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Purprose. 7-Ketocholesterol (7KCh) accumulates in oxidized
lipoprotein deposits and is known to be involved in macro-
phage foam cell formation and atherosclerosis. 7-KCh is
present in the primate retina and is associated with oxidized
lipoprotein deposits located in the choriocapillaris, Bruch’s
membrane, and retinal pigment epithelium (RPE). 7-KCh can
also be formed in the retina as a consequence of light-induced
iron release. The purpose of this study was to examine the
signaling pathways involved in the 7KCh-mediated inflamma-
tory response focusing on three cytokines, VEGF, IL-6, and IL-8

MEeTHODS. ARPE-19 cells were treated with 7KCh solubilized in
hydroxypropyl-B-cyclodextrin. Cytokines were quantified by
qRT-PCR (mRNA) and ELISA (protein) using commercially
available products. NFkB activation was determined by IkBa
mRNA induction

Resurts. Treatment of ARPE-19 cells with 15 uM 7KCh mark-
edly induced the expression of VEGF, IL-6, and IL-8. No in-
crease in NOX-4 expression or ROS formation was detected.
7KCh induced the phosphorylation of ERK1/2 and p38MAPK,
and inhibitors to these kinases markedly reduced the cytokine
expression but did not affect the IkBae mRNA expression. By
contrast, inhibition of PI3K and PKC{ significantly decreased
the cytokine and IkBa mRNA expression. Inhibition of the IkB
kinase complex essentially ablated all cytokine induction

Concrusions. 7KCh induces cytokines via three kinase signaling
pathways, AKT-PKC{-NF«kB, p38 MAPK, and ERK. The MAPK/
ERK pathways seem to preferentially enhance cytokine induc-
tion downstream from NFkB activation. The results of this
study suggest that 7KCh activates these pathways through
interactions in the plasma membrane, but the mechanism(s)
remains unknown. (Invest Ophthalmol Vis Sci. 2010;51:
4942-4955) DOIL:10.1167/i0vs.09-4854

he highly toxic cholesterol oxide 7-ketocholesterol (7KCh)
is found in atherosclerotic plaques.'”” This oxysterol is
suspected of causing foam cell transformation in macrophages
and toxicity to vascular endothelial and smooth muscle
cells."”7 In the primate retina, 7KCh has been found associated
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with lipoprotein deposits in Bruch’s membrane, choriocapil-
laris, and RPE cells.® 7-KCh is formed nonenzymatically by two
known mechanisms, singlet oxygen, which requires a photo-
sensitizing agent,”'® and free radical, which requires a transi-
tion metal catalyst, most commonly copper or iron.'' In li-
poprotein deposits'*'® and in the retina,'* the free radical
mechanism, also known as the Fenton reaction, is the predom-
inant process by which 7KCh is formed.

One of the most important consequences of 7KCh formation
and accumulation are its proinflammatory properties.">>7 7-KCh
is known to induce vascular endothelial growth factor (VEGF),>'>
interleukin-1B,'¢ interleukin (L)-6,'”'® and IL-8.%'92? Similar
properties have been reported for oxidized low-density lipopro-
tein (0xLDL),*%*>72 which is known to contain high levels of
7KCh."*'? The inflammatory pathways for 7KCh have been de-
scribed in different cell types, and various inflammatory pathways
have been implicated.'”” However, most of the cell types inves-
tigated respond to 7KCh by forming reactive oxygen species
(ROS) with subsequent NFkB activation. The exception seems to
be the human umbilical vein endothelial cell line ECV304 cells*®
and RPE-derived cells.?"*' The ECV304 cell line is apparently not
an endothelial cell line; rather, it originates from the T24 human
bladder carcinoma cell line.>?

Chronic inflammation is suspected of playing a role in
drusen formation and the pathogenesis of age-related macular
degeneration (AMD).?? Inflammation also causes neovascular-
ization, which is a major complication in a variety of ocular
diseases.?® VEGF is a key molecule in ocular neovascularization
and is known to induce choroidal neovascularization (CNV) in
AMD. >4 Presently, the most effective treatment for AMD with
CNV is anti-VEGF therapy.>* Thus, any molecule or process in
the retina that regulates or induces VEGF is extremely impor-
tant to the understanding of the disease process in AMD.

In this study we used the human RPE-derived ARPE-19 cell
line to study the inflammatory mechanism of 7KCh. Our results
suggest that 7KCh does not induce ROS in ARPE-19 cells or in
other cell lines of various origin. Instead, 7KCh activates three
kinase signaling pathways that lead to NFkB activation and
subsequent cytokine induction.

MATERIALS AND METHODS

Materials

7-Ketocholesterol was purchased from Steraloids, Inc. (Newport, RI).
Hydroxypropyl-B-cyclodextrin  (HPBCD), N-acetyl-i-cysteine (NAC),
tert-butyl hydroperoxide (TBHP), and monoclonal anti-actin antibody
were purchased from Sigma-Aldrich (St. Louis, MO). Cobalt chloride
(CoCl,) was purchased from J. T. Baker (Phillipsburg, NJ). Rabbit
polyclonal antibodies specific for phospho-ERK, phospho-p38 MAPK,
phospho-AKT, ERK, p38 MAPK, AKT, and phospho-PKC{ were ob-
tained from Cell Signaling Technology Inc. (Boston, MA). Mouse mono-
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FiGure 1. Cell viability in response to 7KCh treatment. ARPE-19 cells

were incubated for 24 hours with the indicated concentrations of
7KCh. Cellular viability was determined by measuring dehydrogenase
activity. Twenty-four well plates were used and four individual mea-
surements were made for each concentration. Error bars are the SE
from the four measurements. The figure shows a representative exper-
iment repeated three times with similar results.

clonal anti- human HuR antibody was purchased from Santa Cruz
Technology Inc. (Santa Cruz, CA). Rabbit polyclonal antibodies specific
for B-tubulin and histone deacetylase 1 (HDAC1) were purchased from
Abcam, Inc. (Cambridge, MA). U0126, SB203580, LY294002, myr-
PKC/{, and BAY 11-7082 were purchased from EMD Chemicals Inc.

(Gibbstown, NJ).
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Cell Cultures and Treatments

ARPE-19 cells were purchased from the American Type Culture Col-
lection (ATCC, Manassas, VA) and cultured as previously described.®
The SV40-immortalized rat RPEJ cells®> were a kind gift from George
Hoppe (Cleveland Clinic, Cleveland, OH). These cells were cultured in
Dulbecco’s modified Eagle’s medium (DMEM; Mediatech Inc., Manas-
sas, VA) containing 4% FBS, 2 mM glutamine, 100 IU/mL penicillin, and
100 pg/mL streptomycin (Invitrogen Corp., Carlsbad, CA). Human
microvascular endothelial cells (HMVECs)>® were a kind gift from Rong
Shao (Pioneer Valley Life Sciences Institute, Springville, MA). They
were cultured and maintained in EBM-2 medium (Lonza, Basel, Swit-
zerland) with supplements (10% FBS, 0.04% hydrocortisone, 0.1%
rhEGF, 0.1% GA-1000, 100 IU/mL penicillin, and 100 ug/mL strepto-
mycin). Human aorta smooth muscle cells (HA0SMC) were purchased
from the ATCC. These cells were grown in DMEM containing 15% FBS,
2 mM glutamine, 100 IU/mL penicillin, and 100 ug/mL streptomycin.
All cells were cultured at 37°C in 5% CO, with the exception of the
RPETJ cells, which were grown at 32°C. Cells were treated with 7KCh
complexed with HPBCD in serum-free media, as previously described.®

HuR Immunolocalization

For immunoblotting, ARPE-19 cells were treated with 15 uM of
7KCh for 0, 3, 6, and 12 hours. Cytoplasmic and nuclear fractions
were prepared (Nuclear Extract Kit; Active Motif, Carlsbad, CA).
Protein samples (40 pg for cytoplasmic extracts, 10 ug for nuclear
extracts) were subjected to SDS-PAGE. Blots were probed overnight
with anti-HuR antibody (1:1000) at 4°C. Anti-HDCA1 (1:10,000)
and anti-S-tubulin (1:5000) antibodies were also used as a nuclear
marker and a cytoplasmic marker, respectively. The blots were
developed using anti-rabbit (KPL, Gaithersburg, MD) or anti-mouse
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FIGURE 2. Dose and time response of cytokine mRNA induction by 7kCh. Dose-response for cytokine induction of VEGF (A), IL-6 (B), and 1L-8

(C) mRNA in ARPE-19 cells exposed to 7KCh for 24 hours. Time course response for the induction of VEGF (D), IL-6 (E), and IL-8 (F) mRNA in
ARPE-19 cells exposed to 15 uM 7KCh. Real-time qRT-PCR was performed. Error bars are the SE from four individual measurements. The figure
shows representative experiments repeated three times with similar results.
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(Jackson ImmunoResearch Laboratories, Inc., West Grove, PA) IgG
peroxidase- conjugated secondary antibodies at a dilution of
1:10,000 for 1 hour, followed by incubation with the chemilumi-
nescent substrate (SuperSignal West Pico; Thermo Fisher Scientific,
Rockford, IL).

For localization by immunofluorescence, cells were seeded on
two-well chamber slides (Laboratory-Tek; Nalgene Nunc International,
Naperville, IL) and treated with 15 uM of 7KCh for 12 hours. Cells
were washed with PBS and then fixed in PBS containing 4% parafor-
maldehyde for 15 minutes. Cells were washed again with PBS and
blocked with 5% normal goat serum in ICC buffer (1% Triton X-100,
0.5% BSA, and 0.05% sodium azide in 1X PBS) for 30 minutes. Then the
cells were incubated with anti-HuR antibody (1:100) in 2.5% normal
goat serum-ICC buffer at room temperature for 2 hours. After washing
with PBS, the cells were incubated with Alexa Fluor 488 -labeled goat
anti-mouse IgG (1:500; Invitrogen-Molecular Probes, Eugene, OR) and
1 pg/mL of 4',6-diamidino-2- phenylindole (DAPIL Invitrogen-Molecular
Probes) for 1 hour in the dark. After washing with PBS, the slides were
mounted and imaged with a scanning confocal microscope (SP2; Leica
Microsystems, Exton, PA).

cDNA Synthesis and Real-Time
Quantitative RT-PCR

RNA extraction and cDNA synthesis were performed using reagents and kits
(nvitrogen). All qRT-PCR experiments were performed three times in tripli-
cate in a real-time PCR system (ABI 7500; Applied Biosystems, Foster City, CA)
according to the manufacturer’s specifications. Gene expression was quanti-
fied by using a PCR mix (SYBR Green PCR master mix; Applied Biosystems)
and specific primers for IL-6 (forward, 5'-CCAGTACCCCCAGGAGAAGAT-3';
reverse, 5-GAGGATGTACCGAATTTGTTTGTC3") and IkBa (forward, 5'-
CGGACTGCCCTTCACCTC3'; reverse, 5'-ACATCAGCCCCACACTTCAA3")

B

ROS PRODUCTION
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or by using gene expression assays (hVEGFa, HS00173626_m1; hIL-8
HS00174103_m1; hNOX4, HS00276431_m1; hGAPDH, 4352934e; rVEGFa,
Rn00582935_m1, 1Il-6, Rn99999011_ml; rNOX4, Rn00585380_ml;
rGAPDH, 4352338e; TagMan; ABI Applied Biosystems). For each cDNA,
GAPDH was used as an endogenous standard to estimate the mRNA levels.
Results were normalized and expressed relative to standard controls and are
shown as the average value, and the error bars are the SD from the mean.

Detection of Intracellular ROS

The level of intracellular ROS was determined by the change in fluo-
rescence resulting from the oxidation of the fluorescent probe 2,
7'-dichlorodihydrofluorescein  diacetate (H2DCFDA; Invitrogen).
ARPE-19 cells were exposed to 15 uM 7KCh for 0.5 to 24 hours. RPE-]
cells, HMVECs, and HAoSMCs were exposed to various concentrations
of 7KCh or CoCl, for 24 hours. After 7KCh treatment, cells were then
incubated with 5 uM H2DCFDA at 37°C for 20 minutes. The fluores-
cence corresponding to intracellular ROS was determined using a
multilabeled reader (Envision, model 2104; Perkin-Elmer, Waltman,
MA) with 485-nm excitation and 535-nm emission filters.

Cell Viability Assays

Cell viability assays were performed in 24-well plates, with each
measurement performed in quadruplicate. Cell viability was mea-
sured using a cell counting kit (Cell Counting Kit-8; Dojindo Molec-
ular Technologies, Inc., Gaithersburg, MD), which measures cellular
dehydrogenase (mostly mitochondrial) activity.

Immunoblots

Cells in 100-mm dishes were treated with 7KCh, alone or with
inhibitors for 1, 3, 12, and 24 hours, and were extracted in MPER
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buffer solution (Thermo Fisher Scientific) in the presence of pro-
tease inhibitor cocktail (Complete; Roche Diagnostics Corporation,
Indianapolis, IN). Protein samples from cell extracts (40 ug protein)
were separated in a 10% Bis-Tris gel, transferred to a nitrocellulose
membrane (Invitrogen), and probed with primary antibodies at
1:1000, 4°C overnight. The primary antibodies were anti-phospho-
ERK, phospho-p38MAPK, phospho-AKT, ERK, p38 MAPK, AKT, and
phospho-PKC{. The blots were developed using HRP-conjugated
secondary antibody at 1:2000 (Cell Signaling Technology, Inc.) and
the chemiluminescent substrate (Supersignal West Pico; Thermo
Fisher Scientific).

ELISA for VEGF, IL-6, and IL-8

Cytokine levels in conditioned media from ARPE-19 cells were
measured 48 hours after treatment with 15 uM 7KCh. VEGF and IL-8
were quantified using the ELISA kits (human VEGF and human
CXCLS8/IL-8; Quantikine; R&D Systems, Inc., Minneapolis, MN). IL-6
was measured using a human IL-6 single analyte kit (ELISArray;
SABioscience, Frederick, MD).

7KCh-Induced Inflammation in RPE Cells 4945

RESULTS

Determining Optimal Inflammatory
Concentration of 7KCh in 24 Hours

To determine the highest concentration of 7KCh that may be
tolerated by ARPE-19 cells without cytotoxicity (cell death),
different concentrations of 7KCh (0 -20 uM) were tested for 24
hours in 24-well plates. Cellular dehydrogenase activity was
used to determine cell viability, as described. Results indicate
that concentrations of 7KCh up to 15 uM are not cytotoxic to
ARPE-19 cells within 24 hours (Fig. 1). However, 20 uM 7KCh
caused a 50% to 60% loss in cell viability (Fig. 1).

Dose and Time Dependence Induction of VEGF,
IL-6, and IL-8 by 7KCh
The induction of VEGF, IL-6, and IL-8 mRNA by 7KCh was

determined by real-time qRT-PCR as a function of the dose
(Figs. 2A-C) and time (Figs. 2D-F) in ARPE-19 cells. Cells were
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plated in 24-well plates, and measurements were performed in
quadruplicate per experiment. Low doses of 7KCh (5-12 uM)
were able to significantly induce the mRNA expression of
VEGF and 1L-8 mRNA whereas 1L-6 required 15 uM. At 15 and
20 uM, all three cytokines were markedly induced (Fig. 2). In
addition, all three cytokines responded to the 15 uM 7KCh by
6 hours with maximum induction at 12 hours. The 15-uM
7KCh dose was selected for subsequent studies because it
provided the best balance between inflammatory response and
cell toxicity.

ROS Formation and NOX-4 Induction in 7KCh-
Treated ARPE-19 Cells

Studies performed in human aortic smooth muscle cells,®”
macrophages,®® and human aortic endothelial cells** have
shown that 7KCh induces VEGF and other cytokines through
the generation of ROS. To determine whether the ARPE-19
cells responded similarly to 7KCh, the cells were incubated
with 15 uM 7KCh for 0.5, 1, and 24 hours, and ROS production

ARPE-19

I0VS, October 2010, Vol. 51, No. 10

was measured as described (Fig. 3A). TBHP, a known ROS
generator, was used as a positive control (Fig. 3A). Exposure to
7KCh did not cause any measurable ROS production or induce
NOX-4 mRNA (Fig. 3B). Moreover, coincubation with N-acetyl-
cysteine, a known ROS scavenger, did not block the induction
of VEGF and IL-6 mRNA (Figs. 3C, 3D).

Because ROS formation has been reported in these other
systems,””>° we examined one additional RPE-derived cell line
(RPE-)) and two other cell lines, HMVECs and HAoSMCs, which
had been previously shown to generate ROS in response to
7KCh.>7%® Cell viability and ROS production were measured
on all four cell lines under identical conditions (Fig. 4). Cobalt
chloride was used as a positive control to generate ROS be-
cause it is significantly less toxic than TBHP. The optimal dose
of CoCl, was determined for each cell line (data not shown) to
maximize ROS production while maintaining good cell viabil-
ity. None of the cell lines demonstrated any significant increase
in ROS production (Fig. 4) or NOX-4 induction (data not
shown) in response to 7KCh exposure.
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HAoSMC

FIGURE 5. HuR induction and translo-
cation in response to 7KCh. (A) HuR
immunoblot of cytosolic and nuclear ex-
tracts of ARPE-19 cells after treatment
with 15 uM 7KCh for 0, 3, 6, and 12
hours. B) Localization of HuR by im-
munofluorescence before (Ba, Bc,
Be) and after (Bb, Bd, Bf) treat-
ment with 15 uM 7KCh for 12
hours. ARPE-19 (Ba, Bb), HMVECs
(Bc, Bd), and HAoSMCs (Be, Bf).
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Expression and Translocation of HuR Protein in
Response to 7KCh

HuR is an RNA-binding protein that stabilizes the adenylate-
uridylate rich elements present in different proinflammatory
mRNAs such as IL-6.%° HuR translocates from the nucleus to
the cytosol by an NFkB signaling response.*’ In HAoSMCs,
7KCh has been previously shown to cause the translocation of
HuR.'®

To determine whether HuR was involved in 7KCh-mediated
cytokine induction, ARPE-19 cells were incubated with 15 uM
7KCh for 0, 3, 6, and 12 hours. Cytosolic and nuclear fractions
were prepared and analyzed by immunoblot to determine HuR
translocation. The cytosolic marker B-tubulin and the nuclear
marker HDAC1 were used as controls (Fig. 5A). No transloca-
tion of HuR was observed in ARPE-19 cells in response to 7KCh
(Fig. 5A). Immunofluorescence localization also failed to detect
HuR translocation in ARPE-19 cells or HMVECs (Figs. 5Ba-Bd).
However, HA0SMC, our positive control, did show HuR trans-
location in response to 7KCh (Figs. 5Be, 5Bf), as previously
reported.'®

Involvement of the MAPK/ERK Pathway

The MAPK/ERK pathway is a complex signaling cascade acti-
vated by a variety of G-protein- coupled cell surface receptors
in response to growth factors and other stimuli.***? This path-
way has been reported to regulate 7KCh-induced apoptosis.**
To determine whether the MAPK/ERK pathway is involved in
7KCh-induced cytokine induction, ARPE-19 cells were incu-
bated for 1, 3, 12, and 24 hours with 15 uM 7KCh. Changes in

A
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the expression and phosphorylation of ERK (pERK) were mea-
sured by immunoblot (Fig. 6A) using specific antibodies to the
different forms. The expression of nonphosphorylated ERK
(Fig. 6A, middle panel) was not affected, but increased phos-
phorylation was detected after 1 hour of treatment (Fig. 6A,
top panel) and peaked after 3 hours. The levels of pERK
remained elevated for 24 hours after treatment with 7KCh (Fig.
6A, top panel). B-Actin was used as a control for loading (Fig.
6A, lower panel). Pharmacologic inhibition of the ERK kinases
Erkl and Erk2, with the highly selective inhibitor U0126,%>+1¢
reduced VEGF, IL-6, and IL-8 mRNA levels by approximately
70%, 60%, and 50%, respectively (Figs. 6B-D).

To further elucidate the involvement of the MAPK/ERK
pathway*® in the 7KCh-induced cytokine response, ARPE-19
cells were incubated for 1, 3, 12, and 24 hours with 15 uM
7KCh, and p38MAPK phosphorylation was measured by im-
munoblot (Fig. 7A). As with the ERKSs, nonphosphorylated
p38MAPK expression was not altered, but phosphorylated
P38MAPK expression increased within 1 hour and peaked after
3 hours. Phosphorylated p38MAPK levels remained elevated
even 24 hours after treatment (Fig. 7A). Inhibition of the
P38MAPK with the highly selective inhibitor SB203580%° sig-
nificantly reduced the cytokine induction. Inhibition of
p38MAPK reduced the 7KCh-mediated induction of VEGF,
IL-6, and I1-8 mRNA by approximately 50%, 70%, and 50%,
respectively (Figs. 7B-D).

Involvement of the Akt/PKB Signaling Pathway

The serine/threonine kinase (Akt, also known as PKB) is
known to play a critical role in diverse cellular processes.*’

B
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Akt is activated by a variety of cell surface receptors that,
when stimulated, induce the activation of the enzyme phos-
phoinositide 3-kinase (PI3K). PI3K produces phosphatidyl-
inositol 3, 4, 5 triphosphates (PIP3), which in turn activates
Akt.?7 To determine whether Akt signaling was involved in
the 7KCh-induced cytokine induction, ARPE-19 cells were
incubated with 7KCh under conditions identical to those
described above for MAPK/ERK. The expression and phos-
phorylation of Akt were measured by immunoblot (Fig. 8A)
using specific antibodies that can distinguish phosphory-
lated and nonphosphorylated forms of Akt. Similar to MAPK/
ERK levels, nonphosphorylated Akt levels did not seem to
vary, but phosphorylated Akt (pAkt) increased within 1 hour
after treatment and peaked at 12 hours (Fig. 8A). The Akt
and PI3K inhibitor LY294002%® attenuated the induction of
VEGF, IL-6, and IL-8 mRNA by approximately 75%, 80%, and
50%, respectively (Figs. 8B-D).

Involvement of Protein Kinase C

Previous studies have implicated protein kinase C (PKC)
isoforms in the induction of VEGF and other cytokines.*”-%°
We were unable to detect either PKCS or PKC6 phosphor-
ylation in 7KCh-treated ARPE-19 cells by immunoblot (data
not shown). However, a time-dependent increase in the
phosphorylation of PKC{ was detected by immunoblot in
7KCh-treated ARPE-19 cells (Fig. 9A). Moreover, incubation
with myr-PKC{, a myristoylated form of the PKC{ isozyme
and a pseudo-substrate inhibitor, blocked 7KCh-mediated
VEGF, IL-6, and IL-8 mRNA induction by 60%, 75%, and 70%,
respectively (Figs. 9B-D).
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Involvement of NFkB

The nuclear factor NFkB is a family of five related proteins that
form homodimers and heterodimers.’® In resting cells the
NFkB dimers form complexes with small inhibitory proteins
called IkBs. An essential step in the activation of the NF«B
complex is the phosphorylation and activation of the IkB
kinase complex (IKK), which phosphorylates the inhibitor
IkBs. IKK is a trimeric complex composed of IKKa and (3
catalytic subunits and the IKKy regulatory subunit.>® The phos-
phorylation of the IkBs causes their ubiquitination and degra-
dation, thus freeing the NFkB complex. Ubiquitination plays an
essential role in the regulation of NFkB.>' The freed NFkB
dimers are then phosphorylated and translocated to the nu-
cleus to promote the transcription of many immunity-related
genes, including the IkB genes.’*>' This creates a negative
feedback loop leading to the induction and resynthesis of the
IkBs. Hence, the induction of IkBa mRNA expression is con-
sidered a reliable marker for measuring the activation of the
NFkB pathway.>%>>

Treatment of ARPE-19 cells with increasing doses of 7KCh
for 24 hours demonstrated that the expression of IkBa mRNA
increased in a dose-dependent manner (Fig. 10A). Treatment of
ARPE-19 cells with 15 uM 7KCh demonstrated that IkBa
mRNA expression peaks 6 hours after treatment (Fig. 10B) and
remains elevated for 24 hours (last measurement). Moreover,
incubation with 2 to 10 uM BAY 11-7082, an irreversible
inhibitor of IKK,>* blocked the 7KCh-mediated induction of
IkBa mRNA (Fig. 10C). The BAY 11-7082 also practically
ablated 7KCh-mediated cytokine induction (Figs. 10D-F).
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NFkB Activate Independently of MAPK/ERK

To determine the pathway location of NFkB activation, IkBa
mRNA was measured in the 7KCh-treated ARPE-19 cells in the
presence of all the different inhibitors tested (Fig. 11A). The
inhibitors of p38MAPK (SB203580) and ERK (U0216) had es-
sentially no effect on IkBa mRNA induction by 7KCh. How-
ever, the inhibition of PI3K (LY294002) and PKC{ (myr-PKC{)
measurably depressed IkBa mRNA expression (Fig. 11A).
These results suggest that in ARPE-19 cells, 7KCh-mediated
activation of the MAPK/ERK pathways influence cytokine in-
duction mainly downstream of NF«B.

Cytokine Protein Expression

Given that mRNA expression does not necessarily correlate
with protein expression, ELISA was used to determine the
release of VEGF, IL-6, and IL-8 into the medium after 7KCh
treatment. ARPE-19 cells were treated with 7KCh (15 uM, 48
hours), and the levels of each cytokine were measured with
and without the inhibitors U0126, SB203580, LY294002, BAY
11-7082, and myr-PKC{ (Figs. 11B-D). All five inhibitors atten-
uated the response to VEGF (Fig. 11B), IL-6 (Fig. 11C), and IL-8
(Fig. 11D). Results indicate that the mRNA levels correlate well
with the protein release into the conditioned media and further
support the involvement of NF«B in cytokine expression.

Di1sCUSSION

This study is a continuation of a previous study® to determine
the mechanisms of 7KCh-mediated inflammation and cytotox-
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icity in RPE cells. Determining the signaling pathways involved
in the 7KCh-mediated cytokine induction in vitro will be useful
in guiding investigative strategies for more definitive studies in
vivo. The cytotoxicity and inflammatory mechanisms for 7KCh
have been extensively studied in a variety of cultured cell
types.'~” Most of the previously published work on this subject
has been on macrophage- , smooth muscle- and vascular endo-
thelial-derived cell lines, which have been reported to respond
by way of ROS-mediated pathways."? In this study we demon-
strate that ARPE-19 cells respond similarly to 7KCh but inde-
pendently of NOX-4 and ROS induction. This study also sug-
gests that 7KCh activates multiple signaling pathways (AKT-
PKC{, ERK, and p38 MAPK) that lead to NFkB activation and
cytokine expression.

We have found that in ARPE-19 cells, 7KCh doses between
15 and 20 uM worked best for cytokine induction without
excessive cytotoxicity (Fig. 1). The 7KCh-mediated cytokine
mRNA induction was clearly detectable with 10 uM for all
three cytokines tested—VEGF, IL-6, and IL-8 (Figs. 2A-C, re-
spectively). Cytokine induction was detected within 6 hours
after 7KCh treatment, but peak response occurred at 12 hours
for all cytokines (Figs. 2D-F).

The mechanism(s) by which 7KCh induces inflammation
have been studied in human fibroblasts,>* human aortic and
embryonic vascular endothelial cells (HUVECs),®!'*>%5% cyl-
tured neuroretinal cells,>® human monocytic U937 cells,>”¢°
THP-1 cells,** aortic smooth muscle cells,'®37->%°%%1 human
macrophages,?®**°? and human RPE cells.®?” In aortic smooth
muscle cells, 7KCh has been reported to induce the expression
and activity of NOX-4, which in turn increases the formation of
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ROS.?” In the mouse J774A.1 macrophage cell line, 7KCh was
demonstrated to induce apoptosis by increasing ROS formation
and caspase-3 activity.®? ROS formation is known to activate a
series of proapoptotic pathways (Bax, p53, p21, phosphory-
lated JNK, and others) and to downregulate antiapoptotic
genes (BcL-2, BcLxL, AKT).?® In the human macrophage THP-1
cell line, 7KCh treatment increased the phosphorylation of p38
MAPK and ERK and decreased total AKT protein.*® In cultured
human aortic endothelial cells, ROS-dependent translocation of
NFkB into the nucleus was observed 2 hours after 7KCh ex-
posure.®® In these cell types, the pharmacologic effects elicited
by 7KCh seem to be preceded by the formation of ROS. The
prevention of ROS formation by antioxidants such as f-caro-
tene,>®%® treatment with NOX-4 inhibitors (diphenyleneiodo-
nium chloride, DPI), or siRNA targeting are sufficient to block
all the downstream effects of 7KCh.?” In the RPE-derived cells,
ROS formation does not seem to be involved in the 7KCh-
induced inflammatory response or cell death (Fig. 3). ARPE-19
cells treated with 15 uM 7KCh failed to form ROS (Fig. 3A) or
to induce NOX-4 (Fig. 3B). Moreover, treatment with N-acetyl-
cysteine (a known ROS scavenger) failed to attenuate the
7KCh-induced VEGF response (Fig. 3C). Other investigators
have also previously demonstrated that 7KCh did not increase
ROS formation in ARPE-19 cells, even at concentrations in
excess of 100 uM.>' To further verify this result, we measured
ROS formation in RPE] cells, HMVECs, and HA0SMCs using
CoCl, as a positive control (Fig. 4). 7KCh failed to induce ROS
formation or NOX-4 induction (data not shown) in any of the
four cell types tested. Other investigators using primary por-
cine RPE cells observed an increase in ROS formation in re-
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the SE from four individual measure-

+myr-PKCg ments. The figure shows a representa-
tive experiment repeated three times
7kCh 15 uM with similar results.

sponse to 7KCh?' but concluded that the cytokine induction
was mediated by LXR, not by ROS.

Why 7KCh did not seem to induce ROS in any of the cell
types tested in our study is unclear. One possible explanation
may be the way we delivered 7KCh. We used a complex with
HPBCD, whereas others have used ethanol. In 4.5% HPBCD,
7KCh remained soluble in the culture media. In ethanol, 7KCh
precipitated forming a suspension that adhered to the plastic
surfaces or that precipitated on top of the cells. In HPBCD, we
were also able to obtain pharmacologic responses in the 5- to
15-uM range, whereas in ethanol other investigators used con-
centrations in excess of 50 uM. This ethanol combination may
lead to increased damage to the plasma membrane and perhaps
to mitochondrial depolarization, which in turn leads to ROS
formation.

In human vascular smooth muscle cells, a novel mecha-
nism for the 7KCh-mediated induction of IL-6 through the
translocation of the protein HuR from the nucleus to the
cytoplasm was recently reported.'® HuR is an RNA-binding
protein known to stabilize the mRNA of various genes,
including cytokines, by binding to adenylate-uridylate rich
elements in their 3’ untranslated regions.”%! HuR mRNA
expression is also controlled by NF«B.'**! We found no
change in HuR expression or translocation in the 7KCh-
treated ARPE-19 cells (Figs. 5A, Ba, Bb). HMVECs also failed
to translocate HuR in response to 7KCh (Figs. 5Bc, Bd).
However, the HAoSMCs (Figs. 5Be, Bf) did demonstrate HuR
translocation in response to 7KCh. This result served as a
positive control and confirmed previously published
work.'® HuR has also been shown to promote the translation
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of HIF-1a,°* which is the main protein controlling the tran-
scriptional induction of VEGF.®> However, we have previ-
ously demonstrated that HIF-1« is not involved in the 7KCh-
mediated VEGF induction in ARPE-19 cells.® In addition, the
NFkB inhibitor BAY 11-7082 ablated all the 7KCh-mediated
cytokine responses (Fig. 11). This suggests that the HuR
response to 7KCh may be dependent on cell type-specific
PKC responses'®*! that may not be present in HMVECs or
ARPE-19 cells.

7KCh-mediated inflammatory responses in ARPE-19 cells
do have some similarities to those observed in other cells
types. 7KCh induces the phosphorylation of ERK (Fig. 6)
and p38MAPK (Fig. 7) similarly to what was previously
observed in the human macrophage-derived THP-1 cell
line.>® However, unlike the THP-1 cells,*® 7KCh did activate
the AKT pathway in the ARPE-19 cells (Fig. 8). Thus, in
human macrophages, the downregulation of the AKT path-
way is associated with cell death, whereas in ARPE-19 cells
we observed a slight increase in cell proliferation with low
doses of 7KCh (Fig. 1). Consistent with these observations,
the pharmacologic inhibition of MEK-ERK (Figs. 6, 11), p38
MAPK (Figs. 7, 11), and PI3K-AKT (Figs. 8, 11) pathways
significantly attenuated the 7KCh-mediated cytokine re-
sponses.

The role of different PKC isoforms (approximately 11)
has been associated with the activation of proinflammatory
signaling and the production of VEGF and other cytokines in
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different systems. %7427 pKCa has been demonstrated to
directly phosphorylate the HuR protein and to induce its
translocation to the cytoplasm in cultured human mesangial
cells.*! Activation of PKCS, which is promoted by oxys-
terols,®” can induce the generation of ROS in cultured hu-
man neutrophils.®® PKC{ , by contrast, works in conjunction
with AKT to activate the NFkB complex without ROS for-
mation.®® The phosphoinositide-dependent kinase 1 (PDK1)
phosphorylates both PKC{ and AKT. AKT then phosphory-
lates the IKK complex, and PKC{ phosphorylates NF«B.%”
Our data demonstrate that 7KCh induces the phosphoryla-
tion of PKC{ in a time-dependent manner, and this activa-
tion is responsible for a significant part of the cytokine
induction observed (Fig. 9). This is in agreement with pre-
viously published results demonstrating that the oxLDL-
mediated induction of VEGF secretion by macrophage-de-
rived cell lines was dependent on PI3K and PKC{ but
independent of other PKC isoforms or oxLDL uptake.>® The
response by these cells without oxLDL uptake suggests
7KCh (and other oxidized lipids) may exchange from the
oxLDL particles to cellular membranes and induce inflam-
mation just by direct contact.?® Cellular stretch in retinal
capillary pericytes also induced VEGF by PKC{ but indepen-
dently of Akt, other PKC isoforms, Ras, and ERK1/2.°° More-
over, the incubation of ARPE-19 cells with the calcium
channel blocker APB or with EGTA, a calcium-chelating
agent, did not affect the expression of VEGF, IL-6, and IL-8
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(data not shown). We also failed to detect the phosphoryla-
tion of & or 0 in ARPE-19 cells (data not shown). Thus, other
PKC isoforms do not seem to be involved in the 7KCh-
mediated cytokine induction in ARPE-19 cells, though they
may be involved in HuR translocation in other cell types
(e.g., HAOSMCs; Fig. 12).

NFkB is a family of five transcription factors that form ho-
modimers and heterodimers known to control the expression of
cytokines and other immune-response genes.”>>" The NF«B dimers
are kept inactive by the binding of the inhibitory proteins, the IxBs.
NFkB activation requires phosphorylation of the IkBs by the IKK
complex, followed by ubiquitination and proteasomal degradation of
the IkB components.®" This frees NFkB to form dimers that are
further activated by phosphorylation and subsequently are translo-
cated to the nucleus.>® In the nucleus they work independently or in
combination with other transcription factors to induce the expres-
sion of cytokine and other genes. NF«B activation is dependent on a
balance between ubiquitination and degradation of the IkBs and the
NF«B-dependent resynthesis of the IkBs.”*>' We have demonstrated
that 7KCh induces the expression of IkBa (Figs. 10, 11), which
serves as a marker for NF«B activation.>®~>? The induction of IkBa by
7KCh is fast and dose-dependent (Fig. 10), paralleling the activation
of the kinases (ERK, p38MAPK, AKT) (Figs. 6-8). However, specific
inhibitors of p38MAPK (SB203580) and ERK (U0126) did not show
the inhibition of IkBa mRNA induction (Fig. 10), whereas inhibition
of PI3K (L'Y294002) and PKC{ (myr-PKC{) demonstrated a marked
inhibition of IkBa mRINA expression (Fig. 11). In addition, inhibition
of the IKK-complex (BAY 11-7082) essentially ablated the mRNA
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FIGURE 11. Effect of kinase inhibi-
IL-8 tors on IkBa mRNA and on cytokine
protein expression. (A) IkBa mRNA
was measured by qRT-PCR 24 hours
after treatment with 15 uM 7KCh in
the presence of the MEK inhibitor
U0126 (10 uM), the p38MAPK inhib-
itor SB203580 (10 uM), the PI3K in-
hibitor LY294002 (10 uM), and the
PKC{ inhibitor myr-PKC{ (20 uM).
(B) VEGF. (C) IL-6. (D) IL-8. Cytokine
release was measured by ELISA in the
conditioned media of the ARPE-19
cells 48 hours after treatment with
15 uM 7KCh with and without the
inhibitors. The figure shows a repre-
sentative experiment repeated three
times with similar results.

expression of IkBa (Fig. 10) and of all three cytokines tested (Fig. 11).
This indicates that NFkB activation is essential to the 7KCh-mediated
cytokine induction while p38MAPK and ERK predominantly modu-
late NFkB activity through the expression or activation of other
transcription factors. An illustration summarizing the 7KCh-mediated
inflammatory pathways involved and the location of the inhibitors is
shown (Fig. 12).

One important question that should be addressed is the physio-
logical concentrations of 7KCh. In atheromatous plaques, 7KCh can
reach concentrations greater than 100 uM,'>”° with a significant
portion of it as fatty acid esters.'*'® Lipoprotein deposits are highly
enriched in cholesterol esters, which are readily oxidized by a free
radical-mediated mechanism catalyzed by copper, iron, or both.'**#
Therefore, it would be safe to assume that cells in the vicinity of
lipoprotein deposits could be exposed to micromolar amounts of
7KCh.

Another is how 7KCh activates these pathways. Are the
high concentrations enough to trigger the cell surface re-
ceptors? Perhaps some of the G-protein- coupled receptors
that respond to steroid hormones and activate MAPK/ERK
may be fooled by high concentrations of a ketosteroid.
However, it is unlikely the plethora of other receptors that
trigger these inflammatory pathways could be activated by
7KCh. One possibility that has been alluded to in the pub-
lished literature is the formation of 7KCh microcrystals in
the plasma membrane.”7? However, to our knowledge,
there are no published reports demonstrating that 7KCh
microcrystals can trigger inflammatory receptors. Thus, the
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FIGURe 12. Proposed 7KCh-medi- .
ated cytokine activation pathways in .
ARPE-19 cells. 7KCh exchanges in \V4

the plasma membrane and causes the
activation of the inflammatory path-
ways by some unknown mechanism
(e.g., perhaps microcrystal forma-
tion). Interaction with the plasma
membrane activates the cell surface
receptors and/or the receptor-linked
tyrosine kinases (RLTKs) by an un-
known mechanism. Dashed lines:
putative and/or inefficient phospho-
rylations. Solid arrows: suggested
main flow of the pathways.

mechanism by which 7KCh activates these inflammatory
pathways remains unknown and will be the focus of our
future research.

The role that 7KCh may play in the pathogenesis of AMD
is intriguing but unclear. As mentioned, inflammation and
VEGF induction are known to play important roles in the
pathogenesis of AMD.?*3% Cholesterol and other lipids are
known to accumulate in Bruch’s membrane and in the
choriocapillaris as a process of aging,”> and 7KCh accumu-
lation has been found at these locations.® Moreover, lipopro-
tein deposits seem to be able to accumulate micromolar
levels of 7KCh.'*'37° This information, when taken in com-
bination with our data, suggests that 7KCh could potentially
play a role in the pathogenesis of AMD. However, until more
detailed experiments can be performed in vivo, the role of
7KCh in this process remains hypothetical.
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