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Abstract. This paper deals with the Restricted Three Body Problem (RTBP) in which we assume
that the primaries are radiation sources and the influence of the radiation pressure on the gravitational
forces is considered; in particular, we are interested in finding families of periodic orbits under theses
forces.

By means of some modifications to the method of numerical continuation of natural families of
periodic orbits, we find several families of periodic orbits, both in two and three dimensions. As
starters for our method we use some known periodic orbits in the classical RTBP.

Key words: Restricted three body problem, radiation pressure, periodic orbits

1. Introduction

The restricied three-body problem is one of the most widely studied in celestial
mechanics. Its applications span the solar system dynamics, the lunar theory, the
motion of spacecrafts, stellar dynamics, ctc.. This problem concems with the motion
of a particle of infinitesimal mass which is attracted by two primaries which arc
moving in a non-perturbed Keplerian orbit each around the other,

Nevertheless, in some occasions, the model of three point mass is not suffi-
cient 1o describe the dynamics of the problem; some additional forces must be
introduced and their effects taken into account. In some cases, 1t is necessary 1o
consider the primaries as rigid bodies and the non sphericity of them gives rise to
some differences with respect to the results in the classical RTBP (sce for instance
the works of Bhatnagar and collaborators (Bhatnagar and Chawla (1977); Bhaina-
gar and Hallan (1983); Sharma (1981); Sharma and Subba Rao (1986)) and (Elipe
and Ferrer (1985); Elipe and Arribas (1986); Elipe, 1962)). In other cases, the <o
called magnetic-binary problem, that is the motion of a charged particle in the field
of two rotating dipoles (Kalvouridis (1994); Mavraganis (1981)) is considered.

Other studics arc focussed on the stellar problem, taking the primarics as radia-
tion sources, and the influence of the radiation pressure on the effective gravitational
potential is investigated (Kunitsyn and Tureshbaev (1985); Schuerman (1980);
Simmons, McDonald and Brown (1983)). This is precisely the problem here con-
sidered: the motion of a particle in the field of two luminous massive bodies. As
it was pointed out by (Simmons, McDonald and Brown (1985)), this model may
be applied to investigate the accumulation of matter around binaries, particularly
where the stars are of luminous late type. Even more, new directions are open
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with the recent discovery of binary pulsars (Wolszczan (1985); Wolszezan (1994);
Malhotra (1993)).

In this paper, we center our attention in computing families of periodic orbits.
In particular, we choose the masses of both primaries to be equal, and only one
radiating primary; the reason for choosing both masses equal, is that this case is
quite common in binary stars, and besides, this case has been extensively studied for
the classic RTBP (see for instance (Belbruno er al., 1994) and references therein).
The method employed is the numerical continuation with respect to one parameter,
namely the radiation pressure coefficient. The algorithm used is the one described
in (Lara et al., 1995), based on the one proposed by Deprit and Henrard (Deprit and
Henrard, 1967) that computes the intrinsic variational equations. For computing
the families of three dimensional periodic orbits, we use an extension of the one of
Deprit and Henrard that will be published elsewhere.

2, Equations of the motion

Let us consider two stars O and (2 with masses my and mo that moves one
around the other under a mutual force that 1s proportional to a function of the
mutual distance and in the direction of the line joining them. The force will be
specificd later on. We will assume that these two stars —called primaries— move
on circular orbits around their mutual center of mass O with a constant angular
velocity n. Besides, let us consider a point mass (J3, whose mass mj is infinitesimal,
that is 1o say, it does not affect the motion of the two stars but it is attracted by both
primaries.
The potential function acting on (J3 may be written as

V=y2 4= —fmymaGy — fmpmaGs,

with f the gravitational constant and &, functions depending on the distance
r, = ||| = [|O:Os]l, that is, Gy — G'i(r;); these functions will be specified later
on.

One of the authors (Elipe, 1992) introduced a generic notation for handling this
general problem. This is the one that we follow here. For details, sce (Elipe, 1992).
By introducing the functions

Rlen
i wrar 1
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the gradient with respect to an inertial frame is
4G, T
v i = =———Vy(l/r)) = —g;~—
xG a(1/72) x( /r:) QT?
and hence, the equations of the motion arc
P o= —fm19:~:—; - fmzs'z%- @
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Let us consider now a synodic frame Qay #, such that the G x—axis is in the direction
of one of the primaries O0;, the O z—axis in the normal direction to the orbital
plane of the primaries and the Oy—axis the complement to the right-oriented frame.
In this reference systeu, the coordinates of the primaries O and O3 are (21, 0,0)
and (z2,0,0) respectively. Let (z,y, z) be the coordinates of the particle O; by
virtue of the moving frame theorem, the equations of motion become

v . T —I r — I

& =204 = n*z — frugr—— — frup——F—,
" )

" . 2 Y Y

J+2nk=n yﬁfmimg—fngzg, (3)
1 2

. z z

F=—fmigi— - fmap—.
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As it 1s usual in the classical RTBP, the units are chosen in such a way that the
distance between the primaries, the mean motion of the Keplerian orbit of the
primaries and the Gauss constant ( f(mn; + my)) are equal to one, With these units,
and putting fmy = u, equations (3) are

. , z+ -1+
-2y =z—(1+pa 3”’ —,ugz—g,ﬂ,
LT o}
. , y
y+2m=y—(1+ﬂ)91-§—#92%, 4
" s

o z z
=14+ mn—3 — 1,
" L]
with7'%:(m+u)2+y2+zzand7"%:(a:—l—+—,u,)2+y2+z2.
There is an integral of these equations, the Jacobian constant

C= (@ + 9+ %) — (2% + %) — 2(1 - p)Gy — 2uGs.

The general formulation obtained by the functions g; (1) has the advantage that
the same formula is valid for different types of forces. Thus, the classical case
(primaries mass points with only gravitational potential) is recovered for g; = 1.
The influence of the non sphericity of some of the primaries (rigid body) is obtained
for g; = 1+ J;/r?. The case we arc dealing with in this note —primaries considered
mass points taking into consideration the radiation pressurc— is formulated by
putting g; = (1 — #;), where §; is the ratio of the radiation pressurc force to the
gravitational force (Schuerman (1980)).

3. Natural families of planar periodic orbits
Let us consider the two degrees of freedom system

¥ =2A(z,p0) i+ Wala,y o),

: e ‘ (5)
j =24z, p0)t+ W2,y 0),
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where /A and W are two functions depending on the coordinates and on one
parameter o. This system has the Jacobian integral

O =2W — (% + 7).

Each manifold ¢ = —2h is determined by the initial conditions. By putting
U = W(z,y, o)+ h, the system (5) together with the Jacobian integral can be
wrilten as

& =24,y 0)9+ Uplz,y 0),
i = —2A(z,y, 0) + U,(z,: 0), (6)
1 =3(8"+§") - Ulz,y0)=0.

Letus assumethat £ = £(¢, op) —solution of the system (6) for the initial conditions
& = (2o, 0, Lo, Yo )— is periodic with period Tp. Hence,

£(t; 00) = £(t + Toi 00)-

Let us choose now a variation of the parameter ¢ = og + Ao. The question now is
how to {ind a new set of initial conditions &, + & such that the solution of (6) for
these initial conditions be periodic with period Ty + AT, that is,

E(t,og +Ac) =&t + T 00+ Ao). (7

The Poincaré method of continuity cnsures that, under certain conditions, there
exist initial conditions

Eot+ > &op(Aa)t (8)

k21

such that the solution of the ordinary differential equations (6) is periodic with
period

T=To+ Y Tog(ac)

k>l

Under the impossibility of carrying out the infinity terms of the above series, and
assuming Ac small enough, we consider only the first order approximation for the
initial conditions

&o + Agélp; 9
the corrections 8&, arc solutions of the variational system

85 = 2A80 + (Upy + 240000 + (Upy + 24,000y + Uso + 24,9,

6 = =248 + (Upy — 2Ap2 )02 + (Uy, — 2A4,2)0y + Uyo — 24,2, (10)

§T = £bd + G407 — Ugdz — Uydy — U, = 0.
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Since the system (10) is linear, the general solution is formed by a linear combi-
nation of particular solutions that depends on arbitrary integration constants. The
desired variations will be determined by computing those values of the integration
constants that fulfil the periodicity condition (7). Notice from (7) thart the unknown
AT is an implicit variable; we overcome this inconvenience by expanding (7) up
to the first order.

‘The Cartesian formulation of the variational equations (10) mix secular terms
produced by displacements along the orbit with periodic terms. An alternative
formulation can be given by using intrinsic coordinates: the tangent p and the
normal n displacements obtained from the rotation

bz = pcos ¢ — nsing, 6& = pcos¢ — nsing — ¢ by, an
by = psing + ncos ¢, 64 = psing + ncos d + ¢ by.

When using intrinsic coordinates, the variational differential equations result to
be separable (Deprit and Henrard, 1967): the normal displacements are obtained
from the generalized Hill equation

A+

i+ 0On = —2U(,—V~ - 24,V + Uy, cos¢p — U,y sing, (12)
where

V=@t 442, tang = g/i, (13)
and

., _
Q= % +2(A+ GV 4 2A4% — Uy — Uyy —2V(Azsing — Aycos @), (14)

The next step is the computation of the tangent displacement p by integrating the
quadrature

dpMA*Fé&
E(V)_z vty (12

The corrections computed from (9) are tangent approximations, hence the algo-
rithm must consist of two steps: the tangent predictor followed by an isoenergetic
corrector (see (Deprit and Henrard, 1967)).

Let us apply the method above exposed to the problem described in section 2.
To have planar orbits, we need to make zero the third equation of the system (4).
The casc for which we compute the families of periodic orbits is the ong in which
both primaries have equal masses (¢ = 1/2), and only one radiating primary (O);
hence g1 = 1, g2 = (1 — 3). The parameter to vary is ¢ = 3. The corresponding
variational equations are obtained from the 'table 1 (note that in our case, 4 = 1).
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TABLE I
Partial derivatives of the effective potential function U,

Usr== (lf—p)x—{;'uf(l By L”
1

1—p H 1—pu M
U=y[1————1—ﬁ—], Uzz—z[ +1mﬂ_]
¥ ,r_f]j ( )7_‘3}‘ T? ( )'r'%
[ 14 4 4
U = —— U = s — 1 = -3 = =T
8= 8e rg(l'ﬂt b Usy Y Us,: T%Z

L : Bla+p)f —ril+ (- ﬂ)r—%B@ +p = 1) — 3]

1—
Ugy =Uye = 39[ r“;‘

Hladm + (- ) (a4 p - 1)]
2

Ug =0, » =32 [1_5#(m+p)+(1 "ﬂ)%(m'{”“_ l)]

Uyy = [3y2 —rf]+ (-4 3.!2 — 73]

(1 — 1-—
Uy,z:Uz,y—-—syz[ “+(1ﬂm;% U= R (- 9B - o
2

ry 1

To begin with, we need an initial periodic orbit. This is chosen from the classical
RTBP (4 = 0); with this starter we compute the family for small variations of 5. In
Figures 1 and 2 we present several periodic orbits corresponding to two different
families. The corresponding initial conditions for each orbit —and the value of
3— appear in Tables 2 and 3.

4, 3-D families

For computing three dimensional families of periodic orbits, we make an extension
of the algorithm given by Deprit and Henrard (Deprit and Henrard, 1967). The
main feature of this extension consists in formulating the variational equations in
the Frenet frame (¢, n, b), where ¢ is the tangent, n the normal and & the binormal
vectors of the orbit. As it is well known, these vectors are

t=2/V, wn=t/N, b=txn,
with V2 = & . & and N? = ¢ - £. An intrinsic variation is

s=pt+gn+rn.
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Fig. 1. The family of pericdic orbits for the Jacobian integral h = —0.14897239, and
variations of 3 from 8 = Q1ill # = 0.986 and 63 = 0.1, The right figure is a spatial
representation of the same set of orbits; the vertical axis represents 3.

TABLE I
Several periodic orbits of the family presented in Figure 1 for h = —0.14897239.
8 T Trace
0.0 0.104461T108660456E+02  0.3822153007000804E 102
0.1 (0.1070172013219846E+02  (.5742991976362558E+02
0.2 0.1091861983180412E+02 0.7877942498646655E+02
0.3 0.1111613216668850E+02  1,1037624867333485E403
0.4 0.11304008773E3352E402  0.1344319449796839E+03
0.5 0.1148877305694259E+02  0.1742951152990996E+03
0.6 0.1167602660316857E+02  0.2302916965480838E+03
0.7 0.1187195100933765E+02  0.3186898086851346E+03
.8 (.1208539221579756E+02  0.4888860581472264E+03
09 0.1233378082533988E+02  0.9919428359728460E+03
0.986 0.1262371447640814E+02  0.7268460161558314E+04

Lo

Yo

To

0.0
0.1
0.2

0.4
0.5
0.6
0.7
0.8

0.986

0.1807988571131529E+00
0.1807767900534300E 1 00
0.1807995814686417E+00
0.1807951549726286E+00
0.1807226536826620E+00
0.1805502674655450E+00
0.1802470712670701E+00
0.1797778243600812E+00
0.1790970074637502E+00
0.1781377416068378E+00
(.1769986552205803E+00

0.2658263191705089E+01
0.2678057761574384E+01
0.2685745453338287E+01
0.2685443316541738E+01
0.2678957662978194E+01
0.2667173063771944E+01
0.2650481485311404E+01
0.2628926901761657E+01
0.2602209226312452E4+01
0.2569525571175686E+01
0.2535174972786400E+01

0.2745718742061957E+01
0.2757228143972670E+01
0.2757616160628099E+01
0.2750545269799129E+01
0.2737601543522081E+01
0.2719537699281033E+01
0.2696654823880121E+01
0.2668927197288515E+01
0.2635006989486300E+01
0.2597012717347751E+01
0.2557151270760333E+01
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Fig. 2. The family of periodic orbits for the Jacobian integral & = —0.27279945, and
variations of 8 from 3 = 0till 8 = 0.537. The right figure is a spatial representation of the
same set of orbits; the vertical axis represents 3.

TABLE IT1
Several periodic orbits of the family presented in Figure 2. The value of A = —0.272795435.
8 1 Trace
0.0 0.1494816481714137E+02  0.6188380629984958E+03
0.000 0.1515637579861915E+02 0.8120723863623102E+03
0.21 0.1533733436551117E402  0.9804795169153184E+03
0.3 0.154468730872T9Z1EH2  0.1052050814120363E+04
0.399  0.1551583303720730E+02  0.1002491121777919E+04
0.45 0.1551412773178408E+02  0.8793267669154791E+03
0.501 0.1545198506391003E+02  0.6187755693006095E+03
0.537 0.1525584143212497E+02 0.1811784593415472E+03

B

to
0.2296266524432066E+01

0.0
0.099
0.21
0.3
0.399
0.45
0.501
0.537

Zo
-0.2703535202131601E+00
-0.2690571464753951E+00
-0.2664917693148736E+00
-0.2637308598863723E+00
-0.2599884680685741E+00
-0.2576830098628738E+00
-0.2548930500571476E+00
1.2518278131800796E+00

Yo
0.2228189299382710E+01
0.2217860181527281E+01
0.2195799442952172E+01
0.2170060236156629E 101
0.2131822567937924E+01
0.2106121672926874E+01
0.2072417468486886E+01
0.2031352149271426E+01

0.2280399330513873E+01
0.2253077929615262E+01
0.2223280004780886E+01
0.2181166523493134E+01
0.2153905670760668E+01
0.2119400522003604E+01
02079777 1506305585E40 1
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Fig. 3. Several 3-D periodic orbits of the family corresponding to a value of the Jacobian
constant & = —1.33815281.

TABLE IV
Several 3-D periodic orbits of the family presented in Figure 3.
B8 T Yo 2
0.0003  (.1638871692679212E4+00 -0.2510362681618084E-08  0.7005048919400680E-09
0.0021  0.1653678717992377E+00  -0.2557209555220652E-08  (.6330022239882382E-09
0.0036 0.1665958769975350E+00 -0.2674621274456612E-08  0.5847132335604077E-09
0.0048 0.1675744820870033E+00 -0.3191755856141176E-08 0.6157965335568116E-09
0,0059  0.1684686161461838E+00 -0.1507369601708164E-07  0.2508729056958925E-08
0.0069 0.1692790734204930E+00 -0.2024547203645886E-07  0.2803378619276346E-08
0.0079  0.1700872811034856E4+00 -0.1146168880413606E-06  0.118958Y651047/138E-1U7
0.008% 0.1708932660742574E+00  -0.1159858110111323E-06  0.5789087144662981E-08
g i N T
0.0003 -0.1303399906260374E+01  0.3637044861399464E+00  3.7173529930360
0.0021  -0.1315310325495506E+01  0.3255891893476048E+00  3.7170517495484
0.0036 -0.1325231216349784E+01  0.2897160756048663E+00  3.7168002723863
0.0048 -0.1333165665236091E+01  0.2572127822288803E+00  3.7165988007882
0.0059 -0.1340437566303580E+01  0.2230901524732224E+00  3.7164138913028
0.0069 -0.1347047571217604E+01  0.18365248622751126E+00  3.7162456025896
0.0079 -0.1353657066609580E+01  (L1404935044559164E+00  3.7160771331593
0.0089 -0.1360266306763544E+01  0.6789363573312622E-01  3.7159084824835
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The separability of the tangent variations when formulated in the Frenet frame
was demonstrated by (Deprit, 1981). Indeed, given the conservative system

&+ ouwlA x & — Vgl =0,
that has the integral
C=a -¢-2U.

the intrinsic variations can be computed by solving a coupled system involving
only the normal and binormal displacements, and computing the quadrature

ﬁ(p)_(zﬁ curlA - b _curlA-nTJr&
dt - 9 Vv V2’

Vv vy
which shows the sepparability of the tangent displacements. For details, ¢fr. (Deprit,
1981). Similarly to the two degrees of freedom case, the algorithm consists of a
tangent predictor and an isoenergetic corrector.

We now apply the procedure to the spatial motion defined by the system (4).
The variational system is obtained from Table 1.

In Figure 3 we present several orbits of a family. Similarly to the planar orbits,
the starting periodic orbit for the algorithm is chosen from the classic RTBP. The
corresponding initial conditions are showed in Table IV.
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