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Abstract

Objective

The aim of this study was to characterize the bacterial microbiome of hard ticks with affinity

to bite humans in La Rioja (North of Spain).

Methods

A total of 88 adult ticks (22 Rhipicephalus sanguineus sensu lato, 27 Haemaphysalis punc-

tata, 30 Dermacentor marginatus and 9 Ixodes ricinus) and 120 I. ricinus nymphs (CRETAV

collection, La Rioja, Spain), representing the main anthropophilic species in our environ-

ment, were subjected to a metagenomic analysis of the V3-V4 region of the 16S rRNA gene

using an Illumina MiSeq platform. Data obtained with Greengenes database were refined

with BLAST. Four groups of samples were defined, according to the four tick species.

Results

Proteobacteria was the predominant phylum observed in all groups. Gammaproteobacteria

was the most abundant class, followed by Alphaproteobacteria for R. sanguineus, H. punc-

tata and D. marginatus but the relative abundance of reads for these classes was reversed

for I. ricinus. This tick species showed more than 46% reads corresponding to ‘not assigned’

OTUs (Greengenes), and >97% of them corresponded to ‘Candidatus Midichloriaceae’

using BLAST. Within Rickettsiales, ‘Candidatus Midichloria’, Rickettsia, Ehrlichia, ‘Candida-

tus Neoehrlichia’ and Wolbachia were detected. I. ricinus was the most alpha-diverse spe-

cies. Regarding beta-diversity, I. ricinus and H. punctata samples grouped according to their

tick species but microbial communities of some R. sanguineus and D. marginatus speci-

mens clustered together.

Conclusions

The metagenomics approach seems useful to discover the spectrum of tick-related bacteria.

More studies are needed to identify and differentiate bacterial species, and to improve the

knowledge of tick-borne diseases in Spain.
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Introduction / Objective

The identification of microorganisms from biological samples has been dominated by the use

of traditional culture-dependent methods and conventional molecular biology techniques

(mostly polymerase chain reaction, PCR). The isolation of most tick-borne bacteria in syn-

thetic media or in cell culture is difficult to obtain, and a high number of microbes remain

uncultured. For the last two decades, the identification of Rickettsia spp. and other tick-associ-

ated pathogens has been mainly based on the use of specific PCR assays and sequence analysis

[1,2]. Until recently, most studies focused on the detection of pathogens in vectors were able to

detect a unique or a few microorganisms in a single assay. Metagenomic approaches, based on

the development of the Next Generation Sequencing (NGS) techniques, and primary focused

on the 16S rRNA study combined with bioinformatics tools, is revolutionizing the research in

the fields of epidemiology and diagnosis of infectious diseases, among others, overcoming the

limitation of detecting only one or few microorganisms at a time [3]. Metagenomic analysis

can reveal the complexity of the microbiota of a given sample [4]. The number of pathogens

associated with ticks has increased over the last years. Currently, there is a worldwide rising

incidence of patients with a history of a tick-bite [5,6]. The importance of tick-borne diseases

(TBDs) as a growing threat for public health has been recently underlined, and ‘what is not
sought, is not found’ [7]. As ticks are able to transmit different microorganisms at one bite, it is

necessary to be aware of possible co-infections. To investigate the microbial community com-

position harbored by ticks can facilitate the knowledge about the interactions among tick-asso-

ciated microorganisms, the discovery of new uncultured microorganisms and subsequently,

their implications as human pathogens.

Up to date, reports about metagenomics to investigate bacterial diversity of tick species are

scarce. Our aim was to characterize the bacterial microbiome of hard ticks with affinity to bite

humans in La Rioja (North of Spain).

Materials and methods

Tick samples

A total of 280 questing ticks (130 adults and 150 nymphs) belonging to the main species with

affinity to bite humans in La Rioja (Ixodes ricinus, Rhipicephalus sanguineus sensu lato,Derma-
centor marginatus and Haemaphysalis punctata) were selected from the -80˚C freezer of the

CRETAV collection (CIBIR, La Rioja, Spain) for the study of their bacterial profile. Ixodes rici-
nus is the most common arthropod vector of human diseases, and particularly nymphs of this

species are the most frequent stage attacking humans in La Rioja [8]. Therefore, I. ricinus
nymphs were also included in the study, in addition to adult specimens.

Ticks had been obtained from the field in La Rioja by flagging methods or by direct capture,

either in urban habitats or in natural areas where outdoor activities are usually practiced, with

the subsequent risk of infestation for humans (S1 Table). Specimens had been classified using

taxonomic keys [9,10] and kept frozen at -80˚C while still alive. Before DNA extraction, a half

from every adult tick (longitudinally cut) was immediately frozen again at -80˚C.

DNA extraction

For DNA extraction, ticks were manipulated under sterile conditions in a Class II biosafety

cabinet using cycles of UV light prior and between uses to prevent contamination. All the tools

were also irradiated with UV light for at least 15 min. Sterile single-use instruments were used

whenever possible. Non-disponsable material was sterilized between samples (e.g. forceps

were rinsed in 70% ethanol and flamed). Ticks were surface-sterilized by immersion and
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shaking in 70% ethanol for two min. followed by rinsing twice in sterile deionized water (one

min. each). All the solutions were sterile. Ticks were dried on autoclaved sterile filter paper,

transferred to sterile petri dishes and cut into small fragments that were collected in sterile

tubes. The DNA was extracted using DNeasy Blood and Tissue kit (Qiagen, Hilden, Germany),

following the manufacturer’s instructions except for an overnight digestion and a final elution

in 25 μL of warm (at 56˚C) elution buffer. All the kit reagents had been previously tested for

the absence of microorganisms using a pan-bacterial PCR [11]. Moreover, negative controls of

extraction corresponding to extraction tubes without tick samples were included in parallel.

DNA was quantified with a Qubit 3.0 fluorometer (Thermo Scientific) using Qubit dsDNA HS

(High Sensitivity) assay kit. The quality of DNA was assessed by capillary electrophoresis with

Fragment Analyzer (AATI) using Genomic DNA 50kb kit. DNA of enough quantity and qual-

ity for the NGS study was obtained from 88 adult ticks (22 Rhipicephalus sanguineus s.l., 27

Haemaphysalis punctata, 30 Dermacentor marginatus and 9 Ixodes ricinus) and 120 I. ricinus
nymphs (in pools of ten individuals each) (S1 Table).

DNA extraction, preparation of PCR master mix, and amplification were performed in sep-

arate rooms to prevent contamination.

16S rRNA gene amplification, library preparation and sequencing

A total of 12.5 ng DNA per sample were used for the amplification step. Primers targeting the

hypervariable V3 and V4 regions of 16S rRNA gene were used [12]. Amplified regions were

purified and indexed with Nextera XT Index kit (Illumina). The library quality was assessed on

a Qubit 3.0 Fluorometer (Thermo Scientific) and Fragment Analyzer (AATI) using dsDNA

reagent (35-5000bp) kit. Paired-end 300 bp sequences were obtained on an Illumina MiSeq

platform.

Sequence processing and analysis

Quality controls of raw reads were carried out with FastQC software [13], and trimmed with

the Trimmomatic software [14]. The V3-V4 amplified region (550–580 bp) was reconstructed

through paired reads according the Quantitative Insights Into Microbial Ecology (QIIME)

protocol (v1.9.1) [15]. Operational Taxonomic Units (OTUs) were defined as sequences with

at least 97% similarity versus Greengenes database [16] using UClust clustering algorithm [17]

and following the open-reference method described by QIIME [18]. OTUs with<0.01% rela-

tive abundance of the total read counts on a per-sample basis were removed (spurious and chi-

meric reads). Data were refined with BLAST tool against GenBank database using the

consensus sequence from each OTU [19].

Four groups of samples were defined, according to the four tick species. Rarefaction curves

were calculated prior to all analytical techniques in order to assess species richness from the

samples. OTU abundance was normalized by Cumulative Sum Scaling (CSS) method with

metagenomeSeq software [20] and barplots were constructed.

Statistical analysis

Alpha diversity and relative evenness of communities’ analyses were calculated by Chao1,

Fisher, Margalef, Observed OTUs, Phylogenetic diversity (PD) whole tree, Shannon, Simpson,

and Singles indexes with QIIME. Similarity distance matrixes between species groups were cal-

culated following Bray-Curtis, Weighted Unifrac and Unweighted Unifrac beta-diversity met-

rics. Principal Coordinate Analysis (PCoA) and Hierarchical Clustering Dendrograms

(UPGMA) for each beta-diversity metric were drawn to visualize sample groupings. The

Bacteriome in ticks and tick-borne diseases diagnosis

PLOS ONE | https://doi.org/10.1371/journal.pone.0213384 March 19, 2019 3 / 16

https://doi.org/10.1371/journal.pone.0213384


Kruskall-Wallis (KW) test was calculated to study significant differences between species

groups. Analysis was also performed with MicrobiomeAnalyst software [21].

Results

A total of 19,977,253 read counts (average counts per sample = 201,790) and 227 OTUs were

observed. The rarefaction curves reached a plateau, demonstrating that bacterial diversity had

been satisfactorily detected for all samples (S1–S4 Figs).

Proteobacteria was the dominant phylum in all tick species (S2 Table, Fig 1). Phyla Bacter-

oidetes, Actinobacteria, Acidobacteria, Tenericutes, Cyanobacteria, Verrucromicrobia and

Spirochaetes were also observed in all groups (S2 Table, Fig 1).

At class level, Gammaproteobacteria and Alphaproteobacteria represented more than 82%

of abundance of reads for the four tick species. Gammaproteobacteria was the most abundant

class, followed by Alphaproteobacteria for R. sanguineus (95.25% and 3.65%),H. punctata
(92.89% and 5.13%) and D.marginatus (80.92% and 15.90%). These percentages of relative

abundance of reads were different for I. ricinus, in which predominated Alphaproteobacteria

(70.41%) followed by Gammaproteobacteria (12.56%) (S2 Table). For Gammaproteobacteria,

statistically significant differences (False Discovery Rate, FDR<0.05, calculated by the Krus-

kall-Wallis test) were found when I. ricinus was compared vs. R. sanguineus (FDR = 1.168e-10),

vs.H. punctata (FDR = 1.229e-11), and vs. D.marginatus (FDR = 1.132e-7).

Fig 1. Phyla-level relative abundance of reads for each tick species analyzed. The histograms show the portion of MiSeq 16S rRNA gene sequences assigned

to each phylum.

https://doi.org/10.1371/journal.pone.0213384.g001
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Alphaproteobacteria showed significant differences between D.marginatus andH. punctata
(FDR = 0.034), D.marginatus and I. ricinus (FDR = 0.020), D.marginatus and R. sanguineus
(FDR = 0.008),H. punctata and I. ricinus (FDR = 0.492e-3), and R. sanguineus and I. ricinus
(FDR = 0.732e-3) (S3 Table).

At least 23 orders were present (S2 Table). At family level, Coxiellaceae was the most abun-

dant one for D.marginatus (79.96%), H. punctata (92.76%) and R. sanguineus (94.73%) but

not for I. ricinus (0.77%). Abundance of reads for Coxiellaceae showed significant differences

between D.marginatus and I. ricinus (FDR = 2.267e-7),H. punctata and I. ricinus
(FDR = 2.049e-13), and R. sanguineus and I. ricinus (FDR = 1.635e-10) (S3 Table). At this level,

I. ricinus showed the highest percentage (46.48%) corresponding to not assigned OTUs against

Greengenes database (S2 Table). From them, 97.94% of reads (seven undefined OTUs accord-

ing to Greengenes) showed maximum similarity with ‘CandidatusMidichloriaceae’ using

BLAST (Fig 2).

Fig 2. Nucleotide alignment of ‘Candidatus Midichloriaceae’ partial 16S rRNA references (according to BLAST) versus closed undefined

OTUs (according to Greengenes database).

https://doi.org/10.1371/journal.pone.0213384.g002

Bacteriome in ticks and tick-borne diseases diagnosis

PLOS ONE | https://doi.org/10.1371/journal.pone.0213384 March 19, 2019 5 / 16

https://doi.org/10.1371/journal.pone.0213384.g002
https://doi.org/10.1371/journal.pone.0213384


Other detected families (>3%) were assigned to Rickettsiaceae (14.07 and 6.14%) for D.

marginatus and I. ricinus; Pseudomonaceae (7.85%) and Oxalobacteraceae (3.55%) for I. rici-
nus; and Sphingomonadaceae (11.52% and 3.87%) for I. ricinus andH. punctata, respectively

(S2 Table).

Within I. ricinus, sequences belonging to ‘CandidatusMidichloriaceae’ showed the highest

identity with endosymbionts such as ‘CandidatusMidichloria mitochondrii’ or ‘Candidatus
Nicolleia massiliensis’, according to BLAST analysis. They were prevalent in female samples

(44.07–99.33%) but not in male specimens (0.57%), in which Pseudomonadaceae (60.19%)

and Nocardiaceae (13.57%) were dominant (S4 Table).

Sequences assigned to ‘CandidatusMidichloriaceae’ using BLAST (that corresponded to

not assigned OTUs against Greengenes) appeared in all I. ricinus nymph pools, with relative

abundance of reads that ranged from 2.01 to 52.02% depending on the sample (S5 Table).

Within order Rickettsiales (17.26% abundance of reads), genera ‘CandidatusMidichloria’,

Rickettsia, Ehrlichia, Anaplasma andWolbachia were found. However, Anaplasma sequences

corresponded to ‘CandidatusNeoehrlichia mikurensis’ using BLAST (GenBank accession

number KU535862). Rickettsia was the most abundant genus for D.marginatus and R. sangui-
neus, showing significant differences between D.marginatus and R. sanguineus (FDR = 0.002),

D.marginatus and I. ricinus (FDR = 2.580e-5), and D.marginatus and H. punctata (FDR =

1.8694e-6). Ehrlichia was the most represented genus inH. punctata, but no significant differ-

ences were observed when comparing tick species in pairs. ‘Ca. Midichloria’ was the most

abundant in I. ricinus.Wolbachia and ‘Ca. Neoehrlichia’ were more prevalent in I. ricinus than

in the remaining groups. Significant differences forWolbachia were observed between I. rici-
nus and D.marginatus (FDR = 0.109e-3); and for ‘Ca. Neoehrlichia’, between and I. ricinus and

D.marginatus (FDR = 0.238e-3) and between I. ricinus and H. punctata (FDR = 0.007)

(Table 1; S3 Table).

Bacteria belonging to the order Borreliales were minority (0.52% abundance of reads). Spe-

cifically, Borrelia spp. belonging to B. burgdorferi sensu lato (B. garinii) and relapsing fever

Table 1. Percentages of relative abundance of reads for genera within order Rickettsiales for each tick species (also by sex and stage when available) according to

BLAST analysis.

Tick species Rickettsiales

‘Ca. Midichloria’ ‘Ca. Neoehrlichia’ Ehrlichia Rickettsia Wolbachia
I. ricinus 85.011 3.526 ND 1.400 10.063

Female 65.916 0.001 ND 0.010 ND

Male 0.007 ND ND ND 0.002

Nymphs 19.089 3.525 ND 1.390 10.061

H. punctata 0.976 0.018 96.697 2.059 0.251

Female 0.242 ND 0.036 1.397 ND

Male 0.734 0.018 96.661 0.662 0.251

D.marginatus 0.045 ND 0.099 99.955 �

Female 0.042 ND 0.099 69.057 ND

Male 0.003 ND ND 30.897 �

R. sanguineus s.l. 1.402 0.020 0.002 98.530 0.047

Female 0.874 0.011 0.002 97.745 0.027

Male 0.528 0.009 ND 0.785 0.020

�Relative abundance of reads lower than 0.001%.

ND: not detected.

I.: Ixodes; H.: Haemaphysalis; D.: Dermacentor; R.: Rhipicephalus.

https://doi.org/10.1371/journal.pone.0213384.t001
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group (B.miyamotoi) were detected (66.79% and 33.21%, respectively). B. garinii was mainly

found in I. ricinus and it was less frequently detected in R. sanguineus, whereas B.miyamotoi
showed the highest relative abundance of reads in I. ricinus followed byH. punctata. The joint

presence of Rickettsiales and Borreliales was observed in I. ricinus as an example of potential

source of human co-infections. Thus, female I. ricinus harboured Rickettsia with ‘Ca. Neoehrli-

chia’ or with Borrelia or with both genera.

Using BLAST, Entomoplasmatales (0.53% abundance of reads) appeared in all species, with

predominance of Spiroplasma spp. (class Mollicutes) in D.marginatus (2.00%).

According to alpha-diversity measures, the mean alpha diversity was greater for I. ricinus,
followed by D.marginatus, R. sanguineus andH. punctata. Differences in alpha diversity

between I. ricinus and D.marginatus, between I. ricinus andH. punctata and between I. ricinus
and R. sanguineus were statistically significant (p<0.01) using all but Singles index. The highest

standard deviation of the mean appeared in R. sanguineus for all but Shannon, Simpson and

Singles indexes, which showed the highest standard deviation of the mean in I. ricinus
(Table 2). Group differences using Chao1 are showed in Fig 3.

Regarding beta diversity metrics (distance measure), using PCoA with Bray-Curtis or

Weighted Unifrac distance index and Analysis of Group Similarities (ANOSIM) method at

genus level, I. ricinus andH. punctata samples gathered according to their tick species. On the

contrary, microbial communities of several specimens of R. sanguineus and D.marginatus
groups clustered together, suggesting profile similarity (Fig 4).

At OTU level, the best correlation between samples and tick species was showed using

Bray-Curtis index. All samples grouped according to their tick species, except four R. sangui-
neus specimens that clustered withinH. punctata (n = 2) or I. ricinus (n = 2) (Fig 5).

With respect to the analysis of differential abundance of reads, 30 OTUs were significantly

present in a group and not in others (p<0.01): Rickettsia (2), Coxiella endosymbionts (18),

Spiroplasma (2), Ehrlichia (1), Pedobacter (1), Pseudomonadaceae (1), Sphingomonas wittichii
(1), Spirosoma (1) and 3 ‘not assigned’ OTUs (according to Greengenes) whose sequences

Table 2. Compared values (mean and standard deviation) of alpha diversity indexes for tick species.

Index values I. ricinus H. punctata R. sanguineus s.l. D. marginatus
Chao1 mean 172.860 112.686 115.990 129.805

std 18.502 26.982 32.106 31.377

Fisher mean 18.543 10.312 10.430 11.894

std 2.818 2.747 3.825 3.370

Margalef mean 13.805 8.199 8.276 9.335

std 1.776 2.021 2.752 2.419

Observed OTUs mean 163.200 99.704 101.636 114.467

std 19.579 26.159 33.894 29.688

PD whole tree mean 14.642 9.881 10.732 11.006

std 1.605 2.158 2.509 2.329

Shannon mean 3.381 0.529 0.453 1.060

std 1.653 0.498 0.426 0.582

Simpson mean 0.698 0.114 0.096 0.301

std 0.295 0.131 0.117 0.192

Singles mean 12.750 15.481 16.955 16.267

std 6.995 5.352 5.085 5.058

std: standard deviation; I.: Ixodes; H.: Haemaphysalis; R.: Rhipicephalus; s.l.: sensu lato; D.: Dermacentor.

https://doi.org/10.1371/journal.pone.0213384.t002
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showed 91% of maximum identity with Coxiella endosymbionts or with Rickettsia spp.,

according to BLAST.

Discussion

Many TBDs have been recognized for the first time in the last few years, and emerging tick-

borne pathogens are being detected [3,22–24]. Not only the clinical observation but also the

application of new diagnostic methods (based on culture and molecular biology assays) has

contributed to this progress [3]. Nevertheless, TBDs are dangerously expanding and they con-

stitute underestimated causes of human illness worldwide [5]. The implementation of NGS

platforms aimed to diagnosis is being developed, although reports about the contribution of

this technique to the clinical diagnostic of TBDs are sporadic [25]. Herein, the bacteriome of

tick species with affinity to bite humans was analysed using the 16S metagenomic approach to

investigate tick-related microorganisms and to improve the diagnosis of TBDs, particularly in

cases with unknown etiologic agents.

Fig 3. Chao1 alpha diversity index showing differences among tick species.

https://doi.org/10.1371/journal.pone.0213384.g003
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Data generated with NGS studies for tick microbiome characterization allow us to delve

into microorganism interactions [26]. As reported by Estrada-Peña and Cabezas-Cruz (2019),

recent findings about the tick microbiome are driving to a change of paradigm: ‘most bacteria
found in tick microbiome are fundamental for tick biological processes’ [27]. We agree with that

statement, although the ‘traditional’ point of view should not be forgotten. We have learned

throughout history that microorganisms first detected in ticks, and for a long time considered

non-pathogenic to humans, have been later implicated in human diseases (e.g. Rickettsia par-
keri), even though some of them do not fulfil Koch’s Postulates (e.g. ‘Ca. N mikurensis’, a not-

yet-cultivated bacterium) [3,28–31]. The finding of an infectious agent in a vector could enable

its involvement in human pathology, especially if repeatedly detected. Metagenomics can

allow the identification of microorganisms carried by arthropod vectors in people with sus-

pected TBDs, thus contributing to the etiological diagnostics. Clinicians should consider that

infection with multiple TBDs is possible, especially in tick-endemic areas. In cases of co-infec-

tion with more than one pathogen the clinical symptoms may be longer and more severe than

expected, and the diagnosis can be even more difficult [32,33]. Data analysis obtained from

NGS methods can be promising for the simultaneous detection of tick-borne pathogens in

patients suffering TBDs of unknown aetiology.

In our study, expected tick-associated bacteria (Borrelia, Rickettsia, Coxiella, Spiroplasma,
Ehrlichia, ‘Ca. Neoehrlichia’,Wolbachia and ‘Ca. Midichloria’) were found, as previously

reported by other authors [34–38]. Other bacteria genera, associated to soil, water, plants,

Fig 4. Principal Component Analysis (PCoA) generated among groups at genus level using Weighted UniFrac metric (a measure of differences in

bacterial community structure).

https://doi.org/10.1371/journal.pone.0213384.g004
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vertebrates or arthropods, and never reported to be related with TBDs were also identified

herein: Acinetobacter, Agrobacterium, Arthrobacter, Bosea, Bradyrhizobium, Brevundimonas,
Burkholderia, Chryseobacterium, Comamonas, Devosia, Erwinia, Flavobacterium,Hymenobac-
ter, Janthinobacterium, Kineococcus, Luteibacter, Luteolibacter,Methylibium,Methylobacter-
ium,Methylopila,Mycobacterium,Mycoplana, Novosphingobium, Ochrobactrum, Paracoccus,
Patulibacter, Pedobacter, Phyllobacterium, Pseudomonas, Rathayibacter, Rhizobium, Rhodobac-
ter, Rhodococcus, Rhodoferax, Rubellimicrobium, Saccharothrix, Salinibacterium, Sphingomo-
nas, Spirosoma, Stenotrophomonas, Streptomyces, Terriglobus andWilliamsia. Our findings

suggest that these bacteria may be acquired from the environment. A recent study also

recorded 15 of these genera associated to I. ricinus ticks collected from the field in France:

Arthrobacter, Bosea, Burkholderia, Devosia, Kineococcus, Luteibacter, Luteolibacter,Mycobacte-
rium, Patulibacter, Pedobacter, Phyllobacterium, Spirosoma, Stenotrophomonas, Terriglobus
andWilliamsia [39]. In addition, non-characterized bacteria whose pathogenicity remains

unelucidated were detected based on the V3-V4 region of the 16S rRNA. More than 46% of

‘not assigned’ OTUs were found in I. ricinus, according to Greengenes. This database has been

the preferred one for taxonomic classification due to its discrimination power at species level

[40], but the gap for recently discovered bacteria is a weak point. When these OTU sequences

were analysed with BLAST (GenBank database), they showed correspondence with ‘Ca. M.

mitochondrii’, an endosymbiont belonging to the order Rickettsiales [41]. In addition, within

the family Coxiellaceae (Greengenes), Coxiella endosymbionts were identified through Gen-

Bank sequence analysis, showing again the limitation of Greengenes as a referral database for

the study of tick-associated bacteria. The same occurred with Spiroplasma spp. (order Entomo-

plasmatales), symbionts associated with ticks and other arthropods, and whose potential path-

ogenicity is discussed [42–44].

Bacteria corresponding to genusWolbachia were also detected in our samples.Wolbachia
spp. are obligate intracellular endosymbionts of arthropods and nematodes. There is evidence

about the capacity of these bacteria to affect biology, physiology, immunity, ecology and evolu-

tion and reproduction of the hosts, and to influence other infectious diseases due to viruses,

protozoa and filariae [42]. The co-occurrence of these microorganisms considered endosymbi-

onts can constitute a valuable research field of future studies because the viability of ticks, or

even of the pathogens that ticks are able to transmit, may depend on these endosymbionts.

According to our data, other examples of OTUs that could be better identified using

BLAST were those that matched with Anaplasma, Borreliaceae and Entomoplasmatales. How-

ever, the identification was not possible for other ‘not assigned’ OTUs that showed 91% iden-

tity (the highest) with known sequences of Rickettsia spp. or Coxiella endosymbionts. These

findings can be useful for a future targeted search of unknown bacteria associated with ticks,

and their potential implications for human health.

According to our results, the composition of the microbiota of ticks was affected by sex and

geography, as previously reported [45]. For instance, on the one hand,H. punctatamales from

our study showed higher relative abundance of reads for Rickettsiales than females of the spe-

cies or other tick species. This pattern could be explained by different host preferences between

males and females and/or influence of host hormones and/or higher adaptive capacity of the

microorganism to the tick and/or relationships between tick microorganisms, among other

factors. Nevertheless, our data refer to the abundance of reads but not to prevalence, and a bias

may have occurred since females generally have much more of the endosymbiont than males.

On the other hand, D.marginatus and R. sanguineus showed overlapping PCoA plots, maybe

Fig 5. Cluster dendrogram generated among samples at OTU level using Bray Curtis distance index.

https://doi.org/10.1371/journal.pone.0213384.g005

Bacteriome in ticks and tick-borne diseases diagnosis

PLOS ONE | https://doi.org/10.1371/journal.pone.0213384 March 19, 2019 11 / 16

https://doi.org/10.1371/journal.pone.0213384.g005
https://doi.org/10.1371/journal.pone.0213384


because specimens of both species were collected from the same site (Villalba de Rioja). There

is preliminary evidence that ticks that are geographically close share microbes [45].

Of particular interest is our observation of the highest I. ricinus alpha diversity over the

other tick species analyzed herein. The generalist behavior in host choice of I. ricinus could

have played a major role in the great variability of this tick-associated microbiota. Nearly all

the life cycle of this tick species is spent in the surface layers of soil or forest litter where envi-

ronmental conditions influence its development. I. ricinus is the primary vector of a wide vari-

ety of pathogens with considerable impact on human and animal health [46]. Contrary to

experiments that have demonstrated higher mortality rates of R. sanguineus infected with Rick-
ettsia conorii than non-infected when exposed at low or high temperature [47], I. ricinus is a

tick with potential to adapt to new climates as they change [48].

Unfortunately, the comparison of data between studies that evaluate tick microbiomes is

complex since every research team is focused on different research interests. Variations in

techniques, target regions of the 16S rRNA gene, reference taxonomic databases or source of

tick samples may hinder comparisons. As an example, relevant information about the ecology

of tick-associated microorganisms in ticks and in voles from a French area has been recently

published [39]. However, our reads from Coxiella endosymbionts could not be accurately

compared to those obtained by Estrada-Peña et al. (2018) due to differences in length of reads

(V3-V4 vs. V4 region). A review of NGS strategies for the study of the microbiome of ticks

shows an updated view of the current scene [49]. As the authors conclude, further studies

aimed to assess the influences of the environments, the hosts or the ticks themselves on the

diversity of the tick microbiomes are required. According to the authors, bacteriome tick find-

ings must be completed with new ones focused on viruses and eukarya in ticks [49]. Herein, a

picture of bacteriome of ticks in a certain environment is showed, although ticks also harbour

viruses, protozoa, fungi, helminths, etc. [50] and plenty of questions remain unresolved. The

technique has difficulties and possible bias due to: storage of samples, DNA extraction method,

reagents contamination, amplified 16S rRNA regions, updating and maintenance of curated

sequences by reference databases or multiple repeated partial sequences of GenBank database,

among others. However, the metagenomic approach seems useful to discover the spectrum of

bacteria carried by ticks. More studies are needed to identify and differentiate bacterial species,

and to improve the knowledge of TBDs in Spain.
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