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Abstract—This paper presents the results obtained in the 
development of probabilistic short-term forecasting models of the 
power production in a photovoltaic power plant for the day-
ahead. The probabilistic models are based on quantile regression 
neural networks. The structure of such neural networks is 
optimized with a genetic algorithm which selects the values for 
the main parameters of the neural network and the variables 
used as inputs. These input variables are selected among a set of 
variables which includes chronological, astronomical and 
forecasted weather variables related to the location of the power 
plant. The forecasts correspond to quantiles of the hourly power 
generation in the photovoltaic power plant for the daytime hours 
of the day-ahead. The forecasts are obtained in the first hours of 
the day, allowing their use for preparing bid offers for the day-
ahead in electricity markets.  

Keywords— short-term forecasting, solar power forecasting, 
probabilistic forecasts 

I.  INTRODUCTION 
The installation of power plants based on renewable energy 

sources has grown strongly in recent years. Governmental 
policies and social acceptance have stimulated this growth. By 
2050, the production in power plants based on renewable 
energy is expected to meet all the demand [1]. Wind and solar 
photovoltaic energies are postulated as the more promising 
sources. 

Photovoltaic (PV) systems are the most direct way to 
transform solar radiation into electric power. PV systems are 
widely used to produce electricity in areas isolated from 
electric power networks and can operate connected to the grids 
in zones where they are available. The global capacity 
worldwide in PV systems has reached at least 303 GW at the 
end of 2016 [2]. 

The growing capacity of PV plants and their increased 
penetration in the power systems, causes these generation 
facilities have to participate, as any other electric power 
producer, in the electricity markets. A PV electricity producer 
who participate in the electricity market follows the same 
market rules as any other producer, i.e., providing a schedule of 
its generation for the day-ahead market, and reducing his/her 
incomes if this schedule is not met. In this sense, it is crucial to 

dispose of accurate short-term forecasting tools able to provide 
estimations of the hourly energy production for a forecasting 
horizon from a few hours to nearly two days. 

In the last decade many researchers have done an important 
effort developing short-term forecasting models for generating 
plants based on renewable energies, mainly wind farms and 
photovoltaic plants. Thus, in the international literature can be 
found in a wide variety of forecasting models for the electric 
power production in a PV plant [3][4]. Basically, two main 
approaches can be found in the international literature: indirect 
and direct forecasting models. Indirect models try to predict the 
power production in the PV plant by means of a prior forecast 
of the solar irradiation and a posteriori transformation to 
electric power, and direct models predict straightly the power 
production using statistical or machine learning techniques. 
The use of forecasts of weather variables (solar radiation, 
temperature, cloud cover, etc.) is widespread in both 
approaches. These forecasts are obtained from numerical 
weather prediction (NWP) models, that is, tools able to provide 
forecasts of the weather variables for the forecasting horizon. 

The development of a new family of short-term forecasting 
models related to the power generation in renewable energy 
based power plants have captured the attention of researchers 
in the last few years. Forecasting models able to provide not 
only the spot or point forecast, i.e., the expected value for the 
variable of interest, but also additional information about its 
uncertainty have revealed as more useful to decision-makers 
related to electricity markets. Probabilistic models overcome 
this limitation providing information about the uncertainty 
associated with the predicted value. 

Probabilistic models can provide as output values interval 
forecasts (prediction intervals) or density forecasts. In the 
energy field, most of the published models are focused on 
prediction intervals, since they can help to the agents of an 
energy market to trade with low risks. Quantile regression is 
one of the most popular techniques used to obtain prediction 
intervals in the form of conditional quantiles of the response 
variable. 

This paper presents the methodology followed to develop a 
probabilistic solar power forecasting model for the day ahead. 
The model was based on the quantile regression neural network 
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(QRNN) described by Taylor [5] and Chen [6], and 
implemented in the package “qrnn” [7] for the statistical 
program R [8]. The main parameters that define the structure of 
the neural network and the input variables, chosen from a set of 
available input variables, were selected using a genetic 
algorithm. In the training stage of the neural networks a 5 folds 
cross-validation scheme was used. The fitness function in the 
optimization process was the negative value of the average 
mean square error (MSE) obtained with the 5 cross-validation 
sets. The structure of the optimized model was used to build 
QRNN models for a set of quantiles and, finally, applied to a 
testing data set, no used in the training and optimization 
process, and its computational results analyzed. 

The structure of the paper is as follows: section II outlines 
the theory of the quantile regression neural networks; section 
III describes the available input variables; section IV describes 
the optimization process; section V presents the computational 
results obtained with the models; finally, section VI presents 
the conclusions. 

II. QUANTILE REGRESSION NEURAL NETWORKS 
In statistics, quantiles are points that divide the range of the 

probability distribution of a random variable into contiguous 
intervals. The term quantile is usually used as synonymous of 
percentile. Quantile regression tries to estimate quantiles of the 
conditional distribution of a response variable as functions of 
observed covariates. The τ-quantile (with 0<τ<1) of a random 
variable corresponds to the value of the variable, qτ, which 
accumulates a probability τ that the real value of the variable is 
equal or less than qτ. 

Linear quantile regression estimates quantiles of a random 
variable as a linear function of the covariates. Koenker and 
Bassett [9] defined the θth sample quantile as any solution to 
the minimization problem expressed in (1), where {xt: t 
=1,…,T} is a sequence of K-vectors (explanatory variables),  
{yt: t =1,…,T} is random sample on the regression process ut = 
yt -xt β having distribution function F, and β is a vector of 
parameters dependent on θ. 

min� � � �|�� − ���| + � (1 − �)|�� − ���|�|	
��
��|	
�
� � (1) 

 

The ability of artificial neural networks to approximate any 
non-linear function make them as candidates to build non-
linear quantile regression models. One of the most popular 
neural networks used for forecasting purposes is the single 
hidden layer feedforward network, i.e. a set of n inputs, 
connected to each of m neurons in a single hidden layer, which 
are connected to an output. Instead of using the linear quantile 
function expressed in (1), a QRNN model estimates the θth 
quantile minimizing (2), where Xt represents the input 
variables, W the weights between the input layer and the 
hidden layer, V the weights between the hidden layer and the 
output layer, and f(Xt, V, W) the output of the neural network. 
The other two parameters, λ1 and λ2, are regularization 
parameters which penalize the complexity of the network and 
avoid overfitting [5]. The optimal values of λ1 and λ2 and the 

number of neurons in the hidden layer can be established by 
cross validation. 
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The package “qrnn” [7] implements the QRNN with weight 
decay regularization, optional left censoring, and ensemble 
averaging via bootstrap aggregation o bagging, in order to 
avoid overfitting training data. The weight decay regularization 
penalizes large weights by adding a quadratic penalty term to 
the error function, although only the parameter λ1 in (2) is 
considered. 

III. AVAILABLE INPUT VARIABLES 
The developed probabilistic forecasting models aim to 

forecast the hourly power production in a PV plant for the 
daytime hours of the day-ahead. The forecasts are carried out in 
the first hours of day D and correspond to the hourly power 
generation in the PV plant for all the daytime hours of the 
following day, D+1. The first step in the followed methodology 
corresponds to the obtaining of the explanatory variables of the 
variable to be forecasted.  

The proposed forecasting model can use three types of 
input variables: chronological, astronomical and forecasted 
weather variables. The chronological variables are used to 
stand for the future instant corresponding to the forecasting 
horizon. The astronomical variables represent the position of 
the Sun with respect to the PV panels of the plant. The 
forecasted weather variables are the expected value of weather 
variables for the forecasting horizon and for the location of the 
PV plant. Table I shows the description of the chronological 
and astronomical variables. 

TABLE I.  CHRONOLOGICAL AND ASTRONOMICAL INPUT 
VARIABLES 

Name Description 
SD Sine of year fraction for D+1 
CD Cosine of the year fraction for D+1 
SH Sine of the day fraction for h 
CH Cosine of the day fraction for h 
SDE Sine of solar declination angle for D+1 
CDE Cosine of solar declination angle for D+1 
SW Sine of solar hour angle for D+1, h 
CW Cosine of solar hour angle for D+1, h 
SA Sine of solar elevation angle D+1, h 
CA Cosine of solar elevation angle D+1, h 
SY Sine of azimut angle D+1, h 
CY Cosine of azimut angle D+1, h 
CI Cosine of angle of incidence for D+1, h 
KD Correction factor for distance Sun-Earth 
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The fraction of the year (in radians, needed for variables 
SD and CD) is calculated by (3), where O(D+1) represents the 
ordinal date of the day D+1. The fraction of the day (needed 
for variables SH y CH) is calculated by (4), where h represents 
the GMT hour, h, corresponding to the forecasting horizon. 
The solar declination, solar hour, solar elevation and azimuth 
correspond to variables related to the position of the Sun with 
respect to the location of the PV plant, and the angle of 
incidence represents the angle between the solar beam radiation 
and the surface of the PV panels [10]. The correction factor for 
the distance Sun-Earth represents the variation of such distance 
with respect to the mean distance and can be calculated by (5). �� = 2��(� + 1)/365.25 (3) �ℎ = 2�ℎ/24 (4) KD = 1 + 0.03344 "#$(�� − 0.04887) (5) 

 

The use of weather forecasts has proven its effectiveness in 
the accuracy of solar power forecasting models for the medium 
and long-term [11]. The forecasts of these variables are 
obtained by means of specific forecasting models, the 
abovementioned NWP models. NWP models are usually 
implemented as computer programs that simulate the 
atmospheric dynamics solving kinematic physical equations 
and estimating a future state from the current conditions. The 
results correspond to the estimated values (forecasts) for a set 
of weather variables for the nodes of a 3D grid for different 
instants in the future. NWP models can be classified according 
their spatial resolution as global, regional or mesoscale. Global 
NWP models have a global coverage (worldwide) and provide 
forecasts with a large temporal horizon (several days), although 
their temporal and spatial resolution is poor (the interval 
between two consecutive forecasts can be several hours and the 
nodes on the earth surface are very distant). Mesoscale NWP 
models offer proper temporal and spatial resolutions for their 
use for forecasting purposes in renewable energy applications. 
Mesoscale NWP models usually utilize the results of a global 
model as the initial conditions of the atmosphere. 

In our study, we have used the forecasts of weather 
variables obtained with the mesoscale NWP model WRF-
NMM [12], which provide us the forecasts for a set of weather 
variables for the nearest grid node from the location of the solar 
PV plant. The WRF-NMM is one of the most popular 
mesoscale NWP model in the scientific community. For the 
generation of forecasts for the weather variables, we used a two 
domains scheme. The use of nested domains allowed us to 
obtain forecasts with better temporal and spatial resolution in 
the zone where is located the PV plant. Fig. 1 shows the 
domains used, where the smaller domain, with a spatial 
resolution of 27 x 48 points on the earth surface is focused on 
the geographic location of the PV plant, which is located in the 
south-east of the Iberian Peninsula. 

The initial values for the WRF-NMM model were obtained 
from the results of the GFS 1x1º global NWP model, 
corresponding to the cycle of the 00:00 GMT hour. The values 
for a set of weather variables and corresponding to the grid 
point of domain 2 nearest to the position of the PV plant (less 
than 1 km), were extracted from the output files from the WRF 

model. The results were the forecasts of the weather variables, 
shown in Table II, at half an hour intervals and for the 24 hours 
of the day 

 
Fig. 4. Domains used for the WRF-NMM model. 

ahead. These variable include solar radiation variables (the 
downward shortwave radiation at the earth surface, RSWIN, 
and the same value under the condition of clear-sky, 
RSWINC), cloud coverture at three height levels (low, medium 
and high), temperature (TH10), humidity (Q10), wind speed 
(the WRF model provided two orthogonal components at 10 m 
height, U10 and V10, from which the wind speed, WS10, and 
direction, represented by SINW and COSW, were calculated) 
and pressure near the earth surface (PSHLTR). Other variables, 
as snow cover, were not considered taking into account the 
position of the PV plant, where the probability of snow is 
negligible.  

The forecasts were available before dawn of the day D, and 
the forecasts correspond to the variables for day D+1. These 
variables, obtained at intervals of half an hour, were 
transformed to average hourly values. 

IV. OPTIMIZATION OF THE QRNN 
The QRNN model includes a set of parameters whose 

values can be optimized in order to provide better point 
forecasts for the hourly power generation in the PV plant. 
These parameters are the number of neurons in the hidden 
layer, the weight decay regularization factor (or penalty), and 
the use/not use of bagging in the training process. In previous 
works with the same data, we discovered that the best results, 
for the PV plant used in the study, were obtained without using 
bootstrap aggregation, so, we reduced the parameters to be 
optimized to the first two. 

TABLE II.  FORECASTED WEATHER VARIABLES 

Name Description 
TH10 10-m potential temperature  (K) 
Q10 10-m specific humidity  

CFRACL Low cloud fraction  (0 to 1) 
CFRACM Middle cloud fraction  (0 to 1) 
CFRACH High cloud fraction (0 to 1) 
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Name Description 
RSWIN Downward shortwave at Surface (W/m2) 

RSWINC Clear-sky equivalent of RSWIN (W/m2) 
WS10 Wind speed at 10 m (m/s) 
SINW Sine of wind direction at 10 m  
COSW Cosine of wind direction at 10 m 

PSHLTR 2-m pressure (Pa) 

 
Fig. 5. Structure of the chromosome used in the optimization of the 

QRNN model. 

In order to optimize the values of these parameters, we 
carried out an optimization process ruled by a genetic 
algorithm. The selection of the input variables, among those 
available ones, was also included in the optimization process. 
We used the functions included in the R package “GA” [13]. 
The adopted structure for the chromosome was binary digits 
with Gray encoding for the two parameters, and binary 
representation for the available input variables. The structure 
chosen for the chromosome is shown in Fig. 2. 

The structure of the chromosome was the following: an 
array with 38 bits, the first five bits to represent the Gray code 
of the number of neurons in the hidden layer (form 00000 
interpreted as 1 neuron, to 10000 interpreted as 32 neurons), 
the following 8 bits to represent the Gray code of the weight 
decay regularization factor or penalty (from 00000000 
interpreted as 0, to 10000000 interpreted as 0.1), and the last 25 
bits to code binary the input variables used by the model (one 
per available input variable, with a meaning of included 
variable if the corresponding bit is 1, and not included if it is 
0). 

The fitness function calculated the average MSE obtained 
with the 5 cross-validation data sets. The error corresponds to 
the difference between the output of the QRNN for the 0.5 
quantile and the actual value.  

V. COMPUTATIONAL RESULTS  
We obtained the input variables described in the previous 

section for a PV power plant located in the south-east of Spain. 
The plant is composed of fixed panels with a total capacity 
around 7 MW. We have disposed of the data with the hourly 
power production for 35 months. The total number of available 
input variables was 25 (four chronological variables, ten 
astronomical variables and eleven forecasted weather 
variables). Only the data corresponding to daytime hours were 
considered in the database, which was divided into two sets: 
the training data set and the testing data set. The training data 
set included the data corresponding to the first 24 months, and 
it was used to train the models. The testing data set included 
the data corresponding to the last 11 months and it was used to 
evaluate the final models. 

An optimization with a total of 100 generations with 80 
individuals per generation was carried out using the training 

data set. Elitism was applied to the best four individuals, the 
crossover rate was 0.8 and the mutation rate 0.1; the fitness 
function was the negative value of average MSE with the five 
sets used as validation data in the 5-folds cross-validation 
process. The number of iterations to train the QRNN was set in 
1500, and each network was trained 3 times, taking as result 
the best of the three trainings. The QRNN models used left 
censoring point at zero, just because the hourly power 
generation in the PV plant  couldn’t be negative. Fig. 3 plots  
the evolution  

 
Fig. 6. Evolution of the fitness value in the optimization process. 

of the fitness value of the best individual and of the mean value 
for all the individuals in the generation during the optimization 
process. 

After the optimization process, the resulting best individual 
used as input variables SW, CW, CA, SY, CY, CI, KD, Q10, 
CFRACL, CFRACM, CFRACH, RSWIN, RSWINC and 
SINW. The number of neurons was 6 and the value for the 
weight decay regularization factor (penalty) was 0.3412. 

Once the structure of the QRNN was selected with the 
optimization process, all the QRNN models corresponding to 
quantiles 0.05 to 0.95 at intervals of 0.05 were built. All the 
QRNN models had the same number of neurons in the hidden 
layer (6), the same value for the weight decay regularization 
factor (0.3412) and used the same inputs that the best 
individual obtained in the optimization process. The number of 
iterations was 1500 and the training repeated three times. 

The 19 QRNN models (from quantiles 0.05 to 0.95) 
enabled us to provided probabilistic forecasts for the hourly 
power generation in the PV plant for the day-ahead. For 
example, Fig. 4 plots the results obtained for seven days in the 
testing set (not used to train the QRNN models). Notice that in 
the figure only the daytime hours are represented, and the 
values correspond to the actual value and to the quantiles 0.05 
(Q0.05), 0.25 (Q0.25), 0.5 (Q0.5), 0.75 (Q0.75) and 0.95 
(Q0.95). 

In order to evaluate the performance of the developed 
QRNN models, we carried out two test, the first related to the 
point forecast provided by the QRNN for the 0.5 quantile, and 
the second one related to the reliability of the probabilistic 
forecasts obtained with the 19 QRNN models.  
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In the first test, we compared the RMSE obtained for the 
testing data set with the QRNN for the 0.5 quantile, with those 
obtained with other two point forecasting models. The first one 
was the persistence model, which provided as forecast the 
hourly power generation value for the same hour of the day 
that the corresponding to the forecasting horizon, but in the last 
day, i.e., the day D-1.  The second model was a single hidden 
layer multilayer perceptron (MLP) neural network, also trained 
with 5-folds cross-validation, but using all the available 
variables as inputs. MLP models with different number of 
neurons in the hidden layer were trained with the 
backpropagation algorithm. The MLP model with the best 
results contained 18 neurons in the hidden layer and achieved a 
RMSE (average value with the five validation data sets) of 
952.58 kW. Table III shows the results obtained with the 
QRNN model for the quantile 0.5 (Q0.5), for the persistence 
model (PS) and with the MLP model (MLP18) with the 
training and the testing data sets. As it is shown, Q0.5 model 
achieved the best result for the testing data set, and 
outperformed the persistence model results for both data sets. 

The second test was carried out to calculate a new indicator 
related to the reliability of the probabilistic forecasts and 
designed to give a quantitative measure of such reliability. If 
the probabilistic forecasts were reliable, the number of 
occurrences of the hourly power generation variable should be 
almost the same for all the intervals limited for two consecutive 
quantiles from the 19 considered. We defined as reliability 
index the expressed by (6), where where nobs,i and ntar,i are the 
number of occurrences (in per unit) and the ideal number of 
occurrences (in per unit) for the interval i (between two 
consecutive quantiles), and NQ is the total number of intervals. 

��
�

�
��
�

�
��	 


	

NQ
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itariobs nnRIN

1
,,1  (6) 

 

The probabilistic forecasts will be as good as next to 1 is 
the RIN value. In our case, the total number of intervals was 20, 
the ideal number of occurrences, in per unit, was 0.05, and the 
obtained RIN value for the testing data set was 0.88. Fig. 5 

shows the occurrences, for the testing data set, of hourly power 
generation values in each interval, and the ideal number of 
occurrences (the 0.05% of the number of hours in the testing 
data set). 

TABLE III.  RMSE FOR POINT FORECAST 

Model RMSE training (kW) RMSE testing (kW) 
Q0.5 1074.35 969.47 
PS 1357.28 1205.49 

MLP18 952.58 1012.80 

 

 
Fig. 5. Number of occurrences in each interval. 

VI. CONCLUSIONS 
The methodology followed to develop a probabilistic 

photovoltaic power forecasting model for the day ahead has 
been presented. The model is based on quantile regression 
neural networks which parameters have been optimized using a 
genetic algorithm. The genetic algorithm selected the optimal 
vales for the number of neurons in the hidden layer and the 
weight decay regularization factor, and also selects the set of 
input variables among those available. The input variables 
available include chronological, astronomical and forecasted 
weather variables. 
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Fig. 4. Probabilistic power generation forecasts for one week in the testing set. 
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The methodology has been applied to a real life PV plant 
with an installed power around 7 MW. The data of three years 
were used to develop the model: the data of the first two years 
was used to optimize and train the models and the data of the 
third year was used to test the resulting models. The results 
obtained using as point forecasts the corresponding to the 
QRNN for quantile 0.5 improved those one obtained with a 
persistence reference model and with the best MLP model 
using all the available inputs. 

Further research is undergoing in order to improve the 
results analyzing the effect of alternative fitness functions in 
the optimization process, such as the reliability index or the 
tilted absolute value function (also known as pinball loss 
function), analyzing the effect of the inclusion of new 
forecasted weather variables, and developing QRNN models 
with different structure (number of neurons in hidden layer, 
penalty and used input variables) for each quantile. 
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