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Abstract: We use the theoretical significance of Newton’s method to draw conclusions about the
existence and uniqueness of solution of a particular type of nonlinear integral equations of Fredholm.
In addition, we obtain a domain of global convergence for Newton’s method.
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1. Introduction

Integral equations are very common in physics and engineering, since a lot of problems of these
disciplines can be reduced to solve an integral equation. In general, we cannot solve integral equations
exactly and are forced to obtain approximate solutions. For this, different numerical methods can
be used. So, for example, iterative schemes based on the homotopy analysis method in [1], adapted
Newton-Kantorovich schemes in [2] and schemes based on a combination of the Newton-Kantorovich
method and quadrature methods in [3]. Besides, techniques based on using iterative methods are
also interesting, since the theoretical significance of the methods allows drawing conclusions about
the existence and uniqueness of solution of the equations. The use of an iterative method allows
approximating a solution and, by analysing the convergence, proving the existence of solution, locating
a solution and even separating such solution from other possible solutions by means of results of
uniqueness. The theory of fixed point plays an important role in the development of iterative methods
for approximating, in general, a solution of an equation and, in particular, for approximating a solution
of an integral equation.

In this work, we pay attention to the study of nonlinear Fredholm integral equations with
nonlinear Nemytskii operators of type

x(s) = `(s) + λ
∫ b

a
K(s, t)H(x)(t) dt, s ∈ [a, b], λ ∈ R, (1)

where `(s) ∈ C[a, b], kernel K(s, t) of integral equation is a known function in [a, b] × [a, b], H is
a Nemytskii operator [4] given by H : Ω ⊆ C[a, b] → C[a, b], such that H(x)(t) = H(x(t)) and
H : R→ R is a derivable real function, and x(s) ∈ C[a, b] is the unknown function to find.

It is common to use the Banach Fixed Point Theorem [5–7] to prove the existence of a unique fixed
point of an operator and approximate it by the method of successive approximations. Moreover, global
convergence for the method is obtained in the full space. For this, we use that the operator involved is
a contraction.

Our main aim of this work is to do a study of integral Equation (1) from Newton’s method,

xn+1 = xn − [F′(xn)]
−1F(xn), n ≥ 0, with x0 given,
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that has quadratic convergence, superior to the convergence of the method of successive
approximations, which is linear. This study is similar to that of the Fixed Point Theorem for the
method of successive approximations. In addition, we obtain a domain of global convergence,
B(x̃, R) = {x ∈ C[a, b] : ‖x − x̃‖ < R}, with x̃ ∈ C[a, b], for Newton’s method. Also, we obtain
a result of uniqueness of solution that separate the approximate solution from other possible solutions.
To carry out this study, we develop a technique based on the use of auxiliary points, which allows
obtaining domains of global convergence, locating solutions of (1) and domains of uniqueness of
these solutions.

On the other hand, ifH(x) = x, integral Equation (1) is linear and well-known, it is a Fredholm
integral equation of the second kind, which is connected with the eigenvalue problem represented by
the homogeneous equation

x(s) = λ
∫ b

a
K(s, t)x(t) dt, s ∈ [a, b],

and has non-trivial solutions x(s) 6≡ 0 for the characteristic values or eigenvalues λ (the latter term is
sometimes reserved to the reciprocals ν = 1/λ) of kernel K(s, t) and every non-trivial solution of (1) is
called characteristic function or eigenfunction corresponding to characteristic value λ. If Equation (1)
is nonlinear, our results allow doing a study of the equation based on the values of parameter λ, which
is another important aim of our work.

2. Global Convergence and Uniqueness of Solution

If we are interested in proving the convergence of an iteration, we can usually follow three
ways to do it: local convergence, semilocal convergence and global convergence. First, from some
conditions on the operator involved, if we require conditions to the solution x∗, we establish a local
analysis of convergence and obtain a ball of convergence of the iteration, which, from the initial
approximation x0 lying in the ball, shows the accessibility to x∗. Second, from some conditions on the
operator involved, if we require conditions to the initial iterate x0, we establish a semilocal analysis of
convergence and obtain a domain of parameters, which corresponds to the conditions required to the
initial iterate, so that the convergence of iteration is guaranteed to x∗. Third, from some conditions
on the operator involved, the convergence of iteration to x∗ in a domain, and independently of the
initial approximation x0, is established and global convergence is called. Observe that the three studies
require conditions on the operator involved and requirement of conditions to the solution, to the initial
approximation, or to none of these, is what determines the way of analysis.

The local analysis of the convergence has the disadvantage that it requires conditions on the
solution and this is unknown. The global analysis of convergence, as a consequence of the absence of
conditions on the initial approximations and the solution, is very specific for the operators involved.

In this paper, we focus our attention on the analysis of the global convergence of Newton’s method
and, as a consequence, we obtain domains of global convergence for nonlinear integral Equation (1)
and also locate a solution. For this, we obtain a ball of convergence, by using an auxiliary point, that
contains a solution and guarantees the convergence of Newton’s method from any point of the ball.

Solving Equation (1) is equivalent to solving the equation F (x) = 0, where F : Ω ⊆ C[a, b] −→
C[a, b] and

[F (x)](s) = x(s)− `(s)− λ
∫ b

a
K(s, t)H(x)(t) dt, s ∈ [a, b], λ ∈ R, n ∈ N. (2)

Then,

[F ′(x)y](s) = y(s)− λ
∫ b

a
K(s, t)[H′(x)y](t) dt = λ

∫ b

a
K(s, t)H′(x(t))y(t) dt.



Mathematics 2019, 7, 553 3 of 9

As a consequence,
‖F ′(x)−F ′(y)‖ ≤ K‖x− y‖,

where K = |λ|SL, L is such that ‖H′(x)−H′(y)‖ ≤ L‖x− y‖, for all x, y ∈ Ω, and S =
∥∥∥∫ b

a K(s, t) dt
∥∥∥.

From the Banach lemma on invertible operators, it follows

‖Γ̃‖ = ‖[F ′(x̃)]−1‖ ≤ 1
1− |λ|S‖H′(x̃)‖ = β, ‖Γ̃F (x̃)‖ ≤ ‖x̃− u‖+ |λ|S‖H(x̃)‖

1− |λ|S‖H′(x̃)‖ = η.

provided that
|λ|S‖H′(x̃)‖ < 1. (3)

Next, we give some properties that are used later.

Lemma 1. For operator (2), we have:

(a) Γ̃F (x) = Γ̃F (x̃) + (x− x̃) +
∫ 1

0 Γ̃ (F ′(x̃ + t(x− x̃))−F ′(x̃)) (x− x̃) dt, with x ∈ Ω.
(b) F (xn) =

∫ 1
0 (F ′(xn−1 + t(xn − xn−1))−F ′(xn−1)) (xn − xn−1) dt, with xn−1, xn ∈ Ω.

As a consequence of item (b) of Lemma 1, it follows, for xn−1, xn ∈ Ω,

‖F (xn)‖ ≤
K
2
‖xn − xn−1‖2.

From the last result, and taking into account the parameters obtained previously, we analyze the
first iteration of Newton’s method, what leads us to the convergence of the method.

If x0 ∈ B(x̃, R), then

‖Γ0‖ = ‖[F ′(x0)]
−1‖ ≤ β

1− KβR
= α, ‖Γ0F ′(x̃)‖ ≤ 1

1− KβR
.

provided that
KβR < 1. (4)

Moreover, from item (a) of Lemma 1, it follows

‖x1 − x0‖ ≤ ‖Γ0F ′(x̃)‖‖Γ̃F (x0)‖ <
η + R + KβR2/2

1− KβR
= δ,

and, from item (b) of Lemma 1, we have

‖x1 − x̃‖ =
∥∥−Γ0

(
F (x0) +F ′(x0)(x̃− x0)

)∥∥ ≤ ‖Γ0F ′(x̃)‖‖Γ̃F (x̃)‖+ KβR2/2
1− KβR

≤ 2η + KβR2

2(1− KβR)
,

so that x1 ∈ B(x̃, R), provided that
2η + KβR2

2(1− KβR)
≤ R. (5)

Observe now that condition (5) holds if

Kβη ≤ 1/6 and R ∈ [R−, R+],

where R− =
1−
√

1−6Kβη

3Kβ and R+ =
1+
√

1−6Kβη

3Kβ are the two real positive roots of quadratic equation

2η − 2R + 3KβR2 = 0.
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After that, if we assume that

‖xn − xn−1‖ < γ2n−2‖xn−1 − xn−2‖, (6)

‖xn − x̃‖ < 2η + KβR2

2(1− KβR)
≤ R, (7)

where γ = Kαδ/2, for all n ≥ 2, and provided that condition (5) holds, it follows in the same way that

‖xn+1 − xn‖ < γ2n−1‖xn − xn−1‖, ‖xn+1 − x̃‖ < 2η + KβR2

2(1− KβR)
≤ R,

so that (6) and (7) are true for all positive integers n by mathematical induction.
In addition, γ < 1 if

3(KβR)2 − 10(KβR) + 2(2− Kβη) > 0, (8)

which is satisfied provided that

Kβη ≤ 1/6 and R <
5−

√
13 + 6Kβη

3Kβ
.

As a consequence, condition (4) holds. More precisely, we can establish the following result.

Lemma 2. There always exists R > 0, such that inequalities (4), (5) and (8) hold, if

(a) Kβη ≤ 0.1547 . . . and R ∈
[

R−,
5−
√

13+6Kβη

3Kβ

)
,

(b) Kβη ∈ [0.1547 . . . , 1/6) and R ∈ [R−, R+],

where R− =
1−
√

1−6Kβη

3Kβ and R+ =
1+
√

1−6Kβη

3Kβ .

Proof. First, we prove item (a) of Lemma 2. Observe that R− <
5−
√

13+6Kβη

3Kβ , since Kβη ≤ 0.1547 . . ., so

that
[

R−,
5−
√

13+6Kβη

3Kβ

)
6= ∅. Moreover, as Kβη ≤ 0.1547 . . ., we have 3(Kβη)2 + 6(Kβη)− 1 ≤ 0 and,

as a consequence, R+ >
5−
√

13+6Kβη

3Kβ and R ∈
[

R−,
5−
√

13+6Kβη

3Kβ

)
⊂ [R−, R+], so that (5) and (8) hold.

Second, if Kβη ∈ [0.1547 . . . , 1/6), then 3(Kβη)2 + 6(Kβη)− 1 ≥ 0 and R+ <
5−
√

13+6Kβη

3Kβ , so
that R ∈ [R−, R+]. Then, (5) and (8) hold.

Third, in both cases, KβR < 1 follows immediately, since R <
5−
√

13+6Kβη

3Kβ in items (a) and (b) of
Lemma 2.

2.1. Convergence

Now, we can establish the following result.

Theorem 1. Suppose that Kβη ≤ 1/6 and consider R > 0 satisfying item (a) or item (b) of Lemma 2 and such
that B(x̃, R) ⊂ Ω. If condition (3) holds, then Newtons’s method is well-defined and converges to a solution x∗

of F (x) = 0 in B(x̃, R) from every point x0 ∈ B(x̃, R).

Proof. From (6) and γ < 1, we have ‖xn+1 − xn‖ < ‖xn − xn−1‖, for all n ∈ N, so that sequence
{‖xn+1 − xn‖} is strictly decreasing for all n ∈ N and, therefore, sequence {xn} is convergent. If x∗ =
limn→∞ xn, then F (x∗) = 0, by the continuity of F and ‖F (xn)‖ → 0 when n→ ∞.

From Theorem 1, the convergence of Newton’s method to a solution of equation F (x) = 0 is
guaranteed. Moreover, the best ball of location of the solution is B(x̃, R−) and the biggest ball of
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convergence is B(x̃, R+) or B
(

x̃,
5−
√

13+6Kβη

3Kβ

)
, depending on the value of Kβη is: Kβη ≤ 0.1547 . . .

for the former and Kβη ∈ [0.1547 . . . , 1/6) for the latter.

2.2. Uniqueness of Solution

For uniqueness of solution, we establish the following result, where uniqueness of solution is
proved in B(x̃, R).

Theorem 2. Under conditions of Theorem 1, solution x∗ of F (x) = 0 is unique in B(x̃, R).

Proof. Assume that w∗ is another solution of F (x) = 0 in B(x̃, R) such that w∗ 6= x∗. If operator
Q =

∫ 1
0 F

′(w∗ + t(x∗ − w∗)) dt is invertible, we have x∗ = w∗, since Q(w∗ − x∗) = F (w∗)−F (x∗).
Then, as

‖I − Γ̃Q‖ ≤ ‖Γ̃‖
∫ 1

0
‖F ′(x̃)−F ′(w∗ + t(x∗ − w∗))‖dt

≤ βK
∫ 1

0
‖x̃− (w∗ + t(x∗ − w∗))‖dt (9)

= βKR

< 1,

it follows that Q is invertible by the Banach lemma on invertible operators and uniqueness
follows immediately.

Notice that, from Theorems 1 and 3, the best ball of location of a solution of (1) is B(x̃, R−) and

the best ball of uniqueness of solution and the biggest ball of convergence is B
(

x̃,
5−
√

13+6Kβη

3Kβ

)
or

B(x̃, R+), depending on the value of Kβη lies.
Once given the uniqueness of solution in the domain of existence of solution B(x̃, R), we enlarge

such domain from the following theorem.

Theorem 3. Under conditions of Theorem 1, we have that the solution x∗ is unique in the domain B(x̃, $) ∩Ω,
where $ = 2

Kβ − R.

Proof. Assume that w∗ is another solution of F (x) = 0 in B(x̃, $) ∩ Ω such that w∗ 6= x∗. Then,
from (9), it follows

‖I − Γ̃Q‖ < βK
∫ 1

0
((1− t)$ + tR)dt = 1.

and Q is again invertible by the Banach lemma on invertible operators.

Note that $ > 0, since βKR < 1, and uniqueness of solution is obtained in the ball of global

convergence given in Theorem 1, since $ = 2
Kβ − R ≥ 5−

√
13+6Kβη

3Kβ , R+.

3. Example

Now, we apply the last result to the following nonlinear integral equation:

x(s) = s3 +
18
25

∫ 1

0
s3t3x(t)2dt, s ∈ [0, 1]. (10)

For Equation (10), we have λ = 18/25 and S =
∥∥∥∫ 1

0 s3t3 dt
∥∥∥ = 1/4 with the max-norm. As

H(x̃)(t) = x̃(t)2, then L = 2. If we choose x̃(s) = s3, then condition (3) holds, since |λ|S‖H′(x̃)‖ =
9/25 < 1. Moreover, β = 25/16 and η = 9/32 and K = |λ|SL = 9/25, so that Kβη = 0.1582 . . . ∈
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[R−, R+], where R− = 0.4590 . . . and R+ = 0.7261 . . .. Therefore, from Theorem 1, the convergence
of Newton’s method to a solution of Equation (10) is guaranteed and the best ball of location of the
solution is B(s3, 0.4590 . . .) and the biggest ball of convergence is B(s3, 0.7261 . . .). Furthermore, from
Theorem 3, it follows that the domain of uniqueness of solution is B(s3, 3.0965 . . .).

Next, we approximate a solution of Equation (10) by Newton’s method. After four iterations with
stopping criterion ‖xn − xn−1‖∞ < 10−18, n ∈ N, we obtain solution shown in Table 1, where errors
‖x∗ − xn‖ and sequence ‖F (xn)‖ are also shown. Observe from the last sequence that solution shown
in Table 1 is a good approximation of the solution of Equation (10). Finally, we observe in Figure 1 that
solution shown in Table 1 lies within the domain of location of solution found above.

Table 1. Approximated solution x∗(s) of (10), absolute errors and {‖F (xn)‖}.

n xn(s) ‖x∗ − xn‖ ‖F (xn)‖

0 s3 8.4715 . . .× 10−2 7.2× 10−2

1 (1.0841121495327102 . . .)s3 6.0365 . . .× 10−4 5.0938 . . .× 10−4

2 (1.0847157717628998 . . .)s3 3.1090 . . .× 10−8 2.6233 . . .× 10−8

3 (1.0847158028530592 . . .)s3 8.2478 . . .× 10−17 6.9595 . . .× 10−17

4 (1.0847158028530593 . . .)s3

Figure 1. Approximated solution x∗(s) of (10) and domain of location of solution.

4. Study of the Integral Equation from Parameter λ

Next, we study the integral Equation (1) from the values of parameter λ.
First, we observe that Kβη ≤ 1/6 if

6|λ|SL (‖x̃− `‖+ |λ|S‖H(x̃)‖) ≤
(
1− |λ|S‖H′(x̃)‖

)2 (11)

and condition (3) holds.
Now, we analyze condition (11). Observe that (11) is satisfied if

• ‖H′(x̃)‖2 < 6L‖H(x̃)‖ and |λ| ∈ [0, µ+], where

µ+ =
−(3L‖x̃− `‖+ ‖H′(x̃)‖) +

√
∆

S(6L‖H(x̃)‖ − ‖H′(x̃)‖2)

and ∆ = 3L(3L‖x̃− `‖2 + 2‖x̃− `‖‖H′(x̃)‖+ 2‖H(x̃)‖).
• ‖H′(x̃)‖2 > 6L‖H(x̃)‖ and |λ| ∈ [0, µ+] ∪ [µ−,+∞), where

µ− =
−(3L‖x̃− `‖+ ‖H′(x̃)‖)−

√
∆

S(6L‖H(x̃)‖ − ‖H′(x̃)‖2)
.

• ‖H′(x̃)‖2 = 6L‖H(x̃)‖ and |λ| ≤ 1
2S(3L‖x̃− `‖+ ‖H′(x̃)‖) .
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Second, once x̃ is fixed, we have two chances: Kβη ≤ 0.1547 . . . or Kβη ∈ [0.1547 . . . , 1/6). If first

holds, then R ∈
[

R−,
5−
√

13+6Kβη

3Kβ

)
and, if second does, then R ∈ [R−, R+].

Finally, as condition (3) is satisfied, then Newtons’s method is well-defined and converges to a
solution x∗ of F (x) = 0 in B(x̃, R) from every point x0 ∈ B(x̃, R) by Theorem 1.

5. Application

Now, we apply the last study to the following particular Davis-type integral Equation [8]:

x(s) = s + λ
∫ 1

0
G(s, t)x(t)2dt, λ ∈ R, s ∈ [0, 1], (12)

where the kernel of (12) is a Green’s function defined as follows:

G(s, t) =

{
(1− s)t, t ≤ s,

s(1− t), s ≤ t.

One can show that the function x(s) that satisfied Equation (12) is any solution of the
differential equation

x′′(s) + λx(s)2 = 0,

that also satisfies the two-point boundary condition: x(0) = 0, x(1) = 1.
For Equation (12), we have S =

∥∥∥∫ 1
0 G(s, t) dt

∥∥∥ = 1/8 with the max-norm and H(x̃)(t) = x̃(t)2.
Therefore, L = 2 and condition (3) is reduced to |λ| < 4/‖x̃‖. In addition,

‖H′(x̃)‖2 = 4‖x̃‖2 < 12‖x̃‖2 = 6L‖H(x̃)‖

and, as a consequence,

|λ| ≤ µ+ =
−(6‖x̃− s‖+ 2‖x̃‖) +

√
12 (3‖x̃− s‖2 + 2‖x̃− s‖‖x̃‖+ ‖x̃‖2)

‖x̃‖2 .

After that, we choose x̃(s) = s and hence µ+ = 2(−1 +
√

3) = 1.4641 . . ., so that |λ| ≤ 1.4641 . . .,
that satisfies condition (3). In this case, from Theorem 1, we can guarantee the convergence of Newton’s
method to a solution of Equation (12) with λ such that |λ| ≤ 1.4641 . . . Moreover, once λ is fixed,
depending on the value of Kβη, we can obtain the best ball of location of solution and the biggest ball
of convergence.

Observe that we cannot apply Newton’s method directly, since we do not know the inverse
operator that is involved in the algorithm of Newton’s method. Then, we use a process of discretization
to transform (12) into a finite dimensional problem. For this, we use a Gauss–Legendre quadrature
formula to approximate the integral of (12),

∫ 1

0
φ(t) dt '

m

∑
j=1

wjφ(tj),

where the m nodes tj and weights wj are known.
Next, we denote the approximations x(ti) by xi, with i = 1, 2, . . . , m, so that (12) is equivalent to

the nonlinear system given by

xj = tj + λ
m

∑
k=1

ajk x2
k , k = 1, 2, . . . , m, (13)
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where

ajk =

{
wk (1− tj)tk, k ≤ j,

wk (1− tk)tj, k > j.

After that, we write system (13) compactly in matrix form as

F(x) ≡ x− v− λA y = 0, F : Rm −→ Rm, (14)

where

x = (x1, x2, . . . , xm)
t , v = (t1, t2, . . . , tm)

t , A =
(

ajk

)m

j,k=1
, y =

(
x2

1, x2
2, . . . , x2

m

)t
.

Choose m = 8, λ = 7/5, x̃ = v and hence K = 0.2471 . . ., β = 1.2179 . . ., η = 0.0665 . . . and
Kβη = 0.0200 . . . As Kβη < 0.1547 . . ., it follows, from Theorem 1, that the best ball of location of
solution is B(v, 0.0686 . . .) and the biggest ball of convergence is B(v, 1.5259 . . .).

If the starting point for Newton’s method is x0 = v, the method converges to the solution
x∗ = (x∗1 , x∗2 , . . . , x∗8)

t of system (14), which is shown in Table 2, after four iterations with stopping
criterion ‖xn − xn−1‖∞ < 10−18, n ∈ N.

Table 2. Numerical solution x∗ of system (14) with λ = 7/5.

i x∗i i x∗i
1 0.02267000. . . 5 0.65888692. . .
2 0.11607746. . . 6 0.82291926. . .
3 0.27057507. . . 7 0.93276524. . .
4 0.46275932. . . 8 0.98797444. . .

Moreover, errors ‖x∗ − xn‖ and sequence {‖F(xn)‖} are shown in Table 3. Observe then that
vector shown in Table 2 is a good approximation of a solution of (14).

Table 3. Absolute errors and {‖F(xn)‖}.

n ‖x∗− xn‖ ‖F(xn)‖

0 6.7169 . . .× 10−2 9.6624 . . .× 10−1

1 6.4734 . . .× 10−4 5.3956 . . .× 10−4

2 6.0570 . . .× 10−8 5.0516 . . .× 10−8

3 5.4063 . . .× 10−16 4.5077 . . .× 10−16

Furthermore, as a solution of (12) satisfies x(0) = 0 and x(1) = 1, if values of Table 2 are
interpolated, an approximated solution is obtained, which is painted in Figure 2. Notice that this
approximated solution lies in the domain of location of solution B(v, 0.0686 . . .) which is obtained
from Theorem 1.
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Figure 2. Solution x∗ of system (14) and domain of location of solution.

6. Conclusions

Following the idea of the Fixed Point Theorem for the method of successive approximations,
we do an analysis for Newton’s method, use the theoretical significance of the method to prove the
existence and uniqueness of solution of a particular type of nonlinear integral equations of Fredholm
and, in addition, obtain a domain of global convergence for the method that allows locating a solution
and separating it from other possible solutions. For this, we use a technique based on using auxiliary
points. Moreover, we present a study of the nonlinear equations which is based on the real parameter
involved in the equation.
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