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Abstract
Background and Aims: Canopy assessment of the fruiting zone can lead to more informed vineyard management deci-
sions. A non-destructive, image-based system capable of operating on-the-go was developed to assess canopy porosity, and
leaf and bunch exposure of red grape cultivars in the vineyard.
Methods and Results: On-the-go (7 km/h) night time images of a vertically shoot positioned commercial vineyard canopy
were acquired with an automated red green blue imaging system, coupled to a GPS and controlled artificial lighting. The ref-
erence method was point quadrat analysis. Sound correlations between the image analysis and point quadrat analysis results
for the proportion of gaps (R2 > 0.85; P < 0.001) and leaf to canopy area ratio (R2 > 0.57; P < 0.001) were obtained for both
sides of the canopy. For the bunch to canopy area ratio the best relationship was found on the western side of the canopy
(R2 = 0.79; P < 0.001). Also maps of the three canopy variables were built in a commercial vineyard to compare their spatial
variability on the east and west sides across the whole vineyard plot.
Conclusions: The developed imaging system, capable of operating on-the-go, can yield quantitative, objective and reliable
knowledge of what a grapegrower would assess by subjective, qualitative visual inspection of the grapevine canopy. The
information can be used to help make better informed decisions about leaf removal, and if mapped may help to delineate
zones amenable to homogeneous management.
Significance of the Study: The new developed computer vision system can be mounted on any vehicle, such as a tractor,
all terrain vehicle and robot, for a rapid and objective monitoring of the vineyard canopy around the fruiting zone in red cul-
tivars and vertically shoot positioned trained vines. Moreover, the maps generated could be used by a new generation of
variable rate viticultural machinery to spatially optimise vineyard cultural practices.
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Introduction
In viticulture, canopy features, such as leaf area, canopy
porosity and fruit exposure, are key factors that can be
manipulated through canopy management to manage yield
and fruit composition (Smart 1992). Canopy management
practices leading to improved leaf and bunch exposure have
been shown to result in better yield and wine quality
(Smart and Robinson 1991, Main and Morris 2004, Kliewer
and Dokoozlian 2005). The amount of exposed leaf area in
the canopy is an important factor, as each layer of leaves
captures around 94% of the incident photosynthetically
active radiation (Smart 1987, Smart and Robinson 1991).
Canopy gaps are beneficial to fruit as airflow reduces the
chance of crop losses due to fungal disease (Austin et al.
2011). Therefore, in terms of ideal grapevine canopy poros-
ity, values range from 10 to 20% according to Palliotti and
Silvestroni (2004) or between 20 and 40% gaps, as
suggested by Smart (1987) in his scorecard for assessing
potential winegrape quality, to ensure optimum sunlight
interception. Bunch exposure needs to be balanced. On one
hand, sun exposure favours synthesis of aroma/flavour
compounds (Reynolds and Wardle 1989, Diago et al. 2010)
as well as other secondary metabolites, such as flavonols
and anthocyanin pigments in fruit (Tardaguila et al. 2012,
Diago et al. 2012a). Excessive fruit exposure, however,

mainly in warm growing regions, can also lead to sunburnt
berries and a loss of grape anthocyanins, hence berry colour
(Kliewer 1977, Mori et al. 2007). In order to improve can-
opy management, by focusing on ensuring a proper distri-
bution of leaves and gaps around bunches (Smart 1992), a
method is needed to quantify the main canopy characteris-
tics in the fruiting zone that is objective, rapid and
automated.

New and non-invasive sensing technologies can be
applied to assess vineyard canopy. Computer vision is a
non-invasive technology, which involves the automated
acquisition, analysis and understanding of useful informa-
tion from a single image or a sequence of images. In viticul-
ture, the use of computer vision outdoors from still
photography with visible [red green blue (RGB)] cameras
has been used to characterise different features of the vine-
yard (Tardaguila et al. 2010, Hill et al. 2011) and to estimate
yield components (Dunn and Martin 2004, Nuske et al.
2014, Liu et al. 2017). Recent work has advanced our ability
to assess canopy features from RGB imaging in grapevines
(Diago et al. 2012b, 2016) and in other crops (Chopin et al.
2016, 2018) by adopting colour corrections and hybrid
approaches of the classification algorithms. With the excep-
tion of the work of Nuske et al. (2014) and Liu et al. (2017),
studies have involved static, point-to-point, manual image
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acquisition, which from a practical standpoint, is a con-
straint when a large number of grapevines need to be
assessed. Thus, there are still some practical limitations to
the adoption of RGB imaging as a commercial monitoring
method, such as the manual and static mode of image
acquisition or the use of a colour background.

The necessary steps towards automation and on-the-go
canopy assessment using computer vision were outlined by
Gatti et al. (2016), who installed a system equipped with
matrix-based optical RGB sensors on a conventional tractor
to assess, on a stop and go mode, the leaf layer number and
fractions of canopy gaps and interior leaves during day time.
Other authors have used RGB imagery acquired at night
time from an autonomous moving platform, at low speed
(0.3 km/h) to reconstruct a textured three-dimensional
(3D) point cloud to quantify yield components (Rose et al.
2016). While the merit of these initiatives is valuable, the
implementation of precision viticulture and variable rate
machinery demands a non-invasive system capable of
assessing the main canopy features on-the-go, at a speed
that is commercially acceptable (3–7 km/h) (Martin-
Clouaire et al. 2016).

Fully on-the-go approaches at a speed close to commer-
cial values have been achieved by several authors using dif-
ferent sensing technologies, such as laser scanning (Llorens
et al. 2010, Gil et al. 2013) and ultrasound (Palleja and
Landers 2017) to determine canopy density in grapevines
and in olive trees or to estimate the pruning mass in vine-
yards (Tagarakis et al. 2013). Having reliable information,
however, on several canopy elements (gaps, leaves and
bunches) around the fruiting zone simultaneously would be
of value. Therefore, the goal of this study was to develop a
new, objective, non-invasive imaging system to assess the
key bunch zone parameters of grapevine canopies, viz.
exposed fruit and leaf area and the proportion of gaps using
images acquired on-the-go and at commercial speed.

Materials and methods

Vineyard site and experimental layout
The trials were conducted in season 2015 in a commercial
Tempranillo (clone ISV-F-V6 planted on rootstock SO4)

vineyard located in �Abalos (latitude 42�34044.100N; longitude
2�42024.000W; La Rioja, Spain), denoted as vineyard site #1.
The vines were planted in north–south orientation in 2006,
dry-grown, spur-pruned on a bilateral cordon to retain eight
spurs and two buds per spur and trained onto a vertical
shoot positioned (VSP) trellis system with 2.5 m row spacing
and 0.8 m vine spacing. All plants were defoliated on the
east side after berry set (E-L stage 32) (Coombe 1995) as
this is a common practice in the Rioja Wine Appellation to
promote better airflow and bunch exposure.

For data acquisition, 50 consecutive canopy vineyard
segments comprising three adjacent vines each (150 vines in
total) were labelled. For each segment, the three canopy
parameters, canopy porosity or gaps to canopy area ratio
(%), exposed leaves to canopy area ratio (%) and exposed
bunches to canopy area ratio (%), were estimated using
image analysis (details described below) and benchmarked
against reference point quadrat analysis (PQA) measure-
ments (Smart and Robinson 1991).

Once the image-analysis methodology was developed, it
was used to assess the spatial variability of the canopy fea-
tures of another commercial vineyard plot, denoted as vine-
yard site #2. Vineyard site #2 was located in Logroño

(latitude 42�28032.300N; longitude 2�28058.800W, 630 masl;
La Rioja, Spain). Site #2 was a plot of 4.0 ha of Tempranillo,
spur-pruned on a bilateral cordon to retain eight spurs and
two buds per spur and trained onto a VSP trellis system with
2.5 m row spacing and 0.8 m vine spacing. Vines were
planted in year 2006, with rows oriented north–south. All
plants were defoliated on its east side at bunch closure (E-L
stage 32) (Coombe 1995).

In-field measurements
Image acquisition. The images of the vineyard canopy were
acquired and processed in real time using a human-driven
multi-sensor platform (Televitis mobile laboratory) devel-
oped at the University of La Rioja, Logroño, Spain. This
mobile sensing platform incorporated the following ele-
ments (Figure 1):

• All-terrain vehicle (ATV): a Trail Boss 330 (Polaris Indus-
tries, Medina, MN, USA) was used (Figure 1a).

• RGB camera: a Sony α7II RGB camera (Sony, Tokyo,
Japan) equipped with a Zeiss 24/70 mm lens (Zeiss,
Oberkochen, Germany) with optical stabilisation was
selected for the purposes of this study. This is a mirrorless
camera mounting a full-frame complementary metal
oxide semiconductor sensor (35 mm, and 24.3 megapixel
resolution), which provides high light sensitivity and low
noise generation. Furthermore, the camera also incorpo-
rates a five-axis sensor stabilisation system and offers
high shutter speed and quick image storage (Figure 1b).

• Artificial illumination system: a white-light emitting diode
panel was incorporated into the platform (Figure 1c) to
enable the vines to be imaged during the night.

• Sensor supporting structure: a modular and adaptable struc-
ture was designed and built with commercial aluminium
profiles. The structure consisted of two fixed trays, one
upfront and one on the rear part, and an adjustable arm
to be installed in the front tray (Figure 1a). The arm was
used to mount the RGB camera and illumination system
and to make the combination adjustable to variable vine-
yard height (Figure 1b).

• GPS receiver: a Leica Zeno 10 Global Positioning System
(Heerbrug, St Gallen, Switzerland) was used to
georeference the images (Figure 1d) with real-time kine-
matic correction, working at <30 cm precision.

• Inductive sensor for camera triggering: an inductive sensor
was installed in the rear axle. This sensor produced three
activation pulses per wheel-spin for triggering the camera
(Figure 1e).

• Custom-built electronic control system: an electronic control
system based on the Arduino MEGA development board
(Arduino, Ivrea, Italy) was built to integrate hardware
and to trigger the camera using a galvanically isolated sig-
nal (Figure 1d). The system also allows for data storage
(GPS position to image association) in an secure digital
card and for showing capture-status information in a
12.45 cm thin film transistor screen.

The mobile sensing platform allowed the capture, and
storage on-the-go, of three images per wheel-spin at around
7 km/h, producing high-quality images despite the vibra-
tions caused by the ATV engine and the irregular ground
surface. Images were acquired at night time using the artifi-
cial illumination system from the multi-sensor moving plat-
form (Figure 2a). Under natural sunlight conditions, the
whole scene was equally illuminated, producing images in
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which the vines under study were hardly distinguishable
from those in opposite rows. In the present work, the isola-
tion (in the image) of the vines under evaluation from those
in the opposite row was successfully achieved by means of
illumination and camera parameterisation (Figure 2b). The
arm was adjusted for the camera to be at around 1.5 m
away from the canopy. The camera was set in manual
mode, configuring the aperture in f/4, shutter speed in
1/2500 s, ISO sensitivity in 5000 and focus in manual mode.

Point quadrat analysis reference measurements. Point quad-
rat analysis was undertaken on the same day as the photo-
graphs were acquired, after Smart and Robinson (1991) on the
first 50 cm above the cordon (fruiting zone). A 5 mm diameter
stainless steel probe was used for PQA insertions. For each seg-
ment of three adjacent vines, 50 insertions through the canopy
at approximately 15 cm horizontal intervals at a height of
10, 30 and 50 cm above the cane were made. For each inser-
tion, the sequential contacts with the vineyard canopy ele-
ments from one side of the canopy to the other were recorded
using L (leaf) or B (bunch). In the case of no contact with vine
elements during the insertion, G (gap) was registered.

Two different approaches were used to compute the pro-
portion of external or exposed leaves and exposed bunches
from the PQA insertions. The first approach aimed to mimic
the two-dimensional image analysis. In this case, the pro-
portion (%) of exposed leaves or bunches was computed
separately for each canopy side (east and west) as the ratio
between the number of first L or B contacts, divided by the
total number of insertions, multiplied by 100. Two indices,
respectively, were calculated for the east and west sides, of
the proportion of exposed leavesside (%) using Equation 1.

Proportion of exposed leavesside %ð Þ

=
#L only first contactsð Þ

# Insertions
×100 ð1Þ

Similarly, two indices, proportion of exposed buncheseast
(%) and proportion of exposed buncheswest (%) were calcu-
lated with Equation 2.

Amount of exposed bunchesside %ð Þ

=
#B only first contactsð Þ

# Insertions
×100 ð2Þ

The second approach intended to estimate the propor-
tion of exposed leaves or bunches of the whole vine seg-
ment, and for this reason both sides of the canopy were
assessed. For this second approach the proportion of
exposed leaves or bunches was calculated as the ratio of all
external (first or last contacts) L or B, divided by the total
number of insertions multiplied by 2, respectively, then
multiplied by 100 (Equations 3, 4).

Proportion of exposed leavesvine %ð Þ

=
#L first or last contactsð Þ

# Insertions×2
×100 ð3Þ

Proportion of exposed bunchesvine %ð Þ

=
#B first or last contactsð Þ

# Insertions×2
× 100 ð4Þ

The canopy porosity or proportion of gaps in the fruiting
zone was calculated as the total number of gaps G divided

Figure 1. Illustration of the multi-sensor mobile platform developed for the
on-the-go image acquisition in the vineyard: (a) general view of the multi-
sensor mobile platform; (b) red green blue (RGB) camera installed in the
platform by means of an ad hoc designed structure; (c) light emitting diode
illumination panel; (d) detail of the custom-built electronic control system
and GPS receiver; and (e) inductive sensor installed in the rear axle for
automatically triggering the camera.
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by the number of insertions, multiplied by 100, as described
in Equation 5.

Canopy porosity %ð Þ= #G

# Insertions
×100 ð5Þ

Image processing and analysis
Image processing. Three images per wheel-spin were
acquired on-the-go with the multi-sensor moving platform.
This frequency, along with the circumference of the wheel in
the sensor-equipped ATV and the distance of the camera to
the canopy, ensured that vines of interest were always
imaged. This also produced redundant information in images,
however, since two consecutive images always contained a
repeated vine section (Figure 3a–c). To avoid the analysis of
redundant data, images were matched using the Auto Blend
tool provided by Adobe Photoshop CC 2015 (Adobe Systems,
San Jose, CA, USA) to this effect. Thus, mosaic images were
created, which were then analysed piecewise (hereafter,
these pieces will be generically called images for simplifica-
tion) using a pixel-classification approach (Figure 3d).

The pixel classifier was an improved version of the one
based on the Mahalanobis distance (Mahalanobis 1936)
presented by Diago et al. (2012b). The classifier was trained
using supervised learning. For that, first, the following five
sets covering the expected objects in the images were
defined: ‘bunch’, ‘trunk’, ‘shoot’, ‘leaf’, ‘gap’ and ‘trellis’.
Then, the classifier was trained by manually selecting
500 pixel samples per set (3000 training instances in total),
carefully covering as much variability as possible for every
set. Mathematically, a pixel pi was defined by the following
six-dimensional vector:

pi = Ri,Gi,Bi,Hi,Si,V ið Þ

Ri, Gi and Bi correspond to the pixel’s red, green and blue
values according to the RGB colour space, respectively. Fur-
thermore, Hi, Si and Vi stand for the pixel’s hue, saturation and
value in the hue saturation value (HSV) colour space, obtained
by means of space conversion (Agoston 2005). These last three
values from the HSV colour space were not included in the
original version of the classification algorithm (Diago et al.
2012b), so they were incorporated in this study. In addition to
this mathematical ‘double-colour space’ approach, two addi-
tional classifiers including information from only one of them
were also implemented for comparison purposes. Thus, the
pixel vectors for the RGB classifier were defined as

p0i = Ri,Gi,Bið Þ

and

p0 0i = Hi,Si,V ið Þ

for the HSV version. The performance of all three classifiers
was tested and compared.

For the three classifiers individually, once they were
trained, images were analysed to obtain classification out-
comes. This is, for a given image under analysis, every pixel
was classified as ‘bunch’, ‘trunk’, ‘shoot’, ‘leaf’, ‘gap’ or ‘trel-
lis” (posts + wires). Figure 4a shows an example image and
Figure 4b the resulting image produced by the classification
algorithm implementing the ‘double-colour space’ approach.
The last step consisted on improving the classification
yielded by the algorithm by correcting misclassified pixels,
as described below.

Figure 2. (a) On-the-go image acquisition
with the multi-sensor mobile platform; and
(b) image acquired with artificial illumination
in which, due to appropriate illumination and
camera parametrisation, the vines under
evaluation are discernible from the darkened
background.

Figure 3. Image pre-processing illustration:
(a), (b) and (c) show images automatically
acquired during a wheel-spin with the multi-
sensor mobile platform. To identify
overlapping areas between the images, note
that the red and white tape in them was
exactly the same; (d) resulting images after
matching images (a), (b) and (c).
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For the classified image shown in Figure 4b, the majority
of misclassifications referred to the ‘bunch’ class. On the one
hand, there were many isolated ‘bunch’ pixels within can-
opy gaps. This was caused by the fact that in parts of the
bunches with shadows, the dark-red colour of grapes was
much darker (almost black) in the images. In contrast, some
portions of bunches were filled with ‘leaf’ pixels. This was
due to the epicuticular wax of berries tending to yield
greenish tones. These two general classification mistakes
were corrected by post-processing classified images using
mathematical morphology, specifically the erosion and dila-
tion operations (Soille 2004). In the classified images
(Figure 4b), isolated ‘bunch’ pixels were removed as a first
step by applying a morphological erosion (Soille 2004) on
this set using a small disc as structuring element (SE). With
this operation, all ‘bunch’ particles smaller than the SE were
removed. Additionally, all remaining ‘bunch’ objects in the
eroded images were diminished according to the size of the
SE. To recover the original size and shape of these objects, a
morphological reconstruction (Soille 2004) by dilation on
the ‘bunch’ set of classified images was performed.

The last step involved the filling of the gaps or holes
within bunches employing the morphological fill-hole oper-
ator (Soille 2004). The results of the application of the
image processing described here are presented in Figure 4c.

Image derived canopy parameters. For the computation of
the canopy parameters a double approach to delimitate the
region of interest (ROI) was followed. In vineyard site #1 in
order to guarantee that image-analysis outcomes were com-
pared to PQA reference measurements rigorously over the
same canopy area, images were manually cropped to match
the fruiting zone, that is, the first 50 cm above the vine cor-
dons. Likewise, all classified images were manually cut to
match the ROI comprising the first 50 cm above the vine

cordons (fruiting zone) defined during PQA measurements.
In vineyard site #2, an automated procedure was developed
for setting a ROI in every image. It consisted on, given a seg-
mented image, finding an upper and a lower cut point to
delimit a ROI corresponding to the fruiting zone. These cut
points are the central points on the vertical axis of two rect-
angular regions of a fixed size which have a proportion of
pixels not assigned to ‘leaf’ class (for the upper cut) and not
assigned to ‘leaf’ or ‘bunch’ class (for the lower cut) below a
certain threshold. The regions are determined by searching
iteratively across the image on the vertical axis. Once the
ROIs were delimited in both vineyard sites, the following
indices obtained by image analysis were computed:

• Fruiting zone canopy porosity or gaps to canopy area ratio (%):
it was calculated as the number of ‘gap’ pixels divided by
the total number of pixels in the ROI, multiplied by
100 (Equation 6).

Canopy porosity to canopy area ratiovine %ð Þ

=
#Gappixelsð Þ
#ROIpixelsð Þ ×100 ð6Þ

• Bunches to canopy area ratio (%): it was calculated sepa-
rately for each canopy side (east and west) as the number
of ‘bunch’ pixels divided by the total number of pixels in
the ROI, multiplied by 100. For the computation of the
proportion of exposed bunches (%) of the whole vine
segment, Equation 7 was used:

Bunches to canopyarea ratiovine %ð Þ

=
#Bunch pixelseast + #Bunch pixelswestð Þ

#ROIpixelseast + #ROIpixelswestð Þ ×100 ð7Þ

Figure 4. Result of the image processing and
analysis: (a) close-up of a vine image; (b) result
of the analysis of image (a) in which pixels are
represented in the colour associated to their
assigned class; and (c) result of post-processing
image (b) in which holes within bunches are filled
and isolated bunch pixels are removed.
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• Exposed leaves to canopy area ratio (%): it was calculated
separately for each canopy side (east and west) as the
number of ‘leaf’ pixels divided by the total number of
pixels in the ROI image, multiplied by 100. For the
computation of the proportion of exposed leaves (%)
of the whole vine segment (similar to total exposed
leaf area per vine segment without taking into account
the zenithal top part of foliage), Equation 8 was used:

Exposed leaves to canopyarea ratiovine %ð Þ

=
#Leaf pixelseast + #Leaf pixelswestð Þ
#ROIpixelseast + #ROIpixelswestð Þ ×100 ð8Þ

Mahalanobis-based classifier evaluation. The defined classifi-
cation cases (Kohavi and Provost 1998) were computed
from classifier’s predictions on each test set of a tenfold
stratified cross validation performed on the 3000 pixel train-
ing instances to compare the predictive capability of the
RGB–HSV colour combined model against that of the RGB
and HSV separate models. For each class, a binary case was
considered (e.g. bunch class against not-bunch classes) and
four main values were obtained:

• True positives (TP): number of pixels belonging to the class
under evaluation, correctly classified as instance from
that class;

• False positives (FP): number of pixels not belonging to the
class under evaluation, incorrectly classified as instance of
that class;

• True negatives (TN): number of pixels not belonging to the
class under evaluation, correctly classified as instance
from any other class; and

• False negatives (FN): number of pixels belonging to the
class under evaluation, incorrectly classified as instance
from any other class.

The sensitivity (Equation 9), specificity (Equation 10)
and precision (Equation 11) classification performance
metrics were calculated from these values for the three
models:

Sensitivity =
TP

TP+ FN
ð9Þ

Specificity =
TN

TN+FP
ð10Þ

Precision=
TP

TP+FP
ð11Þ

In addition, the F1 score and the Matthews correlation
coefficient (MCC) were also computed (Equation 12).
The F1 score is defined as the harmonic mean of Preci-
sion and Sensitivity (also known as Recall) (Chinchor
1992) (Equation 12):

F1 = 2×
Precision×Sensitivity

Precision+ Sensitivity
ð12Þ

The F1 score reflects the accuracy of the classification, as it
combines the Sensitivity and Precision indicators.

The MCC is a performance metric which provides infor-
mation on the accuracy of the quality of a binary (two-class)
classification (Matthews 1975) and it is considered to

perform better than Sensitivity and Specificity in binary clas-
sifications (Powers 2011) (Equation 13).

MCC=
TP× TN−FP×FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP+ FNð Þ× TP+ FPð Þ× TN+FPð Þ× TN+FNð Þp ð13Þ

Statistical analysis
Linear regression analysis was performed for each canopy
parameter of interest on data obtained from image analysis
and the PQA method, and the determination coefficients
(R2) were computed. All calculations and plots were carried
out using Sigma Plot 12.0 (Systat Software, San Jose,
CA, USA).

Mapping
The developed computer vision system was applied in vine-
yard site #2 for mapping canopy porosity, leaf and bunch
exposure. Every other row was monitored, half of them on
the west side and the other half on the east side of the can-
opy with the same multi-sensor mobile platform at
7 km/h. All the image acquisition parameters and set up
were the same as described earlier in this study. Images
acquired on-the-go were analysed using the developed clas-
sification algorithm which yielded the best performance
indicators. From this analysis, a set of georeferenced mea-
surements of the three parameters was obtained. This set
was mapped using ordinary kriging with ArcGIS 10.4 (ESRI,
Redlands, CA, USA), and three statistical clusters for each
canopy feature were defined and represented using the
Jenks natural breaks optimisation method (Jenks 1967).

Results

Comparison of the classifiers’ performance
The processing of images to identify the bunches, leaves,
shoots and trellis was done on a pixel-by-pixel basis,
resulting in a dense map where each pixel in the image was
assigned to a class. This approach required post-processing
to remove outlier pixels that did not match the class of their
surrounding pixels. The solution proposed, however, was
selected to obtain an optimum balance between computa-
tional cost (methodological complexity) and accuracy. Cer-
tainly, more complex and heavier solutions based on the
design and calculation of texture descriptors along with
more complex classifiers, such as support vector machine or
neural networks (Herrera et al. 2016), could be explored
with satisfying results as well. Nevertheless, for the sake of
real-time high-resolution image processing, the presented
methodology, based on a compact classifier followed by
some steps of mathematical morphology for post-processing
was chosen, thus obtaining a simpler but accurate alterna-
tive for semantic classification of pixels.

While the three classification approaches (RGB, HSV
and RGB + HSV) yielded similar results for the three main
classes under consideration (gap, leaf and bunch) in terms
of sensitivity and specificity, the ‘double-colour space’
approach (RGB + HSV) and the individual HSV classifica-
tion model proved to be slightly superior to the RGB model
according to the F1 score and the MCC values (Table 1).
Even less differences existed between RGB + HSV and
HSV, but the ‘double-colour space’ classifier performed
equally well or better than the HSV classifier for the bunch
class for the four performance indicators evaluated
(Table 1). For this reason, all subsequent image-analysis
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results and comparison against the PQA measurements
were obtained from image classification processes using the
‘double-colour space’ classifier. These results agree with
other studies, in which the simultaneous use of informa-
tion from different colour spaces to create a hybrid colour
space (Vandenbroucke et al. 1998, Maktabdar Oghaz et al.
2015) or, as in this work, the combined use of two-colour
spaces has proved to yield satisfactory results in human
skin detection and classification (Subban and Mis-
hra 2013).

Assessment of grapevine canopy features
A wide range of canopy porosity (expressed as proportion of
gaps in the fruiting zone) which spanned from approxi-
mately 10–50% (Figure 5) was sampled in the vineyard and
used for the calibration between the image-derived canopy
variables and those measured by PQA (vineyard site #1).
For this, strong correlations, with R2 above 0.85 (P < 0.001),
were obtained for both sides of the canopy (Figure 5a,b)
and the two-side average (Figure 5c). Similarly, the correla-
tion between the proportion of gaps determined by image
analysis from the east and west sides of the canopy
(y = 1.031x −2.832) yielded a R2 = 0.95 (P < 0.001), being
the value of the slope significantly equal to 1 (P = 0.445)
(Figure 6).

The best correlation for the comparison between the
amount of exposed bunches as determined by PQA and the
bunch to canopy area ratio (%) from image analysis
(Figure 7), was achieved on the west side, with R2 = 0.61
(P < 0.001) (Figure 7b). Relationships corresponding to the
east side of the canopy (R2 = 0.32; P < 0.001) (Figure 7b)

and to a whole vine basis (R2 = 0.37; P < 0.001) (Figure 7c)
showed lower R2 values.

The correlations between the image analysis and PQA
data (Figure 8a–c) for the leaf class yielded R2 values close
to or above 0.60 in all cases (P < 0.001), while the strongest
relationship was also obtained from data acquired on the
west side (R2 = 0.79, P < 0.001) (Figure 8a).

While for the canopy porosity (Figure 5) and the canopy
leaf information (Figure 8), the range of the scale of the two
correlated variables was comparable, for the bunch class,
the range for the PQA measurements (from 0 to 50%) and
for the image analysis (between 0 and 15%) were substan-
tially different.

Mapping
Maps of the spatial variability of the three main elements of
the canopy, gaps, leaves and bunches, for the commercial
vineyard (site #2) assessed by on-the-go imaging are pres-
ented in Figure 9. Since the canopy porosity of the fruiting
zone assessed from east and west sides was found to be the
same (Figure 6), a unique map involving the rows imaged
on the two sides was built (Figure 9a). As observed in
Figure 9a, most of the vineyard (76.2% of the surface)
exhibited a canopy porosity ranging from ~40 to 50% gaps.
In terms of the bunch to canopy area ratio (%) (Figure 9b,c)
and leaves (Figure 9d,e), the differences between east and
west maps were mostly quantitative, as similar variability
patterns were found between the two sides. In the case of
the exposed leaves, slightly lower values (from ~26 to 50%)
were observed in the map corresponding to the east side
(defoliated) (Figure 9d), as compared to that of the west side
(Figure 9e). In both sides, the lowest values were found at
the north-west edge of the plot, while an area with larger
values of leaf to canopy area ratio (%) was identified in the
south-east and the centre of the east boundary of the vine-
yard. The pattern of bunch exposure revealed increased
values on the west boundary of the vineyard, which tended
to lessen towards the east direction of the plot, although the
values of the bunch to canopy area ratio were low and simi-
lar across the whole plot.

Discussion
The results obtained in the present work demonstrate the
capability of the developed RGB image-based system, oper-
ated on-the-go at commercial speed, to successfully deter-
mine the canopy porosity in the fruiting zone and to
provide useful information about the leaf and bunch to can-
opy area ratios at the fruiting zone on red cultivars trained
to a VSP trellis. The on-the-go imaging system can provide a
quantitative, objective and reliable measure of what a
grapegrower would assess by subjective, qualitative visual
inspection of the grapevine canopy. Among the different
methods for canopy assessment, Smart (1992) reported the
PQA, sunfleck measurement or visual scoring using a
scoresheet (Smart and Robinson 1991). Although the first
two methods provide quantifiable data, they are time and
labour consuming. Therefore, canopy assessment is mostly
based on purely visual inspection. These visually gathered
inputs are often used by the viticulturist to assist with mak-
ing canopy management decisions about defoliation. In
addition to single-wire VSP grapevines, the developed
image-based methodology could be applied to other vertical
trellis systems, such as Scott Henry or Smart-Dyson.

Using the developed image-analysis system, the informa-
tion about the main elements of the canopy at the fruiting

Table 1. Sensitivity results, specificity, F1 score and Matthews correlation
coefficient of the pixel classification methodology in several canopy classes
on the training set using a tenfold stratified cross validation for the individ-
ual use of red green blue (RGB), hue saturation value (HSV) and jointly both
RGB and HSV colour spaces.

Vineyard canopy class RGB + HSV† RGB HSV

Sensitivity
Trellis 0.862 0.846 0.842
Gap 0.960 0.918 0.970
Leaf 0.934 0.954 0.940
Shoot 0.858 0.900 0.818
Trunk 0.856 0.856 0.880
Bunch 0.938 0.874 0.938

Specificity
Trellis 0.982 0.984 0.982
Gap 0.995 0.997 0.993
Leaf 0.991 0.985 0.992
Shoot 0.980 0.976 0.987
Trunk 0.953 0.940 0.951
Bunch 0.981 0.986 0.972

F1 Score
Trellis 0.883 0.879 0.871
Gap 0.967 0.950 0.967
Leaf 0.943 0.944 0.950
Shoot 0.876 0.890 0.869
Trunk 0.818 0.794 0.829
Bunch 0.924 0.900 0.904

Matthews correlation coefficient
Trellis 0.861 0.856 0.847
Gap 0.960 0.942 0.961
Leaf 0.932 0.932 0.941
Shoot 0.851 0.868 0.847
Trunk 0.781 0.752 0.794
Bunch 0.909 0.881 0.884

†Colour space.
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zone can be obtained separately from the two sides of the can-
opy or integrated in a single value. This constitutes different,
but complementary, information to that gathered by aerial
remote sensing solutions. Remote sensing from different air-
borne platforms (remotely piloted aircraft or manned aircraft)
is commercially available in most viticultural regions world-
wide. In commercial remote sensing operations, spectral infor-
mation (as well as thermal information) about canopy

vegetation (mostly from above the vines) is provided, usually
expressed as spectral indices, such as the normalised difference
vegetation index (NDVI) or plant cell density (PCD),
depending on the band configuration of the multi-spectral or
hyperspectral camera. These spectral data provide information
about vine vigour, biomass and overall greenness of the can-
opy, but do not specifically provide information about leaf,
gap and bunch distribution and configuration in the fruiting
zone. Such viticultural parameters have an impact on bunch
microclimate, air circulation and bunch exposure, which in
turn affect disease risk and fruit ripening and fruit composi-
tion, and botrytis incidence as described by Smart (1992). The
spectral information obtained from remote sensing can be
used to delineate homogeneous vigour areas and potentially
define differential harvesting schedules according to this zonal
delineation. However, whether increase of bunch exposure is
required or not, leading to decisions about leaf removal cannot
be inferred only from remote sensing monitoring. While it
could be assumed that the spatial structure of NDVI or PCD
(remotely assessed) would not differ markedly from the spatial
structure of canopy gaps, especially when classified into a low
and limited number of classes (e.g. low, medium and high),
the need for ground-truthing is essential. Recent studies have
postulated the importance of providing detailed ground-
truthing of remotely sensed NDVI-based vigour maps (Gatti
et al. 2017). These authors stated that overall assessment of
vine performance by NDVI may help to classify the vineyard
areas according to their vigour, but this attribution can be
‘misleading’ if no site-specific ground-truthing is conducted. In
this context, the developed RGB methodology may also help
in to facilitate ground-truthing at a large scale.

Moreover, the capability of separately monitoring the
two canopy sides is of special relevance when canopy man-
agement operations, such as leaf removal, are performed
only on one side. This is a common practice in many wine
regions, where grapegrowers defoliate the morning side to
improve fruit exposure and airflow during the cooler hours
of the day during the ripening period (Dokoozlian 2009).
With the developed computer vision system, a picture of the
leaf distribution, porosity and bunch exposure in the fruiting
zone of vertically trellised vineyards, and the required
adjustments required in each side can be envisaged.

Figure 5. Correlations between the proportion of gaps or canopy porosity,
assessed by analysis of images acquired using the multi-sensor platform
on-the-go and the reference values determined by point quadrat analysis
(PQA), from (a) the east side of the canopy (R2 = 0.86); (b) the west side
of the canopy (R2 = 0.89); and (c) the whole vine, showing the average
value from east and west sides of the canopy (R2 = 0.90). All determination
coefficients (R2) were significant at P < 0.001. Correlation line ( ),
prediction bands at 95% ( ), the 1:1 line ( ) (n = 50).

Figure 6. Correlation between the proportion of gaps or canopy porosity,
assessed by image analysis from images acquired on east and west sides of
the canopy, using the multi-sensor platform on-the-go. Coefficient of
determination R2 = 0.95, at P < 0.001. Correlation line ( ), prediction
bands at 95% ( ), the 1:1 line ( ) (n = 50).
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The developed on-the-go imaging system represents an
improvement from previous work (Hill et al. 2011,
Fernández et al. 2013, Diago et al. 2016) in which robust
and reliable image-based methods were developed to quan-
tify grapevine canopy elements. Likewise, in Hill et al.
(2011) and Diago et al. (2016) the image-derived outcome
was validated against the standard PQA, but a colour back-
ground and manual image acquisition were required.
Improvements to on-the-go monitoring were recently
described by Gatti et al. (2016). These authors acquired RGB

images on a stop-and-go mode using a conventional tractor
(the tractor driver stopped and triggered the sensor), and
obtained a significant correlation between an image-derived
canopy index value, which varied between 0 and 1000, and
the fraction of canopy gaps and the leaf layer number, as
measured by PQA. Another recent approach involved RGB
image acquisition on-the-go at low speed, less than 1 km/h,
to estimate yield parameters (Rose et al. 2016). In the pre-
sent study all images were acquired fully automated, on-
the-go, without stopping, at a commercial speed of 7 km/h,

Figure 7. Correlations between the bunch to canopy area ratio (%)
assessed by image analysis from images acquired using the multi-sensor
platform on-the-go and the values determined by point quadrat analysis
(PQA), from (a) the east side of the canopy (R2 = 0.32); (b) the west side of
the canopy (R2 = 0.61); and (c) the whole vine (R2 = 0.37). All
determination coefficients (R2) were significant at P < 0.001. Correlation line
( ), prediction bands at 95% ( ), the 1:1 line ( ) (n = 50).

Figure 8. Correlations between the leaf to canopy area ratio (%), assessed
by image analysis from images acquired using the multi-sensor platform
on-the-go and the values determined by point quadrat analysis (PQA), from
(a) the east side of the canopy (R2 = 0.57); (b) the west side of the canopy
(R2 = 0.79); and (c) the whole vine (R2 = 0.68). All determination
coefficients (R2) were significant at P < 0.001. Correlation line ( ),
prediction bands at 95% ( ), the 1:1 line ( ) (n = 50).
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as the inductive sensor installed in the vehicle triggered the
RGB camera at a given frequency as the wheel spins.

Most of the comparisons between the imaging-derived
canopy values and those measured by PQA had an R2 close
to or above 0.60. Discrepancies between the values obtained
by the image method and PQA may be explained by the fact
that the accuracy of the PQA method is dependent on the
size of the feature to be determined, and the total number of
insertions. In terms of the size of the feature in the canopy,
the accuracy of PQA was lower for those elements in the
image in small proportion, such as the bunches, and in dense
canopies, the proportion of gaps or canopy porosity also. To
illustrate this, Figure 10 shows two examples of RGB images
of vine segments (west side) and the resulting image classifi-
cation used to build the correlations. In Figure 10a, a small
proportion of bunches is visible and exposed, which was
quantified as 1.7% by image analysis, while PQA recorded
8%. Similarly, in Figure 10b, the proportion of exposed
bunches by image analysis was 5.9% while a 36% value was
obtained from PQA. Such differences may arise from the fact
that in the PQA method the record of one insertion is extrap-
olated to an area of 100 cm2 (if insertions are performed on a

10 × 10 cm grid, such as in Gatti et al. 2016) to 240 cm2 on
average (in the present work). The inconsistencies in the
extrapolation of each insertion record are larger for the
minority elements, the bunches in Figure 10a,b. The larger
the number of insertions, the more accurate are the PQA esti-
mations. This is true up until a given number of insertions
(a plateau) is reached. In the image-analysis method, each
pixel, with a size of 0.9 mm2/pixel, would correspond to an
insertion. In other words, the image-analysis method can be
seen as a high-resolution PQA which takes into account the
gaps, and only the outer (exposed) layers of the canopy for
the visibility of leaves and bunches.

The outcomes of this work may have practical implica-
tions for grapegrowers and viticulturists, especially when
the results are expressed as georeferenced maps. The ability
to adopt different canopy management strategies (such as
defoliation or lateral removal on one or both sides) or leaf
removal intensity level within a vineyard, according to mea-
sured and quantitative values of canopy porosity and leaf
and bunch exposure is potentially useful.

In its current version, the image-based methodology can
only be applied to red cultivars after veraison. The analysis
of white cultivars, or red cultivars before veraison (when
berries are still green), is more problematic. While the appli-
cation of this methodology at early stages (pre-veraison)
would increase its adoption in commercial operations, in
cool climate regions, bunch thinning and bunch zone leaf
removal, are routinely applied separately or in combination
at veraison or post-veraison to modify the microclimate in
the fruiting zone (Frioni et al. 2017). Changes in the canopy
configuration around the bunch zone, especially increased
porosity, leading to increased bunch exposure and air circu-
lation, have been shown to positively modify the flavonol
profile of berries (Martinez-Lüscher et al. 2019) along with
botrytis incidence (Zoecklein et al. 1992, Hed et al. 2015). In
addition, bud fruitfulness in cool regions could also benefit
from a more exposed, increased light environment of the
renewal zones (Dry 2000). Moreover, if leaves have been
removed pre-veraison, this image-based methodology may
provide a canopy assessment to verify the outcomes of the
defoliation operation (either manual or mechanical) in
terms of canopy porosity and ratio of exposed leaves and
bunches within the bunch microclimate or fruiting zone
area. In contrast, if no leaf plucking has been conducted
prior to veraison, but is likely to be done later (Frioni et al.
2017), the image-analysis method may provide the initial
canopy assessment upon which to adjust the severity of
defoliation. Should leaves be removed manually, the

Figure 9. Maps of the spatial variability of: (a) canopy porosity or proportion of gaps involving both sides; bunch to canopy area ratio (%) (b) on the east
and (c) on the west sides; and leaf to canopy area ratio (%) (d) on the east and (e) on the west sides. Images with the multi-sensor platform were acquired
on-the-go at 7 km/h from the east and west sides of the canopy and analysed using the developed methodology.

Figure 10. Comparison of the outputs obtained from point quadrat
analysis and image-analysis (table aside) in a canopy segment with (a) low
proportion of exposed bunches and (b) medium proportion of exposed
bunches.
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grapegrower may adjust the intensity of, for example, leaf
or lateral removal to a desired value of canopy porosity or
bunch exposure, to promote air circulation and ensure opti-
mum sunlight capture and temperature. Should defoliation
be mechanically conducted, it can also be more precisely
accomplished using the new generation of leaf removers,
such as those based on leaf blowing in which the pressure
of the compressors can be variably adjusted, for instance
according to different amounts of exposed leaves.

This image-based methodology, in contrast, can also be
adapted to assess not only the fruiting zone, but also the
whole canopy above the cordons, with the aim of estimating
the ‘leaf wall’ or leaf coverage prior to spraying applications,
at any time during the growing season. Likewise, the built
maps could be used by the novel variable rate application
machinery to implement more precise and efficient applica-
tion of, for example, fertiliser and fungicide. Examples of
variable dosage of pesticides in different crops based on
ultrasound and 3D sensors have been reported (Maghsoudi
et al. 2015, Dammer 2016, Tackenberg et al. 2016). In the
case of viticulture, the innovation of vineyard machinery
with the variable rate technology (Llorens et al. 2010, Gil
et al. 2013, Palleja and Landers 2017) relies on automated
and accurate assessment of the grapevine canopy growth
and development, including an assessment of the canopy
porosity and amount of exposed leaves.

Future work will concentrate on adapting the image
acquisition process to be undertaken during the day while
avoiding the influence of opposite rows. Likewise, the use of
much brighter external lights and shorter exposure times
can be explored. Nevertheless, the existing system can be
mounted on any vineyard vehicle, from a conventional trac-
tor (while conducting mowing or tilling operations), an ATV
to even a robot for vineyard monitoring (Rose et al. 2016,
Tardaguila et al. 2016).

Conclusions
In modern viticulture, vineyard management decisions
relating to leaf defoliation or spraying are made by informed
grapegrowers taking into account vineyard variability. With
this in mind, a non-destructive, image-based, on-the-go sys-
tem was developed to provide information of the grapevine
canopy parameters, involving gaps, leaves and fruit. These
data can be used to adapt and improve the efficiency
(at different levels, qualitative, economic and environmental
sides) of a range of canopy management operations. The
information can be prepared as maps, which can be used to
improve vineyard management decisions and facilitate the
use of variable rate machinery.
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