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Abstract. We generate families of planar periodic orbits emanating from the geostationary points,
both stable and unstable. We show that, even for the unstable points, it is possible to have stable
periodic orbits.

Key words: periodic orbits, geostationary positions

1. Introduction

As it is well known (Blitzer et al., 1962; Musen, 1962; Blitzer, 1965), the dynamics
of a satellite under the action of a truncated potential that takes into account the
effect of the second order harmonics (the zonal J2 and the tesserals C22 and S22)
has four equilibria, the so-called geostationary points. The linear stability is also
well established, two of them stable, while the other two are unstable (Morando,
1963). Even more, recently, Deprit and López (1966) proved that for the Earth
and Earth-like planets, the two linear stable points are also stable in the Lyapunov
sense. Thus, neighborhoods of the stable points seem to be good candidates to
place satellites, a fact that has been realized a long time ago (see e.g. Soop, 1994
and references therein) and some attempts to make analytical theories of orbits
around the stable points have been made (Oberti, 1994). The other two equilibria
are unstable, and in principle, they are avoided; however, we show here that it is
possible to find families of periodic orbits emanating from these unstable points
and that some of the orbits are stable.

The motion of synchronous satellites is known to be affected from a drift in the
longitude of the satellite produced by the perturbation of the tesseral harmonics,
making east-west stationkeeping necessary for practical purposes (Gedeon, 1969).
The semimajor axis and longitude are also affected by the luni-solar perturbations,
and the east-west stationkeeping strategy must take their effect into account (Kamel
et al., 1973). The solar radiation pressure produces long term effects in longitude,
inclination and eccentricity for synchronous satellites (Milani et al., 1987). The
inclination is also affected by tesserals and luni-solar perturbations, but for all
practical purposes the long term effects in inclination are considered indepen-
dent of the other effects, and inclination maneuvres are prepared independently
(Soop, 1994). The drift in longitude produced by tesserals results in the periodic
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solutions computed in this paper. Therefore, they can be of practical interest
making the corresponding part of the east-west stationkeeping maneuvres non-
necessary.

Briefly, the procedure followed to find families of periodic orbits is the fol-
lowing: starting with a set of initial conditions close to one periodic solution, we
correct this initial set to obtain initial conditions for a true periodic orbit. Then, we
vary the value of the parameter (the Jacobian constant C in the present case), and
by calculating and refining a tangent prediction we obtain new initial conditions
corresponding to a periodic orbit for the new value of the chosen parameter. In
order to improve the prediction, we must numerically integrate the equations of
motion and their tangent and normal variations, that is, the variational equations
associated with this solution. The main feature of this method is that it splits the
normal displacements along an orbit from the tangent ones: the latter, indeed, are
secular in nature. For details, the reader is addressed to (Deprit and Henrard, 1967)
and (Lara et al., 1995). As a by product of the method employed, we determine
for each orbit of the family a stability index which allow us to check for which
values of the parameters the family is stable, and also to determine the value of the
stability-instability bifurcation, which is a matter of capital importance.

But to start the method, we need a periodic orbit. As a guideline for our research
we consider a similar situation with 1 : 1 resonance, namely, the restricted three
body problem (RTBP). In this problem, it is well known (see e.g. Szebehely, 1967)
that from the linearized system it is possible to find short- and long-period peri-
odic orbits around the Lagrangian points for some values of the mass parameter.
Thus, from the linearized equations of motion, we select a set of initial conditions
corresponding to an almost periodic orbit; then, taking into account differential
corrections, we modify the original initial conditions until we find initial conditions
for a true periodic orbit. Once such an orbit is obtained, we apply the method of
numerical continuation of families of periodic orbits (Deprit and Henrard, 1967;
Lara et al., 1995) to obtain a family that depends on a parameter, namely the
Jacobian constant.

As an illustration of the method employed, we present here several families
around both stable and unstable points and, also, we determine their stability.

2. Geostationary Points

Let us consider the motion of a satellite referred to a synodic reference frame that
is rotating as the planet does. The origin of the reference frame is at the center
of mass of the Earth, and the axes coincide with the principal axes of inertia. We
consider the satellite as a mass point, and take up to the second order in the potential
expansion. We also suppose that the Earth rotates around the z-axis with constant
velocity ω. Under these assumptions, the Lagrangian defining the motion is

L = 1
2 (ẋ

2 + ẏ2 + ż2)+ ω(xẏ − yẋ)+
(x, y, z), (1)
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where 
 is the effective potential function


 = 1
2 ω

2(x2 + y2)− V(x, y, z), (2)

and the potential is

V = −µ
r

[
1 +

(α
r

)2
{

3C2,2
x2 − y2

r2
− 1

2
C2,0

(
1 − 3

z2

r2

)}]
, (3)

where µ is the gravitational constant, r = √
x2 + y2 + z2 is the radial distance

of the satellite, α the equatorial radius and the harmonic coefficients are C2,0 <

0 < C2,2 because the Earth spins around its axis of greatest inertia. The numerical
values we use are C2,0 = −0.1082630 × 10−2 and C2,2 = 0.1814964 × 10−5,
taken from (Deprit and López, 1996). Note that these coefficients are not the usual
ones appearing in the literature, as they are computed with respect to the Earth’s
principal axes.

The equations of motion corresponding to the Lagrangian (1) are

ẍ − 2ω ẏ = 
x,
ÿ + 2ω ẋ = 
y,
z̈ = 
z. (4)

As usually happens with equations referred to rotating frames, the system (4)
accepts the Jacobian integral

C = 2
− (ẋ2 + ẏ2 + ż2). (5)

The stationary solutions of this problem are found by solving the system


x = 
y = 
z = 0, (6)

equations that are fulfilled only on the equatorial plane (z = 0) and when either
y = 0 and

(
r

ak

)5

−
(
r

ak

)2

= 3εx, (7)

or x = 0 and(
r

ak

)5

−
(
r

ak

)2

= 3εy, (8)

where the parameters εx and εy are defined by

εx = (− 1
2C2,0 + 3C2,2

)
(α/ak)

2, (9)

εy = (− 1
2C2,0 − 3C2,2

)
(α/ak)

2 , (10)
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and the scaling factor ak = (µ/ω2)1/3 is the semimajor axis of a Keplerian orbit
with mean motion n = ω. Note that εx > 0 for an oblate body.

For the first case, Equation (7), a sufficient condition to have real roots x = ±r
is that r > ak . The corresponding implicit equation can be solved, for instance, by
Newton–Raphson starting from r = ak. One simple iteration results accurate to the
order of ε4 while two iterations are enough up to O(ε8)

r

ak
= 1 + εx − 3ε2

x + 44

3
ε3
x − 260

3
ε4
x +

+ 567ε5
x − 35581

9
ε6
x + 259160

9
ε7
x + O(ε8

x), (11)

Note that the series (11) is equivalent to that of (Wytrzyszczak, 1998, p. 16) or
to Equation (9) of Deprit and López (1996), that was obtained by solving the
corresponding implicit equation by means of Lie transforms.

In the second case, Equation (8), the right-hand member of the quintic equation
is positive for the Earth and Equation (11) is applicable again, simply by switching
the parameter εx by εy . When εy < 0, two or none real solutions could exist in the
y-axis; this case has been studied in detail by Howard (1990).

In sum, for the Earth, Equations (11) have four equilibria, two on the x-axis,
that we denote by E1(±r1, 0) and two on the y-axis that we name E2(0,±r2).

By denoting ẋ = u, ẏ = v, the linearized motion around the equilibria is written
as 


δẋ

δẏ

δu̇

δv̇


 =




0 0 1 0
0 0 0 1

xx 
xy 0 2ω

yx 
yy −2ω 0






δx

δy

δu

δv


 , (12)

where the Hessian matrix must be evaluated at the equilibria. It is worth noting that
the crossed partial derivative


xy = 3µ
x y

r5

[
1 + 5

α2

r2

(
−1

2
C2,0 + 7C2,2

x2 − y2

r2

)]
(13)

vanish along both axes (x and y), whence, the Hessian determinant isH = 
xx 
yy,
and for the geostationary points its value is

H(ri) = (−1)i 12C2,2
α2µ2

r5
i

(
5

a3
k

− 2

r3
i

)
, (14)

and is negative for i = 1 (x-axis) and positive for i = 2 (y-axis).
The eigenvalues of system (12) are computed from the characteristic equation

λ4 + 2� λ2 +� =  2 + 2� +� = 0, (15)
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where

� = 2ω2 − 1
2 [
xx(ri)+
yy(ri)], � = H(ri). (16)

For the points E1(±r1, 0) on the x-axis, � = H(r1) < 0 and, consequently, the
two roots  1,  2 of Equation (15) are

 1 = −� +
√
�2 −� > 0,

 2 = −� −
√
�2 −� < 0. (17)

Therefore, as there are two real and two complex (purely imaginary) roots, the
points E1 are unstable.

On the contrary, the eigenvalues corresponding to the stationary pointsE2(0,±r2)
are purely imaginary,

λ1,2 = ±√−1
√− 1 = ±√−1w1,

λ3,4 = ±√−1
√− 2 = ±√−1w2, (18)

therefore, these equilibria are linearly stable. More than this, by means of the
stability Arnold theorem for non-definite quadratic forms (Arnold, 1961) Deprit
and López (1996) proved that these points also enjoy Lyapunov stability.

3. Natural Families of Planar Periodic Orbits

To find families of periodic orbits, we use the method of numerical continuation
with respect to a parameter. The method is essentially the one given by Deprit and
Henrard (1967) with some additions made in (Lara et al., 1995) and (Lara, 1996).
The process addresses a boundary value problem for the variational equations
relative to conservative dynamical systems with two degrees of freedom.

Let us consider the two degree of freedom system

ẍ = 2A(x, y;σ ) ẏ +Wx(x, y;σ ),
ÿ = −2A(x, y;σ ) ẋ +Wy(x, y;σ ), (19)

where A and W are two functions depending on the coordinates and on one para-
meter σ . This system has the Jacobian integral

C = 2W − (ẋ2 + ẏ2). (20)

Each manifold C = constant is determined by the initial conditions. By introduc-
ing the notation U ≡ W(x, y;σ ) − C/2, system (19) together with the Jacobian
integral (20) can be written as

ẍ = 2A(x, y;σ )ẏ + Ux(x, y;σ ),
ÿ = −2A(x, y;σ )ẋ + Uy(x, y;σ ),
I = 1

2 (ẋ
2 + ẏ2)− U(x, y;σ ) ≡ 0. (21)
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Let us assume that ξξξ =ξξξ(t, σ0) – solution of the system (21) for the initial condi-
tions ξξξ 0 = (x0, y0, ẋ0, ẏ0) – is periodic with period T0. Hence,

ξξξ(t;σ0) = ξξξ(t + T0;σ0). (22)

Let us choose a variation of the parameter σ = σ0 + )σ . The question is how to
find a new set of initial conditions ξξξ 0 + δξξξ0 such that the solution of (21) for these
initial conditions be periodic with period T0 +)T , that is, such that

ξξξ(t;σ0 +)σ) = ξξξ(t + T ;σ0 +)σ). (23)

The Poincaré method of continuation ensures that, under certain conditions,
there exist initial conditions

ξξξ0 +
∑
k� 1

ξξξ 0,k ()σ)
k (24)

such that the solution of the ordinary differential Equations (21) is periodic with
period

T = T0 +
∑
k� 1

T0,k ()σ)
k. (25)

In general it is not possible to compute all the coefficients in the series Equations
(24), (25). Contrary, assuming )σ small enough, we only consider the first order
approximation for the initial conditions

ξξξ0 +)σδξξξ0, (26)

the corrections δξξξ 0 are solutions of the variational system

δẍ = 2Aδẏ + (Uxx + 2Axẏ)δx + (Uxy + 2Ayẏ)δy + Uxσ + 2Aσ ẏ,

δÿ = −2Aδẋ + (Uxy − 2Axẋ)δx + (Uyy − 2Ayẋ)δy + Uyσ − 2Aσ ẋ,

δI = ẋδẋ + ẏδẏ − Uxδx − Uyδy − Uσ ≡ 0. (27)

As system (27) is linear, the general solution is formed by a linear combination
of particular solutions that depend on arbitrary integration constants. The desired
variations will be determined by computing those values of the integration con-
stants that fulfill the periodicity condition (23). Notice from (23) that the unknown
)T is an implicit variable; we overcome this inconvenience by expanding (23) up
to the first order.

The Cartesian formulation of the variational Equations (27) mix secular terms,
produced by displacements along the orbit, with periodic terms. An alternative
formulation can be given by using intrinsic coordinates, namely the tangent p and
the normal n displacements obtained from the rotation

δx = p cosφ − n sinφ,

δy = p sinφ + n cosφ,

δẋ = ṗ cosφ − ṅ sinφ − φ̇ δy,
δẏ = ṗ sinφ + ṅ cosφ + φ̇ δy, (28)
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where

tanφ = ẏ

ẋ
. (29)

When using intrinsic coordinates, the variational differential equations are separ-
able (Deprit and Henrard, 1967); indeed, the normal displacements are obtained
from the generalized Hill equation

n̈+,n = −2Uσ
A+ φ̇
V

− 2AσV + Uyσ cos φ − Uxσ sinφ, (30)

where

, = V̈

V
+ 2(A+ φ̇)2 +

+ 2A2 − Uxx − Uyy − 2V (Ax sinφ − Ay cosφ), (31)

and

V 2 = ẋ2 + ẏ2. (32)

The next step is the computation of the tangent displacement p by integrating the
quadrature

d

dt

(p
V

)
= 2

A+ φ̇
V

n+ Uσ

V 2
. (33)

The corrections computed from (26) are tangent approximations, hence the al-
gorithm must consist of two steps: the tangent predictor followed by an isoenergetic
corrector (see Deprit and Henrard, 1967; Lara et al., 1995 for practical details on
the implementation).

The knowledge of orbit stability is of capital importance. The stability of each
orbit is determined by means of the index k = |Tr(T )|, with Tr(T ) the trace of the
resolvent of Hill’s Equation (30). If k > 2 the orbit is unstable, if k < 2 the orbit is
stable, and when k = 2 we have indifferent stability.

4. Families of Periodic Orbits

To initialize the algorithm for numerically propagating periodic orbits, we need
one periodic orbit to begin with. We determine such an orbit from the linearized
system (12). Generally, a periodic orbit of the linear equation will not be periodic
in the general system due to non-linearities. However, differential corrections can
modify the initial conditions to satisfy the periodicity conditions.

The general solution of the variational Equation (12) is

δx =
∑

1 � j� 4

Aje
λj t , δy =

∑
1 � j � 4

αjAje
λj t , (34)
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where Aj (1 � j � 4) are arbitrary integration constants and the coefficients αj (cf.
Szebehely, 1967, p. 244, Eq. (12)) are

αj = λ2
j −
xx
2ωλj

. (35)

4.1. MOTION NEAR THE y-AXIS EQUILIBRIA

As proved in Section 2, the eigenvalues corresponding to the points E2(0,±r2) are
pure imaginary,

λ1,2 = ±√−1w1, λ3,4 = ±√−1w2, (36)

thus, Equations (34) may be rewritten as

δx = C1 cosw1t + S1 sinw1t + C2 cosw2t + S2 sinw2t,

δy = (S1 cosw1t − C1 sinw1t) q(w1)+
+ (S2 cosw2t − C2 sinw2t) q(w2), (37)

where

q(wi) = wi +
xx/wi
2ω

, i = 1, 2. (38)

For the stable equilibria at the Earth w1 
 w2, hence Equations (37) are com-
prised of long- and short-period terms. As the integration constants (C1, S1, C2, S2)
can be expressed in terms of the initial conditions a proper selection of the initial
conditions will remove either the long- or short-period terms from the solution.

4.1.1. Short-period periodic motion
SettingC1 = S1 = 0 and replacing the integration constants by the initial conditions,
the linear periodic solution is

δx = δx0 cosw2t + 1

q(w2)
δy0 sinw2t,

δy = δy0 cosw2t − q(w2) δx0 sinw2t, (39)

and consequently, only short-period terms are retained.
However, taking into account the nonlinear part of the problem, this solution

(39) no longer represents a periodic orbit, but for δx0, δy0 small enough and for the
corresponding initial velocities

δẋ0 = 1

q(w2)
δy0 w2, δẏ0 = −q(w2) δx0w2, (40)
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the solution of the equations of motion (4) for the initial conditions (δx0, r2 +
δy0, δẋ0, δẏ0) is approximately periodic with period

T = 2π

w2
. (41)

The use of the differential corrector algorithm described in Section 3 improves
those initial conditions and the period in an iterative way until finding an exact
periodic orbit.

As an illustration we set δx0 = 0, δy0 = 0.003, and compute δẋ0 and δẏ0 from
Equation (40). The units of length and time are such that µ= 1 and ω= 1. For
the period T ≈ 6.2834227 computed from Equation (41) these initial conditions
produce max |ξ(0) − ξ(T )| ≈ 10−4, where ξ = x, y, ẋ, ẏ. After differential cor-
rections the periodicity condition is within 10−13 for every coordinate ξ . Figure 1
shows the initial approximation and the improved periodic orbit.

Figure 1. Short-period periodic motion around theE2(0,+r2) geostationary equilibrium. The dashed
line corresponds to a quasi periodic solution; the solid line is the improved periodic solution.

4.1.2. Long-period periodic motion
Now the short-period terms affected by the coefficients C2 and S2, are removed
from Equation (37), which results again in Equations (39) but now with w1 instead
of w2. The initial velocities and period are also obtained from (40) and (41) by
switching w2 by w1. We make δx0 = 0 and δy0 = 0.0001; the corresponding initial
velocities are ẋ0 ≈ 0.00015 and ẏ0 = 0; the approximate period is T ≈ 5138.49
close to 2.5 years. The initial approximation has a periodicity max |ξ(0)− ξ(T )| ≈
3 × 10−3. Figure 2 shows the long-period improved solution around the (0,+r2)
equilibrium. In this case the periodicity condition is of the order 10−10.

4.2. MOTION NEAR THE x-AXIS EQUILIBRIA

The points E1(±r1, 0) are unstable, but despite this fact, there exists short-period
periodic motion around these equilibria, as it happens with the collinear points of
the RTBP (see Szebehely, 1967, p. 242 ff.).
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Figure 2. Long-period periodic motion around the (0,+r2) geostationary point. The period of the
orbit is close to two and a half years. Note the different scales for abscissas and ordinates.

In linear approximation, the solution is again given by (39). The initial velocities
corresponding to a small displacement δx0, δy0 are again those of (40). Then, the
state

(r1 + δx0, δy0, δẋ0, δẏ0)

corresponds to an approximately periodic solution of Equations (4) with period
given by Equation (41).

The same initial conditions and period used in Section 4.1.1. for the short-period
periodic motion around theE2 equilibrium produce now max |ξ(0)−ξ(T )| ≈ 10−3;
after the use of the corrector algorithm the periodicity condition is of the order
10−14. Figure 3 presents both the initial and the improved solution.

Figure 3. Periodic motion around the E1(+r1, 0) geostationary equilibrium. The dashed line
corresponds to a quasi-periodic solution; the solid line is the improved periodic solution.
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4.3. FAMILIES OF PERIODIC ORBITS

Once we find initial conditions for periodic orbits around the equilibria, we are in
situation to apply the method of continuation of periodic orbits families discussed
in Section 3. We propagate the long-period and the two short-period orbits found
above.

The long-period family is made of almost circular orbits that in the rotating
frame are seen as periodic oscillations around the stable equilibrium. Both the
amplitude of the oscillation and the period of the orbit grow with the Jacobian
constant, and apparently this family ends with an orbit that oscillates between both
unstable equilibrium with an infinite period, thus corresponding to a heteroclinic
orbit. As can be appreciated in Figure 4 the behavior of the stability index is highly
oscillatory between the critical values k=±2. The rightmost part of the figure
presents one orbit close to the termination of this family.

The family that is made of short-period periodic orbits around the E2 geosta-
tionary equilibrium is named here as the E2-family. This family starts with orbits
that are small ellipses around E2 with the semimajor axis in the x-direction. For
increasing values of C, the eccentricity of the orbits grows up, and for the Earth
shape, part of this family is made of collision orbits. We focus our study on non-
collision orbits of the Earth. Figure 5 presents the evolution of the stability index
k versus the Jacobian constant C. Note that the orbits of this family change from
stable (k < 2) to unstable (k > 2) at the value C≈ 2.46315258. Therefore, in the
notation of Hénon (1965) there is a critical point of the first kind, where k= 2,
which points towards possible bifurcations in the plane. The orbits of this family
have a period close to one sidereal day that slightly increases with eccentricity.
Figure 6 presents several non-collision orbits of the family and the evolution of the
period.

The behavior of the E1-family – the family made of short-period periodic orbits
around E1 – is quite similar to the previous one. The family starts with orbits that

Figure 4. (a) Evolution of the stability index k of the family made of long-period periodic orbits
around the E2(0,+r2) geostationary equilibrium. For clarity only a small part of the family is
presented. (b) One orbit close to the termination. The period is about 5 years.
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Figure 5. Stability index k of the E2-family versus the Jacobian constant C. (a) The whole family,
(b) part made of non-collision orbits of the Earth.

Figure 6. (a) Some orbits of the E2-family; the dashed line marks the change in stability. (b)
Evolution of the period.

are small ellipses around E1 with the semimajor axis in the y-direction, and the
eccentricity grows as C does. Figure 7 presents the evolution of k versus C for
non-collision orbits of the Earth. Figure 8 provides some orbits of this family and
the evolution of the period.

Figure 7. Evolution of the stability index k for non-collision orbits of the E1-family.
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Figure 8. (a) Some orbits of the E1-family; the dashed line marks the change in stability. (b)
Evolution of the period.

The orbits of the E1-family change from instability (k > 2) to stability (k < 2)
at the value C≈ 2.46315062. After a search in the vicinity of this critical value
we found a bifurcated family that in the narrow range )C≈ 2 × 10−6 migrates
from the critical orbit of the E2-family to the critical one of the E1-family. Figure 9
shows several orbits of this family. Within the numerical precision, the orbits of
this bifurcated family remain very close to the state of indifferent stability (k= 2).
Of course, due to the symmetries in our model, four of these families exist.

Figure 9. Some orbits of the bifurcated family linking the critical orbits of the E2- and E1-families.
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5. Conclusions

The study of the linearized motion in the vicinity of the geostationary positions
shows that there exist periodic motions around them. The contribution of the non-
linear terms break the periodicity of those orbits. However, the use of a differential
corrector algorithm enables the computation of families of true periodic orbits
emanating from the linearized solutions. The families of short-period periodic or-
bits emanating from the unstable equilibria are made of unstable orbits, but at a
certain point a bifurcation occurs and the orbits become stable. At that critical
point new families of periodic orbits appear. These new families are made of orbits
that migrate from periodic motion around the unstable equilibria to periodic motion
around the stable ones.

The need of east-west stationkeeping efforts on the satellite orbits is mainly
due to tesseral harmonics in the potential field. Therefore, the solutions presented
here could be useful as nominal solutions when recovering perturbations of the
same order of the Earth’s C2,2 gravity perturbation, namely the solar radiation
pressure and tidal attractions from the Sun and Moon, that are neglected in our
model.
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