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The solution of multiple-revolution perturbed Lambert problems is a challenging task due
to the high sensitivity of the final state to variations of the initial velocity. In this work two
different solvers based on high order Taylor expansions and an analytical solution of the J2
problem are presented. In addition, an iteration-less procedure is developed to refine the
solutions in a dynamical model that includes J2 − J4 perturbations. The properties of the
proposed approached are tested against transfers with hundreds of revolutions including those
required to solve the Global Trajectory Optimisation Competition 9.

I. Introduction
The Lambert problem is one of the most extensively studied problems in astrodynamics as its solution is a building

block for many problems, including interplanetary transfer optimization, rendezvous missions design, and orbit
determination for radar observations. Although this problem was solved more than 200 years ago [1], many researchers
are still working on devising robust and efficient resolution procedures [2, 3]. In particular, when the transfer time
is long, the Lambert’s problem becomes a multiple-revolution Lambert’s problem (MRLP) which has the additional
difficulty of admitting many solutions associated with different number of revolutions. More specifically, there exists
2Nmax + 1 number of solutions to a MRLP, in which Nmax is maximum number of revolutions compatible with the
time-of-flight of interest [4].

The original formulation of the Lambert’s problem is based on two-body dynamics. However, when the MRLP
solutions are used to design missions around a planetary body or for orbit determination and data association problems,
the effect of perturbations cannot be neglected. The perturbations, e.g. J2 or atmospheric drag, can cause large violations
of the terminal constraints, up to the point that classical Lambert’s solutions fail to provide a good initial guess for the
multiple-revolution perturbed Lambert’s problem (MRPLP). Different methods have been proposed over the years to
solve perturbed Lambert’s problems. Engles and Junkins [5] proposed a variation-of-parameter approach combined with
Kustaanheimo-Stiefl (KS) transformation to algebraically solve the J2 perturbed problem. Bai and Junkins [6] proposed
a modified Chebyshev-Picard iteration (MCPI) method for the solution of two-point boundary values problems, which
was later regularized by Woollands et al. [7] using the KT time transformation. Der [8] developed a solver based on
Vinti’s approximation. However, these approaches are not suitable for cases with many revolutions, due to the fact that
the initial Keplerian guess for the velocity is not close to the perturbed one.

More recently, Yang et al. [9] developed a homotopic approach suitable for solving the MRPLP, which they applied
to the design of rendezvous missions around Mars. This approach employs a homotopy on the residuals. For each of the
multiple solutions of the MRLP a sequence of MRPLP is solved for decreasing values of the homotopic parameter.
Only when this parameter reaches zero the MRPLP is fully solved. Remarkably transfers with more than one thousand
revolutions were presented, although limited details on how to define the continuation path were provided. Another
solver suitable for MRPLP was published recently by Woollands et al. [10]. This method combines the MCPI method
with the method of particular solution and has the favorable property of not requiring the computation of the state
transition matrix. However, its performance was assessed with transfers with a limited number of revolutions.

In this work we present two MRPLP solvers based on the high order expansion of the flow enabled by Differential
Algebra (DA) [11]. The first solver is suitable for solving a MRPLP when a Keplerian solution is available and is based
on the application of homotopy on the perturbation. When the homotopic parameter ε is zero the problem is Keplerian,
for which a solution is available. DA is used to expand the residuals at high order with respect to ε , and a continuation
path is defined such that when ε = 1 the MRPLP is solved. Using high order expansions brings the advantage that a)
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the continuation path can be defined in an automatic way based on an estimate of the truncation error of the Taylor
expansion [12] and b) the number of required continuation steps is limited. The main limitation of this approach is
that the first guess must be a solution of the Keplerian problem. However, there are cases in which using a Keplerian
guess results in solutions with high ∆v. This is particularly a drawback for cases in which the perturbations could be
effectively used to reduce the mission ∆v. A second approach solves this issue. Here DA is exploited to expand to high
order the problem residuals with respect to the initial velocity. A nonlinear solver is then used to compute the zeros
of the polynomial representation of the residuals, and the process is repeated until the polynomial representation is
accurate enough to deliver low residuals for the MRPLP.

In both the proposed approaches, a first order analytical solution of the J2 problem is used to reduce the computation
time. The analytical solution is based on Brouwer’s theory written in polar-nodal variables [13] that typically provides
kilometer-level accuracy for solutions involving up to several hundred revolutions. For cases in which higher accuracy
is demanded a single high order DA-based shooting iteration is applied to further refine the solution. Remarkably
this refinement step can be exploited to include other relevant perturbations previously neglected, e.g. higher order
geopotential harmonics. The availability of the high order expansion of the solution of the two-point boundary value
problem can be efficiently used to study the optimality of the transfer based on the study of evolution of the primer
vector [14].

In the following, the Differential Algebra techniques and the applied dynamical models are discussed. After that, the
two novel Lambert solvers are introduced as well as the refinement technique and the use of primer vector theory to
study the optimality of the transfers. Finally, the solvers are tested for different MRPLPs, including those required to
solve the Global Trajectory Optimisation Competition 9 (GTOC9)∗.

II. Differential Algebra tools
DA supplies the tools to compute the derivatives of functions within a computer environment [15]. More specifically,

by substituting the classical implementation of real algebra with the implementation of a new algebra of Taylor
polynomials, any deterministic function f of v variables that is Ck+1 in the domain of interest [−1, 1]v (these properties
are assumed to hold for any function dealt with in this work) is expanded into its Taylor polynomial up to an arbitrary
order k with limited computational effort. In addition to basic algebraic operations, operations for differentiation and
integration can be easily introduced in the algebra, thusly finalizing the definition of the differential algebraic structure of
DA [16, 17]. Similarly to algorithms for floating point arithmetic, various algorithms were introduced in DA, including
methods to perform composition of functions, to invert them, to solve nonlinear systems explicitly, and to treat common
elementary functions [18]. The DA used for the computations in this work was implemented in the softwares COSY
INFINITY [19] and DACE [20].

A. Expansion of the solution of ordinary differential equations
An important application of DA is the automatic computation of the high order Taylor expansion of the solution of

ordinary differential equations (ODE) with respect to either the initial conditions or any parameter of the dynamics
[21, 22]. This can be achieved by replacing the classical floating point operations of the numerical integration scheme,
including the evaluation of the right hand side, by the corresponding DA-based operations. This way, starting from the
DA representation of the initial condition x0, the DA-based ODE integration supplies the Taylor expansion of the flow in
x0 at all the integration steps, up to any final time t f . Any explicit ODE integration scheme can be adapted to work
in the DA framework in a straightforward way. For the numerical integrations presented in this paper, a DA version
of a 7/8 Dormand-Prince (8-th order solution for propagation, 7-th order solution for step size control) Runge-Kutta
scheme is used. The main advantage of the DA-based approach is that there is no need to write and integrate variational
equations to obtain high order expansions of the flow. It is therefore independent on the particular right hand side of the
ODE and the method is quite efficient in terms of computational cost.

B. Estimation of truncation error
The selection of the expansion order is a crucial issue when using high order Taylor representations. The order

must be selected so that the truncation error of the Taylor representation of the function of interest Tf is lower than a
threshold that is deemed appropriate for the problem at hand.

∗https://sophia.estec.esa.int/gtoc_portal/?page_id=814
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A coefficient-based method to estimate the truncation error is used in this work. The method estimates the size
of the k + 1 order terms, of the Taylor polynomial, t(k + 1), based on an exponential fit of the size of all the known
non-zero coefficients up to order k. The value of t(k + 1) is used to estimate the size Sk+1 of the truncated order k + 1 of
Tf . This value is representative of the accuracy of the Taylor approximation of order k in the domain of interest. Thus,
for a given problem, the order k to be used for the DA computations is selected so that Sk+1 is lower than a prescribed
tolerance. It has to be remarked that this approach gives an accurate estimate of the truncation error when a sufficient
number of coefficients is available for the fit, i.e. for a sufficiently high value of k (say above 3). For more details the
reader is referred to [12].

III. Dynamics
The most complete dynamical model considered in this work is described by



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(1)

in which r = [x, y, z]T and v = [vx, vy, vz]T are the spacecraft position and velocity vector; µ, Re, and Ji are the
gravitational parameter, the mean equatorial radius, and the i-th zonal harmonic coefficient of the Earth. The numerical
integration of Eq. (1) is time consuming when long transfer time are considered, thus its use in the solution of MRPLP
is impractical. For this reason, in the proposed solvers, the numerical propagation of Eq. (1) is replaced by an analytical
solution of the J2 problem, described in Section A. The solution obtained with the analytical propagator is then refined
numerically by exploiting DA tools for expanding the flow of ODE. Note that, as for the Earth the contribution due
to J2 is an order of magnitude larger than that of other harmonics, the numerical refinement of the solution will not
require iterations. In addition, it is worth underlining that the approach described in the paper is valid for any perturbed
dynamical model in which J2 is the dominant perturbation, and thus we are not restricted to the dynamical system
described in Eq. (1).

A. Analytical solution of J2 problem
The Hamiltonian for the J2 problem in the artificial satellite theory is given in Delaunay’s variables (l, g, h, L,G, H)†

by
H = H0 + εH1 (2)

where

H0 = −
µ2

2L2 ,

H1 =
µ

r

(
Re

r

)2
P2 (s sin( f + g)) ,

ε = J2 , P2 is the Legendre polynomial of degree 2, r is the radial distance, f is the true anomaly and s is the sine of the
inclination i.

This two-degree-of-freedom degenerate Hamiltonian is non-integrable. However, by applying the Lie-Deprit
method, an approximate first-order closed-form analytical solution can be obtained. Using MathATESAT [23], the
short-period terms, caused by the true anomaly, are removed by applying the Lie transform ϕ : (l, g, h, L,G, H) →
(l ′, g′, h′, L′,G′, H ′), so-called Delaunay Normalization [24], which at zero and first orders give

K0 = H0 (3)

K1 = H1 −
µ2

L′3
∂W

∂l ′
(4)

†The Delaunay variables relate to the Keplerian orbital elements as follows: l = M, g = ω, h = Ω, L =
√
µa,G = L

√
1 − e2, H = G cos i)
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The Lie-Deprit method solves Eq. (4) by choosing the form of the transformed Hamiltonian K ; the Delaunay
Normalization takes the Hamiltonian as the average over the fastest angle l ′:
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−

R2
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4
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(5)

and thenW1 is computed as
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where η ′ =
√

1 − e′2 and φ′ = f ′ − l ′.
Hence, up to the first order, the transformed Hamiltonian is given by:
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This Hamiltonian only depends on the momenta L′, G′ and H ′, and so the equations of motion are obtained as
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By integrating Eq. (8) we can directly obtain that the values of the momenta L′, G′ and H ′ are constants, whereas the
variables l ′, g′ and h′ are
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where l ′0, g
′
0, h′0, L′0, G′0, H ′0 are the transformed initial conditions l0, g0, h0, L0, G0, H0 at the epoch t0.

This first-order analytical solution is concluded by computing the transformation equation in a non-singular form
[13, 25]. Using polar-nodal variables (r, θ, ν, R,Θ, N )‡, Eq. (6) yields

W1 =
R2
e

4p′

[(
3s′2 − 2

) (
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+ R′

)
+ s′2Θ′

(
1

2p′
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sin 2θ ′ + s′2R′ cos 2θ ′

]

‡The polar-nodal variables relate to radial distance r and orbital elements as follows: θ = ω + f , ν = Ω, R = ṙ, Θ =
√
µa(1 − e2), N = Θ cos i
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Finally, the transformation equations are obtained from the expression

δ = δ′ + {δ′,W1}

where δ ∈ (r, θ, ν, R,Θ, N ) and { ,W1} represents a differential operator so-called Poisson bracket. The expressions of
{δ′,W1} are given in the Appendix whereas the relations between the old and new variables are obtained by replacing
prime by non-prime variables respectively in the expression

δ′ = δ + {δ,U1}

whereU1 = −W1.

IV. Solution of multiple-revolution perturbed Lambert’s problem
In Lambert’s problem, the initial position, ri , final position, r f , and the time-of-flight between the two positions are

given. Solving Lambert’s problem defines the orbit that connects the two position vectors in the specified time-of-flight
∆t = t f − ti , allowing the calculation of the velocities at the initial and final positions of the connecting orbit, referred
to as vi and v f . The Lambert problem is frequently used in trajectory design to compute the transfer arc between a
departing and arrival orbit, associated with a departing and an arrival body (e.g. two celestial bodies for interplanetary
transfers or two spacecraft for Earth orbiting missions). In these cases r1 and v1 are the position and velocity vectors
of the first body at ti , and r2 and v2 are the position and velocity vectors of the second body at t f , see Figure 1. The
total cost of the transfer is the impulse to inject the spacecraft on the transfer arc ∆v1 = | |vi − v1 | | and the impulse for
the rendezvous ∆v2 = | |v2 − v f | |. The classical formulation of the Lambert problem considers Keplerian motion. In
such case, there is no need to numerically propagate the transfer trajectory and the problem reduces to the numerical
solution of a nonlinear equation. When the time-of-flight is sufficiently long multiple solutions appear associated with
different number of revolutions. The maximum number of revolutions is Nmax = floor

(
∆t
2π

√
µ

a3
m

)
, in which µ is the

gravitational parameter and am =
1
4 (r1 + r2 + | |r1 − r2 | |). There are two solutions for each revolution number, thus

there exists 2Nmax + 1 number of solutions to a MRLP.
When perturbations are included, Lambert’s problem becomes more difficult to solve for two main reasons. Firstly,

for long time-of-flights the solution of the MRLP may not provide a good guess for the perturbed problem. In particular,
the perturbation due to J2 is the largest for most of the orbital regimes around the Earth. The effect of the J2 perturbation
can be strong and as a result the solution of the MRLP may produce high residuals and shooting methods may diverge.
Secondly, exact analytical solutions are not available for perturbed dynamics and thus one either needs to use approximate
solutions or time-consuming numerical propagations. The first problem is the most challenging one, as it requires
the implementation of ad hoc strategies to assure convergence. Two different solvers are proposed to deal with this
problem, one based on a homotopy approach on the perturbation (see Section IVA) and one on the repetitive solution of
a surrogate problem, as described in Section IVB. The second issue is tackled here, in a first instance, by substituting the
numerical integration of Eq. (1) by the analytical solution of the J2 problem described in Section IIIA. The approximate
solution is then refined numerically in the full dynamical model taking advantage of the high order expansion of the
flow enabled by DA, as described in Section IVC. Finally, the application of primer vector theory (Section IVD) to
study the optimality of a transfer is discussed together with additional algorithms to expand the solution of the MRPLP
(Section IVE).

A. J2-homotopy solver
Suppose that vKi is the solution of the MRLP, i.e. the initial velocity that solves the Lambert problem with Keplerian

dynamics. Using vKi as initial velocity in the perturbed problem results in a final residual ∆r2 = rJ2
f
− r2 , 0. The

objective is to find vJ2
i , the solution of the J2 Lambert’s problem, i.e. the velocity vector that connects r1 to r2 in ∆t

when the J2 harmonic is accounted for.
In the following we present a homotopic approach to robustly solve this problem. Differently from a previously

proposed approach [9], the homotopy is not applied to the residuals, but to the perturbation itself as typically done in
perturbation theory.
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Fig. 1 Schematic drawing of perturbed Lambert problem.

Consider the perturbed dynamics




ṙ = v

v̇ = f K (r, v, p, t) + ε f J2 (r, v, p, t)
(10)

in which p is a generic vector of parameters, and the homotopic parameter ε is a DA variable. The forward integration
of Eq. (10) with initial velocity vi initialized as a DA vector about the Keplerian solution vKi provides the Taylor map of
the final state

rεJ2
f
= Tr f (vi, ε ) (11)

The Taylor representation of the residuals is readily available by

∆r2 = rεJ2
f
− r2 = T∆r2 (vi, ε ) (12)

This polynomial map tells us how the final residuals change when the initial velocity and the homotopic parameter
changed. The map is partially inverted using DA tools to obtain the Taylor expansion that maps ∆r2 and ε to the initial
velocity:

vi = Tvi (∆r2, ε ). (13)

When evaluated in ∆r2 = 0, map (13) provides the initial velocity vector that solves the MRPLP for different values of ε .
For ε = 1 the correction for the full J2 problem is achieved,

vJ2
i = Tvi (∆r2 = 0, ε = 1). (14)

However, directly computing vJ2
i using Eq. (14) may result in large residuals for long time-of-flight due to truncation

errors of the Taylor approximation. Therefore, the initial velocity vector is evaluated for increasing values of ε ∈ [0, 1],
i.e. for a dynamical system that progressively approaches the full J2 problem.

The determination of the proper continuation path, i.e. the proper increase of ε , is one main difficulties in homotopy
approaches. In our approach the continuation path is computed automatically by estimating the truncation error of
Eq. (13) with respect to ε , and by selecting its increase such that a demanded accuracy on the velocity vector is met. An
accuracy of 1e − 6 km/s was chosen for the test cases presented in this paper.

B. J2-map Lambert’s solver
The continuation method described in the previous section is based on the assumption that a Keplerian first guess is

available and that this is a good guess for the J2 Lambert’s problem. However, this is not always the case in particular
when long flight times are considered and the effect of J2 can be exploited to reduce the ∆v significantly. In these cases
a better first guess may be available, e.g. the velocity of the departing body, that is however not the solution of two-body
Lambert’s problem. In such conditions the homotopic approach described in Section IVA may fail to converge due to
the high initial values of the residuals. The following solver is proposed to deal with such cases.
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The algorithm starts by initializing the departure velocity as a DA variable about an initial guess for vgi . The forward
propagation of the DA initial state provides the Taylor expansion of final state at t f

rJ2
f
= T

r
J2
f

(vi) (15)

The residuals of the J2 Lambert’s problem are then expressed as a high order Taylor map by

∆r2 = rJ2
f
− r2 = T∆r2 (vi). (16)

A nonlinear solver (e.g. the fzero function of MATLAB [26]) is then used to compute the velocity vector v ji for
which the Taylor representation of the residual function (Eq. (16)) is zero, i.e.

T∆r2 (v ji ) = 0 (17)

It should however be noted that v ji is the solution of an approximated problem (i.e. the Taylor expansion of the residuals)
and, for large initial residuals, will not provide an accurate solution. The accuracy of the solution can be checked by
computing the new defects using v

j
i as new guess, and if they do not meet the prescribed accuracy, the procedure is

repeated and a new departure velocity is computed. The iterations stops when the computed initial velocity solves the
J2 Lambert’s problem with the demanded accuracy, thus delivering vJ2

i . It is important to notice that this approach
is practical from a computational standpoint because 1) the analytical solution of the J2 problem is used and 2) each
iteration consists only of finding the numerical solution of three polynomial equations. Furthermore, it is worth
observing that the J2-map Lambert’s solver can also be used when the first guess is the solution of the MRLP and that,
in this case, a continuation in the perturbation (as described in Section IVA) could be adopted to improve robustness.

C. Iteration-less refinement
Both the homotopic J2 Lambert’s solver and the J2-map Lambert’s solver use the analytical solution of J2 problem

to limit the computational time. As a result, if Eq. (1) are propagated numerically with the computed approximated
solution, the residuals on the final position won’t be zero (they are typically of few kilometers for transfer times of
several days). Thus, an algorithm to refine the solution in the full dynamical model is needed.

For the sake of generality, consider the case in which vAi , an approximate solution of the perturbed Lambert problem,
is available. The objective is to solve Lambert’s problem for the full dynamical model




ṙ = v

v̇ = f F (r, v, p, t)
(18)

in which f F (r, v, p, t) can include additional perturbations not considered when computing for the approximate solution.
In this work the full dynamical model is given by Eq. (1). The goal is then to compute the initial velocity vFi such that
the forward propagation of the full dynamics for ∆t results in rFf = r2 within a given tolerance.

The forward propagation of Eq. (18) with initial conditions (r1, v
A
i ) results in a residual ∆r2 = rFf − r2 , 0. However,

if the additional perturbations are small and/or ∆t is short the residual ∆r f is small. In that case, high order Taylor
expansions provided by DA can be used to compute the correction to the initial velocity such that ∆r f = 0 without the
need of iterations. The procedure can be summarized as follows.

The initial velocity is initialized as a DA vector about vAi and the dynamics, Eq. (18), are propagated forward for ∆t
using a DA propagator, delivering the expansion of the final state with respect to the initial velocity vector

rFf = TrFf
(vi). (19)

In Eq. (19), TrF
f

(vi) is a high order Taylor polynomial that maps a variation in the initial velocity to the final time in the
full dynamical model. The Taylor representation of the residual is computed by subtracting r2 from Eq. (19),

∆r2 = rFf − r2 = T∆r2 (vi). (20)

Eq. (20) can be inverted with DA tools, delivering

vi = Tvi (∆r2). (21)
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An approximated solution of the problem is then obtained by evaluating map (21) in ∆r2 = 0,

vFi = Tvi (∆r2 = 0). (22)

The described procedure is nothing else than a high order implementation of a shooting method [21]. When vAi is
sufficiently close to vFi then the velocity correction can be obtained with a single iteration. This is the case when,
for example, the approximate dynamical model already includes the J2 perturbation and when the effect of other
perturbations included in f F is small. The accuracy of the solution can be checked by computing the residuals with a
forward propagation of the updated initial condition (22).

D. Primer vector analysis
Primer vector theory can be used to analyze if an orbital transfer is optimal. The term primer vector was introduced

by Derek F. Lawden [27] and represents the adjoint vector for velocity. As shown by Lawden, the following four
necessary conditions must be satisfied in order for an impulsive orbital transfer to be locally optimal:

1) the primer vector p and its first derivative ṗ are everywhere continuous;
2) when a velocity impulse ∆vk occurs at time tk , the primer is a unit vector aligned with the impulse and has unit

magnitude: p(tk ) = ∆vk
∆vk

;
3) the magnitude of the primer vector may not exceed unity on a coasting arc: p(t) ≤ 1;
4) at all interior impulses (with the exception of the initial or final ones) p(tk ) · ṗ(tk ) = 0, i.e. dp

dt |tk = 0.
For perturbations that depend only on the position vector (e.g. Earth’s Geopotential and third body perturbation) it

can be shown that the primer vector dynamics are defined by

p̈ =
∂ f (r,v,t)

∂r p. (23)

As a result, the computation of the primer vector requires the solution of the boundary value problem defined by the
dynamics




p

ṗ



= Φ(ti, t)




pi

ṗi




(24)

in which Φ(ti, t) is the state transition matrix (STM), and the boundary conditions




pi =
∆v1
∆v1

p f =
∆v2
∆v2

.
(25)

The initial value of the primer vector derivative ṗi is determined by

ṗi = Φ
−1
1,2(ti, t f )

(
p f − Φ1,1(ti, t f )pi

)
(26)

in which Φ1,1(ti, t f ) = ∂r f
∂ri

and Φ1,2(ti, t f ) = ∂r f
∂vi

.
The state transition matrix is analytically available for Keplerian motion, however numerical differentiation or

calculus of variation are required for perturbed dynamics. The STM can be efficiently and accurately computed using
DA by simply initializing the full initial state as a DA vector and performing the DA propagation at first order. With
respect to the variational approach, DA allows us to avoid the analytical computation of the partial derivatives of the
ODE’s right-hand side and avoid the integration of a large system of ODEs. In addition, the DA approach allows us to
compute the STM with the accuracy of the propagator, a result difficult to achieve with finite differences.

E. Expansion of the solution of the perturbed Lambert’s problem
Prime vector theory provides a tool to understand whether a Lambert’s arc is locally optimal. If p goes above one

during the transfer a deep space or corrective maneuvres should be included such that the optimality conditions are
met. To include deep-space maneuvers it is thus necessary to study how a perturbation of the position vector when
pmax > 1 affects the total mission ∆v. Although the study of the inclusion of deep space maneuvers is beyond the scope
of this work in the following we provide a procedure to exploit DA computation to expand the solution of the perturbed
Lambert problem with respect to perturbation in both the initial and final position vectors.
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We start from the solution of the perturbed Lambert’s problem, i.e. vi such that r f = r2 and we initialize the initial
state as DA vector. The initial state is propagated forward using the DA propagator obtaining




r f = Tr f (ri, vi)
v f = Tv f (ri, vi).

(27)

The position component of map (27) can be inverted to deliver

vi = Tvi (ri, r f ) (28)

Map (28) readily provides how a variation in both the initial and final position vectors affect the initial velocity. The
effect on the final velocity v f can be computed by polynomial composition, i.e. by substituting vi = Tvi (ri, r f ) in the
second row of Eq. (27), thus obtaining

v f = Tv f (ri, r f ). (29)

Equations (28) and (29) can be used to study the insertion of corrective maneuvers on the total mission ∆v, thus
extending the linear theory of Jezewski [14] to arbitrary order.

V. Test cases
The algorithms presented in this paper were applied to design bi-impulsive transfers between synthetic space debris

whose ephemerides were distributed by the Advanced Concepts Team of the European Space Agency in the frame of
GTOC9. While the motion of the spacecraft is described by the full J2 problem, the motion of the space debris is
affected by J2 only in an average way, i.e. the precession rates of the argument of perigee, ω, and right ascension of the
ascending node, Ω, are given by




ω̇ =
3
4

J2n
(

Re

a

)2 5 cos2 i − 1
(1 − e2)2

Ω̇ = −
3
2

J2n
(

Re

a

)2 cos i
(1 − e2)2

(30)

in which a, e, i, n are semi-major axis, eccentricity, inclination, and mean motion (all constant). All debris are in
near-circular orbits between 600 and 900 km altitude with an inclination between 96 and 101 deg. The ephemeris file of
the objects can be downloaded from https://kelvins.esa.int/gtoc9-kessler-run/data/. In Section A the
properties of the MRPLP solvers are analyzed in detail using the two carefully selected pairs of objects. In Section B we
present the application of the solvers to the full GTOC9 problem. In all simulations the expansion order is fixed to 4, a
value that was proved to give a good compromise between accuracy and computational time. An accuracy requirement
of 10−3 km was used as convergence criterion in all test cases.

A. Illustrative examples
We consider a set of transfers between objects with ID 115 and 70, and object 115 and 82 in the time windows

[23765, 23786] MJD2000. These two objects and the reference time window are selected such that the solutions of the
MRLP provide poor first guesses for the MRPLP. We have analyzed four transfers with increasing time-of-flight between
objects 115 and 70 (labeled A, B, C, and D) and four between objects 115 and 82 (labeled E, F, G, and H). Figure 2
reports the values of Ω for the selected objects in the range of dates of interest, whereas in Tables 1, 2 and 3 the initial
and final states are provided for all the tested transfers. As can be seen from the last two columns of Table 2, when the
transfer time is approximately 20 days (Case D) the initial and final Ω are almost the same. This results in low ∆v in
the Keplerian dynamics but high ∆v in the perturbed dynamics. On the other hand, Table 3 shows that the difference
in Ω for a transfer between object 115 and 82 increases significantly with increasing transfer time. This results in a
progressive increase of the ∆v in Keplerian dynamics, while the ∆v remains almost the same in the perturbed dynamics,
due to the natural precession of Ω.

For each test case the minimum and maximum number of revolutions compatible with a minimum perigee radius of
6,600 km and a maximum apogee of 8,600 km are computed (referred as practical solution in the remainder of the
section), following the procedure presented in [9]. For each number of revolutions the two solutions of the MRLP are
computed and used as first guesses for both the J2-homotopy and the J2-map solver.
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Fig. 2 Evolution of Ω for the selected objects in the range of epochs considered for the test cases.

Table 1 Constant orbital elements of three test objects.

Object ID 70 82 115

a, km 7048.023 7166.722 7128.573
e 9.301·10−3 7.285·10−3 6.938·10−3

i, deg 98.006 98.082 98.472

Table 2 Initial and final states for 115-70 transfer test cases.

Case A Case B Case C Case D
ID 115 70 115 70 115 70 115 70

t, MJD2000 23780.527 23785.883 23775.392 23785.614 23770.291 23785.547 23765.018 23785.547
Ω, deg 200.739 186.077 195.631 185.812 190.558 185.748 185.314 185.614
ω, deg 297.386 75.459 312.840 76.315 328.188 76.526 344.054 76.957
ϑ, deg 316.5361 208.913 287.223 223.015 81.602 232.730 60.639 234.096

Table 3 Initial and final states for 115-82 transfer test cases

Case E Case F Case G Case H
ID 115 82 115 82 115 82 115 82

t, MJD2000 23780.603 23786.003 23775.889 23786.143 23770.968 23785.654 23765.641 23785.376
Ω, deg 200.814 206.217 196.126 206.348 191.232 205.891 185.934 205.632
ω, deg 297.160 232.214 311.344 231.796 326.151 233.258 342.179 234.087
ϑ, deg 346.871 299.787 348.700 301.754 356.700 299.240 56.760 308.0183
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Figure 3 shows the performance of the two algorithms for test cases A, B, C, and D. For each number of revolution
only the solution with minimum ∆v is reported and the solution is marked as feasible only if the transfer satisfies the
constraints on minimum perigee and maximum apogee. It can be noticed that both the J2-homotopy and J2-map solvers
converge to a solution for any given Keplerian guess. However, the difference in ∆v of the Keplerian and perturbed
solutions for the same number of revolutions increases with increasing time-of-flight and some practical Keplerian
solutions turn into unpractical solutions (highlighted in red in the figures) when J2 is considered. As expected the
transfer ∆v is significantly higher when J2 is included, and the Keplerian ∆v becomes very small for a transfer time close
to 20 days, as this correspond to a situation in which the departing and arrival state have a similar Ω. It is worth noting
that the number of revolutions that corresponds to the minimum ∆v is different for Keplerian and perturbed model.
There is thus no a priori best Keplerian guess. In general the J2-homotopy method converges in a lower number of
iterations. Besides, in Figure 3 a blue square indicates a solution that is obtained using the velocity of the departing body,
v1, as first guess. Note that this initial condition can be used only with the J2-map solver (the J2-homotopy requires a
Keplerian solution as guess) and typically converges in less iterations compared to using Keplerian guesses. This shows
that a Keplerian solution is not required to solve the MRPLP when the number of revolutions is not prescribed. In this
case, the obtained solution does not correspond to the minimum ∆v, but is not far from it.

Figure 4 shows the performance of the solvers for test cases E, F, G, and H. In contract with the previous test case,
the Keplerian solution always overestimates the required ∆v as it does not take advantage of the precession of Ω due
to J2. The problem becomes significantly more difficult with increasing transfer time, as the first guesses provided
by the MRPL get worse. This is reflected by a significant increase in the number of iterations required for reaching
convergence, as well as the appearance of more unpractical solutions. The J2-homotopy method still converges in less
iterations, however, it is worth nothing that in case G this method converges to solutions with very high ∆v. In addition,
in case G, the J2-homotopy method fails to converge (either stalls or produce an error in J2 analytical routine) when the
number of revolution is greater than 284. While in both methods there is currently no mean to avoid converging to a
non-optimal solution, the J2-map solver proved to be more robust, because it tends to apply smaller corrections to the
velocity. This is probably due to the fact that the J2-map solver does not use high order map inversion. For test cases A,
B, C and D using the velocity of the departing body as first guess showed to reduce the number of iterations significantly.
This is also the case for test cases E, F, G, and H and, besides, it results here in finding the minimum ∆v solution.

Regarding computation time, one iteration of the J2-homotopy method takes on average 7.5 ms on a iMac Air with a
2.8 GHz Intel Core i5 processor and 16 GB memory. One iteration of the J2-map method takes on average 13 ms on the
same machine. The higher computational cost of the J2-map method is due to the multiple polynomial evaluations
required in fsolve [26], which are carried out in MATLAB by evaluating the maps produced by DACE (the optimized
implementation of polynomial evaluation in DACE takes 2 orders of magnitude less).

Figure 5 shows, for all test cases, the path for the continuation parameter ε for the minimum ∆v transfers. The path
is computed automatically by the algorithm by selecting the value of ε for which the estimated truncation error of the
Taylor map (13) is less than 10−6 km/s. From this figure we can conclude that: 1) transfers with shorter durations
require less homotopy steps; 2) transfers between ID 115 and 82 are more difficult to solve; and 3) due to the use of high
order expansions the number of homotopy steps is limited even for transfers with more than one hundred revolutions.

Both the J2-homotopy and J2-map solvers are based on an analytical approximation of the J2 problem. If the
computed solutions are numerically propagated in the full dynamical model given by Eq. (1), the resulting residuals do
not meet the accuracy requirements (i.e. errors below 10−3 km). The violations of the final position constraints are
reported in the third column of Tables 4 and 5, in which only the data corresponding to the minimum ∆v solutions are
reported. As expected, the residuals tend to increase with the time-of-flight, but remain limited to few kilometers. The
application of the iteration-less refinement produces changes in the initial velocity of only a few m/s. This refinement is
sufficient to reduce the residuals well below the required tolerance even for the longest transfers.

Figure 6 shows the profile of the primer vector magnitude for the minimum ∆v solutions of test cases A and E.
The values are obtained with the procedure described in Section IVD using the full dynamics given by Eq. (1) and by
exploiting DA tools to compute the state transition matrix. In both cases the transfer is not optimal according to primer
vector theory and one or even two corrective maneuvers per orbit could be applied to reduce the transfer ∆v.

The analysis is concluded by showing how the expansion of the solution of the MRPLP can be used to find the
solution manifold for perturbed initial and final conditions. As an example, assume that the initial or final position, ri or
r f , is perturbed in radial direction (the direction of maximum increase of residuals). Figure 7 shows the residuals of
the final state ∆r2 against the magnitude of the radial perturbation in ri or r f , for test case A and B, before and after
applying a correction using the Taylor expansion. It can be appreciated how a 4-th order Taylor expansion of the MRPLP
solution enables the correction of kilometer-level radial perturbations in the initial state and for perturbations of tens of
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(a) Case A: ∆v (b) Case A: number of iterations

(c) Case B: ∆v (d) Case B: number of iterations

(e) Case C: ∆v (f) Case C: number of iterations

(g) Case D: ∆v (h) Case D: number of iterations

Fig. 3 Analysis of ∆v and convergence for the 115-70 transfer with long time-of-flights. Black indicates the
Keplerian solutions, red practical solutions, red unpractical solutions, and blue the solution obtained using v1
as first guess.
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(a) Case E: ∆v (b) Case E: number of iterations

(c) Case F: ∆v (d) Case F: number of iterations

(e) Case G: ∆v (f) Case G: number of iterations

(g) Case H: ∆v (h) Case H: number of iterations

Fig. 4 Analysis of ∆v and convergence for the 115-82 transfer with long time-of-flights. Black indicates
Keplerian solution, green solutions that do not violate constraints, red solutions that violate constraints, and
blue the solution obtained using the velocity of the departing body as first guess.
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(a) (b)

Fig. 5 Profile of the continuation parameter ε for solutions with minimum ∆v.

(a) Case A (b) Case E

Fig. 6 Primer vector analysis for minimum ∆v transfers.
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Table 4 Initial and final ∆v and residuals for the 115–70 transfer. For each test case the analysis is presented
only for the minimum ∆v solution. The residuals are always computed numerically in the J2 − J4 dynamical
model.

Analytic J2 Numeric J2 − J4

∆v1, km/s ∆v2, km/s ∆r2, km ∆v1, km/s ∆v2, km/s ∆r2, km
-0.43152 -0.092073 -3.3396 -0.43174 -0.091666 1.8591e-08

Case A 1.1901 1.1735 -0.55186 1.1896 1.1731 4.4058e-09
-0.089429 -0.090098 0.075104 -0.088339 -0.088984 -5.0359e-09

Case B
-0.28496 -0.071646 -7.5611 -0.28642 -0.070025 4.3247e-08
1.1089 1.0488 -0.75067 1.1081 1.0485 8.0208e-09
-0.067889 -0.054695 0.82595 -0.065169 -0.051981 -2.4995e-08
0.10565 -0.026461 -8.0559 0.10094 -0.022159 2.0567e-07

Case C -0.93386 0.881 -0.13239 -0.93305 0.88126 2.8416e-08
0.27993 -0.19181 -0.293 0.28499 -0.18673 -1.7489e-07

Case D
0.035752 0.067047 6.0311 0.026843 0.074857 3.0323e-05
-0.74116 0.74319 2.0251 -0.73966 0.74408 3.2122e-06
0.33722 -0.22163 -14.732 0.34533 -0.21282 -2.7166e-05

Table 5 Initial and final ∆v and residuals for the 115–82 transfer. For each test case the analysis is presented
only for the minimum ∆v solution. The residuals are always computed numerically in the J2 − J4 dynamical
model.

Analytic J2 Numeric J2 − J4

∆v1, km/s ∆v2, km/s ∆r2, km ∆v1, km/s ∆v2, km/s ∆r2, km
-0.00049635 -0.047885 -1.02 0.0007802 -0.047807 -1.3797e-09

Case E -0.0012413 0.029021 -2.6141 -0.0031303 0.028366 4.8158e-10
-0.0052617 -0.022797 0.151884 -0.002805 -0.022729 7.1183e-09

Case F
-0.00054946 -0.050597 -1.4939 0.00606572 -0.047679 6.2056e-08
-0.0013531 0.027112 -5.1336 -0.016835 0.018869 -3.0562e-08
-0.0030748 -0.024424 -1.8389 0.002966 -0.023248 -3.7517e-07
-0.0001423 -0.054495 0.61365 0.0030542 -0.059493 -3.0779e-07

Case G 0.00073887 0.026622 -8.3532 0.0084725 0.029879 1.2764e-07
0.0014842 -0.027431 -16.94 0.0040066 -0.028592 1.6626e-06

Case H
-0.0035206 -0.048783 -3.1678 0.0093124 -0.0675 -2.0184e-05
0.0035975 0.03253 -5.8682 0.0065088 0.026355 9.6127e-05
0.0023544 -0.022155 21.657 -0.0085436 -0.021774 0.00063748
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(a) Perturbation on r1 (b) Perturbation on r2

Fig. 7 Use of the expansion of the solution of the MRPLP to correct perturbation in initial and final position
vectors. Residuals after correction are reported in black and residuals before correction in red.

kilometers for the final state. It is worth noting that this result is achieved for a time-of-flight longer than 5 days (more
than 70 revolutions), which is significantly larger than the time between corrective maneuvers suggested by primer
vector theory. Therefore, the proposed approach will be suitable to study the optimal insertion of corrective maneuvers
for long-duration rendezvous maneuvers. Besides, the availability of high order expansions of the solution of MRPLP
could be profitably used in space situational awareness to study the linkage of radar observations, as already suggested
in [10]. Note that the expansion order can be tuned based on accuracy requirements, using as input the estimation of the
truncation error.

B. GTOC 9
The goal of GTOC9 was to design N missions to cumulatively remove 123 orbiting debris. A single mission consists

of a multiple-rendezvous spacecraft trajectory where a subset of size K of the 123 objects is removed by the delivery and
activation of K de-orbit packages. Each spacecraft initial mass m0 is the sum of its dry mass, the weights of the K ≥ 1
de-orbit packages, and the propellant mass: m0 = mdry + Kmde + mp . All spacecraft have a dry mass of mdry = 2000
kg and a maximum initial propellant mass of mp = 5000 kg. Each de-orbit package has a weight of mde = 30 kg.

The n-th mission’s starting epoch is denoted with tns and its end epoch with tn
f
. A mission starts with a launch

delivering, at tns , one spacecraft at a chosen debris and ends when all the K de-orbit packages on-board have been
delivered and activated. An orbiting debris is removed if: a) its position and velocity at some epoch t coincides with the
spacecraft position and velocity vector and b) for the following tw ≥ 5 days the spacecraft stays in proximity of the
debris while delivering and activating a de-orbit package.

The following additional constraints were imposed:
1) the overall time between two successive debris rendezvous, within the same mission, must not exceed 30 days;
2) a time of at least 30 days must be accounted for between any two missions;
3) all mission events must take place in an allowed window, 23467 ≤ t ≤ 26419 MJD2000.
4) at no time the orbital pericenter rp can be smaller than 6,600 km.
The transfers are accomplished with impulsive maneuvers and up to five (deep space) maneuvers can be applied

during a single transfer. The objective function to be minimized was

J =
N∑
n=1

[
cn + α(mn

0 − mdry )2
]

(31)

in which cn increased linearly during the competition, as follows:

cn = cm +
tn
submission

− tstart
tend − tstart

(cM − cm) (32)
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where tsubmission is the epoch at which the n-th mission is validated and tstart and tend are the start and end dates of
the GTOC9 competition. The minimal basic cost cm is 45 Me, while the maximum cost cM is 55 Me.

The GTOC9 problem was a complex combinatorial coupled problem with trajectory optimization. The Mission
Learners team’s approach to the problem’s solution can be outlined as:

1) for all space debris find the so-called encounter time windows in which their difference in Ω is smaller than a
threshold within the full time window of interest;

2) use a multi-objective particle swarm optimizer (PSO) [28] to find the longest missions with minimum rough
estimate of mission ∆v and compatible with encountering constraints (minor violations allowed at this step);

3) use the same multi-objective PSO to combine missions to meet time constraints, while maximizing the total
number of debris removed and minimizing both the number of missions and a rough estimate of the total ∆v;

4) refine the encounter dates such that they are compatible with time constraints between transfers and that the
difference in RAAN between objects at encounter is minimized;

5) locally optimize each mission ∆v using the MRPLP solver;
6) re-optimize the problem to allocate remaining debris and re-distribute them to further reduce the objective

function value.
In this section the details of step 5 are given, in particular highlighting how the use of the J2-map solver combined with
splitting the large optimization problem into a sequence of two-dimensional ones allowed the team to achieve a good
ranking using a single iMac computer.

The output of steps 1)-4) is a set of preliminary missions, each one defined by a sequence of K space debris to be
visited and guesses for the rendezvous times tkr,g, with k = 1, . . . , K − 1. No information on transfer times is available
at this stage. The object IDs of the space debris for each of the 14 missions that are part of our GTOC9 solution
are reported in Table 6. In step 5 accurate ∆v, rendezvous epochs, and transfer times are computed. The mission
optimization problem is split into a sequence of K − 1 subproblems with time-of-flight ∆tk and rendezvous times tkr as
optimization variables. For each subproblem the objective function is given by the transfer ∆v,

J = | |vi − v1 | | + | |v2 − v f | |, (33)

which can evaluated by
1) computing, for given tkr and ∆tk , the initial state (r1(tkr − ∆tk ), v1(tkr − ∆tk )) and final state (r2(tkr ), v2(tkr ));
2) solving the MRPLP defined by r1, r2 and ∆tk , using the J2-map method with v1 as first guess for the departing

velocity.
The search space of the optimization problem is defined by

tkr,g − tl ≤ tkr <≤ tkr,g + tl
∆tmin ≤ ∆tk ≤ min(tkr,g − tl − (tk−1

r,∗ + tw ),∆tmax ),
(34)

in which ∆tmin = 10−2 day and ∆tmax = 25 days are the minimum and maximum time-of-flight, tk−1
r,∗ is the optimal

rendezvous time calculated for the previous optimized transfer (when k = 1 this coincides with mission start epoch),
and tl defines the search window around the first guess values of the rendezvous dates (a value of 1 day was considered).
A PSO optimizer (80 generation and 60 samples) is used to optimize each subproblem. Once a subproblem is solved the
transfer is refined in the full J2 dynamics using the iteration-less refinement. Table 6 reports the start and end epoch,
and the start mass for each mission. Note that the evaluation of the objective function (31) results in a total mission cost
of 935.8 Meif submitted at the end of the GTOC9 submission period. This value is actually better than the official
score by the team, 964.5 Me, due to a bug found in the definition of upper bound of the time-of-flight. It is worth
mentioning that the Jet Propulsion Laboratory won the competition by submitting 10 missions and a cost of 731.27 Me.

Tables 7 to 9 report the details of the rendezvous times, transfer times, and ∆v to enable the interested reader to
make comparisons. Figure 8 shows that the average transfer ∆v was in all cases below 537 m/s, but two missions were
characterized by transfer ∆v greater than 1 km/s. The lowest ∆v found for a transfer was 40.1 m/s. Transfer times range
from 0.18 to 24.4 days. Transfers with more than 100 revolutions were very frequent, showing that the implementation
of efficient MRPLP solvers was of key importance to achieve a good result with limited computational resources. Finally
note that to keep the problem simple, our solution method did not consider the inclusion of deep space maneuvers.

VI. Conclusions
Two new solvers for perturbed Lambert problems with several hundreds revolutions were presented. The first solver

employs a high order homotopy strategy on the J2 perturbation, where the homotopy path is automatically computed
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Table 6 Overview of missions; epochs, removed objects and start mass per mission.

Mission Start Epoch End Epoch Number Debris Removal Sequence [ID] Start Mass
[MJD2000] [MJD2000] of objects [kg]

1 23512.10 23581.30 7 118, 22, 46, 114, 38, 97, 105 5287.81
2 23761.92 24043.83 16 115, 82, 11, 71, 45, 43, 26, 109, 7, 85, 47, 39, 21, 2, 63, 70 4962.59
3 24140.83 24319.87 9 84, 86, 103, 121, 16, 74, 92, 49, 23 3734.95
4 24387.72 24456.43 7 108, 44, 104, 120, 37, 75, 18 3671.37
5 24494.71 24641.69 9 79, 50, 56, 42, 107, 111, 58, 91, 78 5353.34
6 24710.64 24902.72 14 69, 14, 100, 106, 95, 30, 33, 93, 55, 28, 77, 9, 94, 90 4724.59
7 24944.31 24969.65 3 83, 88, 64 2866.16
8 25004.29 25221.75 15 67, 51, 99, 1, 36, 31, 122, 40, 102, 89, 35, 62, 54, 0, 4 5423.04
9 25254.49 25308.89 7 52, 41, 24, 32, 119, 117, 72 3878.43
10 25355.85 25484.56 10 112, 8, 15, 87, 27, 20, 59, 61, 98, 116 4315.93
11 25708.49 25890.77 9 80, 12, 3, 68, 60, 17, 53, 57, 5 4771.83
12 25937.20 26060.55 8 110, 65, 10, 81, 6, 96, 73, 48 4482.91
13 26093.47 26115.58 3 76, 66, 113 2782.04
14 26298.15 26418.40 6 101, 34, 19, 29, 25, 13 3745.25

Table 7 Missions rendezvous times

Mission Rendezvous duration [days]

1 5.00, 6.00, 7.63, 7.07, 6.52, 5.72, 5.00
2 5.00, 6.27, 13.08, 17.18, 17.55, 8.41, 18.69, 24.15, 7.56, 5.26, 14.81, 5.19, 5.84, 18.72, 12.19, 5.00
3 5.00, 5.34, 28.31, 5.88, 10.83, 9.68, 5.02, 16.76, 5.00
4 5.00, 13.17, 5.89, 12.04, 5.64, 5.26, 5.00
5 5.00, 5.63, 5.79, 5.47, 17.11, 5.20, 5.23, 22.56, 5.00
6 5.00, 14.81, 5.58, 6.88, 16.07, 20.71, 5.25, 9.11, 5.47, 12.62, 6.69, 5.68, 22.61, 5.00
7 5.00, 5.18, 5.00
8 5.00, 6.07, 6.55, 6.84, 20.59, 5.09, 10.10, 14.50, 15.56, 6.04, 6.97, 23.39, 6.22, 6.50, 5.00
9 5.00, 5.66, 5.97, 5.70, 5.05, 11.79, 5.00
10 5.00, 5.07, 14.11, 20.27, 9.24, 6.75, 5.67, 6.41, 22.79, 5.00
11 5.00, 5.49, 18.32, 6.00, 5.57, 11.82, 21.34, 5.61, 5.00
12 5.00, 5.55, 6.03, 5.62, 6.85, 27.31, 28.12, 5.00
13 5.00, 5.10, 5.00
14 5.00, 5.74, 5.74, 6.05, 5.21, 5.00
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Table 8 Missions transfer times

Mission Transfer duration [days]

1 12.86, 10.30, 1.12, 0.44, 0.95, 0.59
2 20.00, 4.41, 0.59, 3.50, 4.50, 8.68, 8.97, 3.96, 20.16, 6.95, 4.22, 1.61, 1.52, 2.23, 5.71
3 2.54, 20.82, 0.58, 22.04, 17.82, 4.86, 6.51, 12.05
4 1.77, 3.46, 3.45, 3.00, 2.26, 2.77
5 5.96, 1.38, 13.33, 1.92, 11.05, 7.50, 22.98, 5.89
6 2.92, 0.80, 1.29, 0.31, 2.11, 3.40, 1.07, 1.63, 15.84, 1.18, 17.43, 2.02, 0.60
7 9.41, 0.75
8 2.81, 2.50, 2.51, 18.17, 1.50, 1.14, 18.70, 0.66, 1.29, 0.78, 11.65, 0.54, 7.76, 3.04
9 1.69, 2.04, 0.75, 3.39, 1.57, 0.80
10 4.24, 0.55, 10.09, 8.40, 0.18, 0.80, 0.39, 0.73, 3.02
11 24.42, 1.18, 10.03, 1.35, 19.18, 17.23, 2.15, 22.59
12 6.18, 0.75, 1.05, 20.78, 3.09, 1.56, 0.46
13 5.98, 1.03
14 18.92, 22.18, 22.20, 16.00, 8.20

Table 9 Missions ∆v

Mission ∆v [m/s]

1 175.7, 208.8, 303.0, 99.1, 2029.4, 221.3
2 61.6, 49.5, 177.9, 168.5, 118.1, 232.2, 146.5, 210.2, 182.7, 40.1, 310.1, 193.9, 471.3, 90.7, 73.1
3 86.3, 183.6, 154.7, 47.4, 430.2, 486.4, 95.2, 276.2
4 274.5, 428.8, 260.7, 274.2, 255.8, 265.9
5 238.9, 658.6, 395.1, 445.2, 88.0, 598.6, 331.6, 232.5
6 98.4, 195.2, 224.8, 240.9, 111.6, 295.9, 325.3, 153.2, 90.3, 142.7, 162.5, 220.2, 133.6
7 630.7, 441.5
8 99.7, 154.8, 56.4, 113.7, 138.5, 279.9, 150.8, 346.7, 366.3, 285.4, 274.3, 78.2, 164.5, 370.8
9 105.9, 194.1, 716.5, 425.6, 342.1, 168.9
10 385.7, 167.9, 311.7, 513.0, 162.8, 145.4, 159.6, 299.8, 53.1
11 451.8, 363.0, 320.6, 263.7, 295.7, 241.4, 257.5, 400.7
12 1132.0, 464.8, 199.6, 169.1, 132.8, 140.1, 139.3
13 792.3, 175.9
14 242.9, 274.3, 641.1, 493.5, 217.7
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(a) Minimum, maximum and average transfer ∆v of each mission. (b) Minimum, maximum and average transfer duration of each
mission.

Fig. 8 Analyis of ∆v and transfer time

based on an estimation of the truncation error of the Taylor representation of the residuals. Through the test cases
it is shown that the J2-homotopy method converges in few steps when a Keplerian solution is provided. However,
convergence to the minimum ∆v is not guaranteed. The second approach, the J2-map solver, is based on repeatedly
finding the zeros of a Taylor approximation of the residuals via a standard nonlinear solver. This solver tends to converge
in more iterations compared to the J2-homotopy and typically requires more computational time. However, it has the
advantage of not requiring Keplerian solutions as first guesses. This property was exploited to generate optimal transfers
for the GTOC9 on an iMac, as illustrated in the test cases section. Both solvers took advantage of high order Taylor
expansions and an analytical solution of J2 problem to reduce the computational time. An iterative-less algorithm to
refine J2 approximated solutions was then presented that enabled meeting stringent accuracy requirements in a full
J2 − J4 dynamical model, even for transfers with more than 200 revolutions.

Finally we have presented a DA-based method to efficiently perform primer vector optimality analyses and to expand
the solution of the MRPLP with respect to initial and final uncertainties. These results pave the way towards the
implementation of an automatic method to optimally include corrective maneuvers, which will be the focus of future
research activity.

Appendix
The expressions for {δ′,W1}, where δ′ ∈ (r ′, θ ′, ν′, R′,Θ′, N ′) and W1 is the first-order generating function

(corresponding to Eq. (4)), are given by:
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{N ′,W1} = 0

where β′ = 1/(1 + η ′) and p′ = Θ′2/µ.
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