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Abstract
Hypothermia has been proposed as a therapeutic intervention for some retinal conditions,

including ischemic insults. Cold exposure elevates expression of cold-shock proteins

(CSP), including RNA-binding motif protein 3 (RBM3) and cold inducible RNA-binding pro-

tein (CIRP), but their presence in mammalian retina is so far unknown. Here we show the

effects of hypothermia on the expression of these CSPs in retina-derived cell lines and in

the retina of newborn and adult rats. Two cell lines of retinal origin, R28 and mRPE, were

exposed to 32°C for different time periods and CSP expression was measured by qRT-

PCR andWestern blotting. Neonatal and adult Sprague-Dawley rats were exposed to a

cold environment (8°C) and expression of CSPs in their retinas was studied by Western

blotting, multiple inmunofluorescence, and confocal microscopy. RBM3 expression was

upregulated by cold in both R28 and mRPE cells in a time-dependent fashion. On the other

hand, CIRP was upregulated in R28 cells but not in mRPE. In vivo, expression of CSPs was

negligible in the retina of newborn and adult rats kept at room temperature (24°C). Exposure

to a cold environment elicited a strong expression of both proteins, especially in retinal pig-

ment epithelium cells, photoreceptors, bipolar, amacrine and horizontal cells, Müller cells,

and ganglion cells. In conclusion, CSP expression rapidly rises in the mammalian retina fol-

lowing exposure to hypothermia in a cell type-specific pattern. This observation may be at

the basis of the molecular mechanism by which hypothermia exerts its therapeutic effects in

the retina.
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Introduction
Hypothermia, or exposure to cold temperatures, is being used clinically as a therapeutical inter-
vention to reduce the symptoms of several pathologies, including stroke [1–4], coronary artery
bypass surgery [5], neurodegeneration after cardiopulmonary resuscitation [6], or neonatal
asphyxia [7], among others. Although therapeutic hypothermia is well accepted for the clinical
treatment of cardiological or central nervous system complications [8], at the moment it is not
used in humans for diseases of the eye.

Nevertheless, a large number of animal studies has shown that hypothermia may be very
useful in protecting the retina, especially in the context of ischemia [9–18]. Supporting these
data, there are also some in vitro and ex vivo experiments showing that exposing isolated reti-
nas or cultured retinal cells to cold temperatures results in reducing NMDA-mediated excito-
toxicity [19], reducing secretion of vascular endothelial growth factor (VEGF) [20], and
increasing survival against toxicants [21]. Hopefully, these promissing observations would be
translated into clinical treatments soon.

Investigations in the last three decades have been trying to unravel the molecular mecha-
nisms underlying the beneficial effects of hypothermia [22]. Usually, exposure to moderatelly
cold temperatures induces a general reduction of metabolism and protein expression in all
cells, but there is a small group of proteins, the so-termed cold-shock proteins (CSP), whose
expression increases under these conditions. In mammals there are two main CSPs, RNA-
binding motif protein 3 (RBM3) and cold inducible RNA-binding protein (CIRP or CIRBP).
These proteins, which belong to the heterogeneous nuclear ribonucleoprotein family, bind to
cellular RNAs and regulate their half-life and thus their expression potential and their final
functions [23–26].

These CSPs have been identified in the mammalian brain [27–31] and CIRP was found in
the brain and retina of a frog in the context of hybernation [32] but, to the best of our knowl-
edge, they have not been localized in the mammalian retina. In this report, we identify the
cold-induced responses of RBM3 and CIRP in cell lines of retinal origin as well as in retinas of
neonatal and adult rats using quantitative real time PCR (qRT-PCR), Western blotting, and
immunofluorescence.

Materials and Methods

2.1. Cell lines and treatments
Two cell lines of retinal origin were used in this study: R28, which is an immortalized rat retinal
precursor cell [33], and mRPE which is a retinal pigment epithelium cell line derived from a
Rhesus monkey eye [34]. Both cell lines were a kind gift from Dr SP Becerra (National Eye
Institute, NIH, Bethesda, MD). R28 cells were grown in DMEMmedium supplemented with
10% fetal bovine serum (FBS). mRPE cells were grown in DMEM/F12 medium supplemented
with 5% FBS, L-glutamine, Na-pyruvate, non-essential amino acids, and penicillin/streptomy-
cin (all media and additives from Life Technologies, Alcobendas, Madrid, Spain). Cells in the
exponential phase were incubated in an atmosphere containing 5% CO2 and 85% humidity.
Temperature was modified as indicated.

2.2. Neonatal and adult rats
Male Sprague-Dawley albino rats with genetic quality and sanitary certification from the ani-
mal facility of our Institution were cared for in accordance with the guidelines published in the
ARVO Statement for the Use of Animals in Ophthalmic and Vision Research, and in the NIH
Guide for the Care and Use of Laboratory Animals (National Institutes of Health Publication
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No. 85–23, revised 1985, available from: Office of Science and Health Reports, National Center
for Research Resources, Bethesda, MD 20892), and the principles presented in the "Guidelines
for the Use of Animals in Neuroscience Research" by the Society for Neuroscience (available
from the Society for Neuroscience, Washington, DC; published in Membership Directory of
the Society, pp. xxvii-xxviii,1992). This study was approved by the Ethical Committee of CIC-
UAL: “Comité Institucional para el Uso y Cuidado de Animales de Laboratorio” (Resolution N
° 255/2014), Facultad de Medicina, Universidad de Buenos Aires, Argentina and by the US
Department of Defense (ACURO, protocol number MR130239). Appropriate proceedings
were performed to minimize the number of animals used and their suffering, pain, and discom-
fort. Animals were kept under standard laboratory conditions, with light/dark cycles of 12/12
h, and food and water were given ad libitum. Control animals were kept at 24°C whereas test
animals were exposed to 8°C, in a cold room, for the indicated periods of time. Core tempera-
ture was measured with a digital thermometer (TES-1300, TES Electrical Electronic Corp. Tai-
pei, Taiwan) connected to a K type thermocouple (TPK-01). Animals were sacrificed at the
indicated times after exposure to cold temperatures.

2.3. RNA extraction and quantitative real time PCR
Rats were injected with a lethal dose of anesthetic (300 mg/Kg ketamine, Imalgene, Merial
Laboratorios, Barcelona, Spain, + 30 mg/Kg xylazine, Xilagesic, Proyma Ganadera, Ciudad
Real, Spain), the eyes were dissected out, and the anterior chamber and the lens were removed.
Tissues or cell lines were homogenized with TRIzol (Invitrogen, Madrid, Spain) and RNA was
isolated with RNeasy Mini kit including a DNAse I on-column digestion (Qiagen, German-
town, MD). One μg of total RNA was reverse-transcribed into first-strand cDNA using random
primers and the SuperScript III kit (Invitrogen) in a total volume of 20 μL according to the
manufacturer’s instructions. Reverse transcriptase was omitted in control reactions, where the
absence of PCR-amplified DNA confirmed lack of contamination from genomic DNA. Result-
ing cDNA was mixed with SYBR Green PCRMaster Mix (Applied Biosystems, Carlsbad, CA)
for quantitative real time polymerase chain reaction (qRT-PCR) using 0.3 μM forward and
reverse oligonucleotide primers (Table 1). Quantitative measures were performed using a 7300
Real Time PCR System (Applied Biosystems). Cycling conditions were an initial denaturation
at 95°C for 10 min, followed by 40 cycles of 95°C for 15 seconds and 60°C for 1 minute. At the
end, a dissociation curve was implemented from 60 to 95°C to validate amplicon specificity.
Gene expression was calculated using absolute quantification by interpolation into a standard
curve. All values were divided by the expression of the house keeping genes GAPDH or 18S.

2.4. Protein extraction andWestern blotting
Additional eyes or cell lines were homogenized (1:3, w/v) in lysis buffer (20 mMHEPES, 0.2 M
sucrose, 5 mM DTT, 1 mM ethylenediaminetetraacetic acid (EDTA), 10 μg/ml soybean tryp-
sin, 10 μg/ml leupeptin, 2 μg/ml pepstatin, 0.1 mM PMSF, pH 7.4) at 4°C. Homogenates were
centrifuged for 30 minutes at 15,000 x g and the supernatants collected. Protein concentration
was determined by the BCA kit (Pierce, Rockford, IL), with bovine serum albumin as standard,
using a NanoDrop spectrophotometer (ND100). Then, 25 μg of each sample were mixed with
4x sample buffer (Invitrogen) and heated for 10 minutes at 70°C. Samples were run on 10%
SDS—polyacrylamide gels. Seeblue plus 2 Prestained Standards (Invitrogen) were used as
molecular weight markers. For Western blot analysis, proteins were transferred onto 0.2-μm
polyvinylidene difluoride (PVDF) membranes (iBlot system, Invitrogen). For protein identifi-
cation, membranes were incubated overnight at 4°C with primary antibodies (Table 2). To
standardize the results, a monoclonal IgG anti-β-actin antibody (Sigma) was used at a dilution
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1:10,000 in the same membranes. To visualize immunoreactivity, membranes were incubated
with anti-rabbit or anti mouse peroxidase- labeled IgGs, developed with a chemoluminiscence
kit (GE Biosciences, Miami, FL), and exposed to X-ray films (GE Biosciences). Developed films
were scanned with a computer-assisted densitometer (GS-800, Bio-Rad) and optical density
quantified by NIH ImageJ software.

2.5. Multiple immunofluorescence and confocal microscopy
Rats were deeply anaesthetized and intracardially perfused with 4% paraformaldehyde in PBS.
The eyes were postfixed in the same fixative for 24 h at 4°C, cryoprotected with 20% sucrose in
PBS, embedded in OCT, and sectioned in a cryostat (Leica Biosystems, Germany). Frozen sec-
tions (15 μm thick) were stained with a mixture of primary antibodies (Table 1) overnight at
4°C, exposed to the proper secondary antibodies (Table 1), and counterstained with DAPI
(1:1000, Sigma). Images were acquired in a confocal microscope (TCS SP5, Leica).

Table 1. Primers used for qRT-PCR.

Target (†) Sequence Expected band size

rCIRP-F GCATCAGATGAAGGCAAGGT 64 bp

rCIRP-R CCAGCGCCTGCTCATTG

rRBM3-F TGGAGAGTCCCTGGATGGG 65 bp

rRBM3-R TGGTTCCCCTGGCAGACTT

mCIRP-F GAGGCGAACAACAAGGAGAG 88 bp

mCIRP-R GGGGAAGACCTGGTAGGAAG

mRBM3-F TGGTTTCATCACCTTCACCA 50 bp

mRBM3-R CTCTCATGGCAACTGAAGCA

mGAPDH-F CGAGATCCCTCCAAAATCAA 205 bp

mGAPDH-R TGACGATCTTGAGGCTGTTG

18S (F) ATGCTCTTAGCTGAGTGTCCCG 101 bp

18S (R) ATTCCTAGCTGCGGTATCCAGG

Annealing temperature for all primers was 60°C.
† primers are specific for rat (r), monkey (m), or both species (18S).

doi:10.1371/journal.pone.0161458.t001

Table 2. Primary and secondary antibodies used in this study.

Primary antibodies

Target Species Dilution Source Reference

CIRP Mouse monoclonal 1:300 Proteintech 60025-2-Ig

RBM3 Rabbit monoclonal 1:1000 Abcam ab134946

Glutamine Synthetase Mouse monoclonal 1:300 BD Bioscience 610517

Calbindin D28K Rabbit polyclonal 1:150 Santa Cruz Biotech. sc-7691

Recoverin Rabbit polyclonal 1:150 Santa Cruz Biotech. sc-20353

Secondary antibodies

Specificity Fluorochrome Dilution Source Reference

Donkey anti rabbit Alexa Fluor 555 1:200 Molecular Probes A31572

Goat anti rabbit Alexa Fluor 488 1:200 Molecular Probes A11008

Donkey anti mouse Alexa Fluor 488 1:200 Molecular Probes A21202

Goat anti mouse Texas Red 1:200 Molecular Probes T-862

doi:10.1371/journal.pone.0161458.t002
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Results

3.1. Moderate hypothermia induces CSP expression in retinal cells in
vitro
In the literature, a moderate hypothermia (32–33°C) has been described as the optimal temper-
ature to induce CSP expression [31]. Therefore, we performed a time course with cells exposed
to 32°C. RBM3 mRNA showed a clear time-dependent expression increase in R28 cells, which
was statistically significant at 6h and even higher at 24h (Fig 1A). On the other hand, in mRPE
cells, RBM3 was upregulated at 3h of cold exposure, and was maintained at approximately the
same level up to 24h (Fig 1B). In contrast, CIRP had a differential response depending on the
cell type. In R28 there was a clear overexpression of CIRP at all time points when compared
with cells at 37°C (Fig 1C) but there was no significant response to moderate cold exposure in
mRPE cells (Fig 1D). These mRNA results were corroborated by protein expression analyses.
In R28 cells, there was a significant increase of CIRP protein in cells kept in the cold at 24h and
48h, and no change at 96h. There was also a marked increase in RBM3 protein at 48h and 96h
(Fig 1E). In mRPE cells we saw no change in CIRP and a clear upregulation of RBM3 at 96h
(Fig 1E).

3.2. Core temperature variations by exposure to environmental cold
Before performing in vivo experiments to localize CSPs in the retina, we studied how environ-
mental cold influences the core temperature of neonatal and adult rats, using a rectal thermo-
couple. First of all, neonates had lower temperature (~31°C) than adult rats (~37°C) when kept
at room temperature (Fig 2). After 15 min in a cold room at 8°C, neonates droped almost 10°C
(Fig 2A). On the other hand, adult rats were more resistent to cold stress. Their core tempera-
ture droped just ~3°C after 3h in the cold room and, after that, they recovered their tempera-
ture progressively (Fig 2B).

3.3. CSP expression in the retina of newborn rats
Newborn rats were exposed for 15 min to either normal room temperature (24°C) as a control
or to 8°C, then they were kept at room temperature for 24h before being sacrificed. Sections of
their retinas were stained with antibodies against RBM3 (green, Fig 3A and 3D) or CIRP (red,
Fig 3B and 3E). As expected, retinas taken from animals kept at room temperature showed
very little immunoreactivity for either of the CSPs (Fig 3A–3C). In animals exposed to cold
temperature there was immunostaining for both proteins, and the staining was brighter in the
ganglion cell layer (GCL), the inner plexiform layer (IPL), and the inner nuclear layer (INL).
When signals for RBM3 and CIRP were overlayed, a certain degree of colocalization, especially
in the cytoplasm of ganglion cells, was evident (Fig 3F).

3.4. CSP expression in the retinas of adult rats
In the retina of adult rats kept at room temperature immunostaining for CIRP and RBM3 was
negligible (Fig 3G–3I). When these animals were exposed to 3h of cold temperature, and then
kept for 24h at room temperature, staining for both CSPs was evident throughout the retina
(Fig 3J–3L) and colocalization of both signals was evident in particular cells (Fig 3M–3O).
Immunoreactivity for both CIRP and RBM3 was found in many layers of the retina, including
the RPE, photoreceptor segment layer (PRSL), outer plexiform layer (OPL), IPL, and GCL,
with some expression in the nuclear layers (Fig 4A–4C). In most places, there was a clear colo-
calization between CIRP and RBM3 (Fig 4C). At higher magnification some interesting details
surfaced. For instance, CIRP was highly expressed in the photorector outer segment layer
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Fig 1. mRNA expression (A-D) and protein determination (E) for CSPs in cell lines R28 (A,C,E) andmRPE (B,D,E) at different times
after cold exposure.Open bars represent mRNA expression at 37°C and closed bars at 32°C at the same times. Each bar represents the
mean ± SEM of 5–8 independent measurements. Asterisks indicate statistically significant differences with cells kept in normothermia. *:
p<0.05; **: p<0.01. Western blot images (E) are representative examples of 3 repeats. β–Actin was used as a loading control.

doi:10.1371/journal.pone.0161458.g001
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(PROSL) but not in the photorector inner segment layer (PRISL) (Fig 4D). In contrast, RBM3
showed a stronger staining in the PRISL than in the PROSL (Fig 4E). In addition, the RPE was
better defined with RBM3 (Fig 4E) than with CIRP (Fig 4D).

3.5. CSP expression by Western blotting
Eye extracts from newborn and adult rats were subjected to Western blotting with specific anti-
bodies against CIRP and RBM3 (Fig 5). In newborn rats, CIRP expression rised significantly at
12, 24, and 48h following exposure to hypothermia for 15 min (Fig 5A). In contrast, this same
protein was elevated only at 12h following hypothermia in adult rats, coming back to normal
levels at 24 and 48h (Fig 5B). For RBM3, there were significant increases at 24 and 48h both for
the newborns (Fig 5C) and for the adults (Fig 5D).

3.6. CSP expression in specific retinal cell types
To better understand the distribution of the immunoreactivity for both CSPs, colocalization
studies were performed. We used cell markers as described [35,36], employing calbindin to
label horizontal cells, glutamine synthetase for Müller cells, and recoverin for cone bipolar cells
and photoreceptors. CIRP was found in the cell processes of horizontal cells but not in their
somas (Fig 6A–6C). There was a complete colocalization of CIRP with the inner process and
cytoplasmic marker of Müller cells (Fig 6D–6F). Also a complete colocalization of CIRP with
recoverin indicated the presence of this CSP in the cytoplasm of cone bipolar cells in the ONL
and OPL and also in the inner and outer segments of the photoreceptor layer (Fig 6G–6I).

RBM3 had a similar distribution to CIRP, being present in the cell processes of horizontal
cells (Fig 7A–7C), the cytoplasm of Müller cells (Fig 7D–7F), and of the cone bipolar cells and
photoreceptors (Fig 7G–7I).

Discussion
In this study we have shown that the expression for both CIRP and RBM3 is activated upon
exposure to a cold environment in retinal cell lines and in the retina of neonatal and adult rats.

Fig 2. Modifications of core temperature in newborn (A) and adult (B) rats. Animals were exposed to room temperature (RT) or to a
cold environment (8°C) for the indicated periods of time and their temperature was measured with a rectal probe. Each bar represents the
mean ± SEM of 5–8 independent measurements. Asterisks indicate statistically significant differences with the animals kept at RT. ***:
p<0.001.

doi:10.1371/journal.pone.0161458.g002
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Using retina-derived cell lines we found a time-dependent increase of RBM3 in both R28
and mRPE. On the other hand, CIRP was elevated by cold in R28 but not in mRPE. This was
also confirmed by Western blotting. Interestingly, looking at adult rat retina exposed to cold,
we found a nice expression of RBM3 in the RPE whereas staining for CIRP was inconclusive.

Fig 3. Representative confocal microscopy images of the retina of newborn (A-F) and adult (G-O) rats exposed to either room
temperature (A-C, G-I) or to a cold environment (D-F, J-O), and then to room temperature for 24h before sacrifice. Sections were
exposed to antibodies against RBM3 (green, A,D,H,K,N) and CIRP (red, B,E,G,H,M). An overlay of both colors can be seen at (C,F,I,L,O).
GCL = ganglion cell layer, IPL = inner plexiform layer, INL = inner nuclear layer. Bar for A-L = 25 μm. Bar for M-O = 10 μm.

doi:10.1371/journal.pone.0161458.g003
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This suggests that at least CIRP is regulated in a cell type-dependent fashion, which justifies an
in-depth anatomical study.

Before performing in vivo experiments, we studied the influence of external cold environ-
ments in the temperature of the animals. It has been reported that the most important determi-
nant of effective cooling is body surface area. In addition, age is also important with very young
and older individuals being impaired for effective temperature regulation [37]. It has been pub-
lished that the eye, and specially the retina, has an active defense mechanism against cold,
based on the modulation of choroidal blood flow [38]. Obviously this mechanism of defense
would depend on the size of the eye and also on the maturity of the eye anatomy. In our study,
the temperature drop was very quick and very pronounced in newborn rats whereas in adults
we were able to obtain only a small reduction in internal temperature. This fact may be a

Fig 4. Confocal microscopy images of adult retina. Representative confocal microscopy images of the retina of adult rats exposed for 3
h to hypothermia and then for 24 h at room temperature. Sections were stained with antibodies against CIRP (red, A,D) and RBM3 (green in
B, red in E). To test for colocalizations, C represents an overlay of A and B. RPE = retinal pigment epithelium, PRSL = photoreceptor
segment layer, ONL = outer nuclear layer, INL = inner nuclear layer, GCL = ganglion cell layer,. Bar for A-C = 50 μm. Bar for D = 25 μm. Bar
for E = 20 μm.

doi:10.1371/journal.pone.0161458.g004
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limitation for the possibilities of applying therapeutic hypothermia to the eye from an external
source. In fact, in the case of brain therapeutic hypothermia, this treatment must be applied
through external cooling of the blood flowing through the central nervous system [1,4].

We found a clear upregulation of both CSPs in the retina of neonatal rats, specially in the
region that would become the GCL. This neat increase in expression may be part of the molec-
ular mechanism underlying the beneficial effects of hypothermia in the retina when applied to
experimental neonates subjected to hypoxia/asphyxia [15–17]. In a recent clinical trial, neo-
nates with hipoxic-ischemic encephalopathy were subjected to head cooling combined with
whole-body cooling to 33.5°C for 72 h and the results showed that therapeutic hypothermia
resulted in decreased brain tissue injury, improved survival, and better neurological outcomes
[39,40]. It would be interesting to test the efficacy of such applications to retinal outcomes.

Immunoreactivity for both CSPs was also found in adult rat retinas exposed to cold. In this
case we found a higher degree of colocalization between CIRP and RBM3 than in neonates.
Interestingly, there was differential expression of these two proteins in the PRSL with CIRP
being expressed exclusively in the outer segment and RBM3 mostly in the inner segment. Both
segments are connected by specialized cilia and the outer segment houses the rhodopsin discs.
In theory, not many mRNAs should be located in the outer segment of the photoreceptors, but

Fig 5. Western blot analysis of CIRP (A,B) and RBM3 (C,D) in newborn (A,C) and adult (B,D) rats.Control (CTL)
animals were kept at room temperature whereas test animals were subjected to a cold environment (8°C) for 15 min
(newborns) or 3 h (adults), and then sacrificed at the indicated times. Bars represent the mean ± SD of the percentage ratio of
protein expression divided by the expression of β-actin for all animals (n = 6). *: p<0.05.

doi:10.1371/journal.pone.0161458.g005
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some of them have been localized there [41] and CIRP may have a function in regulating the
expression of such mRNAs.

Specificity of the CIRP and RBM3 staining was demonstrated by the fact that the retina of
rats kept at room temperature had a negligible staining for either protein, and that the immu-
noreactivity was intense following cold exposure, as expected from working CSPs. Interest-
ingly, Western blots of the eye showed a higher expression of these proteins in normothermic
animals than expected from the immunostaining images. Perhaps this higher expression is due
to additional eye structures, other than the retina. This possibility will be explored in future
studies.

Fig 6. Colocalization of retinal markers with CIRP in adult retina.Representative confocal microscopy images of colocalizations in
hypothermic adult rat retina between CIRP (Red, A,D,G) and cell specific markers calbindin (B), glutamine synthetase (E), and recoverin (H).
The third column is a combination of the first two; a yellow hue represents colocalization. GCL = ganglion cell layer, IPL = inner plexiform
layer, INL = inner nuclear layer, OPL = outer plexiform layer, ONL = outer nuclear layer. Bar for A-C = 50 μm. Bar for D-F = 100 μm. Bar for
G-I = 50 μm.

doi:10.1371/journal.pone.0161458.g006
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Both CSPs have been localized in the cytoplasm of several retinal cell types following cold
stress. These cell types included ganglion cells, Müller cells, horizontal cells, cone bipolar cells,
photoreceptors, and RPE. This extensive localization suggests that CSPs exert a profound
impact in the physiology of the mammalian retina when exposed to hypothermia. These results

Fig 7. Colocalization of retinal markers with RBM3 in adult retina.Representative confocal microscopy images of colocalizations in
hypothermic adult rat retina between RBM3 (A,E,G) and cell specific markers calbindin (B), glutamine synthetase (D), and recoverin (H).
The third column is a combination of the first two; a yellow hue represents colocalization. GCL = ganglion cell layer, IPL = inner plexiform
layer, INL = inner nuclear layer, OPL = outer plexiform layer, ONL = outer nuclear layer. Bar for A-C = 50 μm. Bar for D-F = 25 μm. Bar for
G-I = 25 μm.

doi:10.1371/journal.pone.0161458.g007
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may explain the protective effects that exposure to cold temperatures has on ischemic retinas
[11–14]. All the physiological effects of CSPs are thought to be mediated by their binding to
cellular mRNAs and the concomitant modification of their half life [24,42]. Several studies
have tried to determine the RNA minimal motif needed for CSP binding. A paper on the influ-
ence of CSPs in the testis proposed a binding motif as simple as UUU [42], with the conse-
quence that about half of the genes of the genome possess such sequence and therefore should
be potential targets for CSPs. Other studies propose more complex motifs [24] but still the
number of potential mRNA targets is very high. Future studies should identify which particular
mRNAs are modulated by CSPs in the retina and, by doing so, try to dissect the exact mecha-
nism by which hypothermia and CSPs contribute to cell preservation in the retina.

Conclusions
CSP expression rapidly rises in the mammalian retina following exposure to hypothermia in a
cell type-specific pattern. This observation may be at the basis of the molecular mechanism by
which hypothermia exerts its therapeutic effects in the retina.
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