equations

F′1(x)− F1(x)− 1 = 0,

F′2(y)− (e− 1)y− 1 = 0,

F′3(z)− 1 = 0, (48)

with x, y, z ∈ D for F1(0) = F2(0) = F3(0) = 0. Then, the solution of the system is given, for v = (x, y, z)T ,
by the function F := (F1, F2, F3) : D → R3, defined by

F(v) =
(
ex − 1,

e− 1
2

y2 + y, z
)T .

Then, for x∗ = (0, 0, 0)T , we have

L0 = e− 1 < L = e
1

e− 1 < L1 = e.

Notice that (41) holds. Hence, (29) holds as a strict inequality. In particular, we have, from (22), (23),
and (27), that

r1 = 0.245253 . . . , r∗ = 0.324947 . . . , r∗ = 0.382692 . . . .

Thus, we have improved the previous results.

4. Conclusions

Generalized Newton–Mysovskii-type majorant convergence results have been introduced in
this paper. Special cases of the majorant functions involved lead to conditions considered by other
authors [4,7,9,12,21,22]. It turns out that, although the conditions are more general, they are also more
flexible, leading to some advantages; moreover, without any additional computational effort. Hence,
we have extended the applicability of Newton’s method in cases not covered before. This paper paves
the way for future research involving other iterative procedures involving inverses of linear operators.
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