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Abstract

The Colless index is one of the most popular and natural balance indices for bifurcating phy-

logenetic trees, but it makes no sense for multifurcating trees. In this paper we propose a

family of Colless-like balance indices CD;f that generalize the Colless index to multifurcating

phylogenetic trees. Each CD;f is determined by the choice of a dissimilarity D and a weight

function f : N! R�0. A balance index is sound when the most balanced phylogenetic trees

according to it are exactly the fully symmetric ones. Unfortunately, not every Colless-like bal-

ance index is sound in this sense. We prove then that taking f(n) = ln(n + e) or f(n) = en as

weight functions, the resulting index CD;f is sound for every dissimilarity D. Next, for each

one of these two functions f and for three popular dissimilarities D (the variance, the stan-

dard deviation, and the mean deviation from the median), we find the most unbalanced phy-

logenetic trees according to CD;f with any given number n of leaves. The results show that

the growth pace of the function f influences the notion of “balance” measured by the indices

it defines. Finally, we introduce our R package “CollessLike,” which, among other functional-

ities, allows the computation of Colless-like indices of trees and their comparison to their dis-

tribution under Chen-Ford-Winkel’s α-γ-model for multifurcating phylogenetic trees. As an

application, we show that the trees in TreeBASE do not seem to follow either the uniform

model for multifurcating trees or the α-γ-model, for any values of α and γ.

Introduction

Since the early 1970s, the shapes of phylogenetic trees have been used to test hypothesis about

the evolutive forces underlying their assembly [1]. The most used topological feature of phylo-

genetic trees in this regard is their symmetry, which captures the symmetry of the evolutionary

histories described by them. The symmetry of a tree is usually measured through its balance
(see [2], pp. 559–560), the tendency of the children of any given node to have the same number

of descendant leaves. Several balance indices have been proposed so far to quantify the balance

of a phylogenetic tree. The two most popular ones are the Colless index [3], whose definition

we recall below and that only works for bifurcating trees, and the Sackin index [4–6], which is
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defined as the sum of the depths of the leaves in the tree and can be used on multifurcating

trees. Other balance indices for bifurcating trees introduced so far include the variance of the

depths of the leaves [4, 5], the sum of the reciprocals of the orders of the rooted subtrees [6],

and the number of cherries [7]. As for balance indices for multifurcating trees, two recent

additions are the total cophenetic index [8] and the quartet index [9]; for more proposals, see

the section “Measures of overall asymmetry” in Felsenstein’s book [2] (pp. 562–563). This

abundance of balance indices is partly motivated by Shao and Sokal’s advice on using more

than one such index to quantify tree balance: see [6], p. 1990.

The Colless index C(T) of a bifurcating phylogenetic tree T is defined as the sum of the bal-

ance values of its internal nodes, where by the balance value of an internal node we mean the

absolute value of the difference between the number of descendant leaves of its pair of chil-

dren. In this way, the Colless index of a bifurcating tree measures the average balance value of

its internal nodes, and therefore it quantifies in a very intuitive way its balance. In particular, C
(T) = 0 if, and only if, T is a fully symmetric bifurcating tree with 2m leaves, for some m.

Unfortunately, the Colless index can only be used as defined on bifurcating trees. A natural

generalization to multifurcating trees would be to define the balance value of a node as some

measure of the dissimilarity of the numbers of descendant leaves of its children, like for

instance their standard deviation, and then to add up all these balance values. But this defini-

tion has a drawback: this sum can be 0 on non-symmetric multifurcating trees, and hence the

resulting index need not capture the symmetry of a tree in a sound way. For an example of this

misbehavior, consider the tree depicted in Fig 1: each one of its nodes has all its children with

the same number of descendant leaves and therefore the balance value of each node is 0 inde-

pendently on the dissimilarity used to define it, but the tree is not symmetric. Replacing the

number of descendant leaves by the number of descendant nodes, which in a bifurcating tree

is simply twice the number of descendant leaves minus 1, does not overcome this drawback:

again, all children of each node in the tree depicted in Fig 1 have the same number of descen-

dant nodes.

In this paper we solve this problem by taking a suitable function f : N! R�0 and then

replacing in this schema the number of descendant leaves or the number of descendant nodes

of a node by the f-size of the subtree rooted at the node, defined as the sum of the images

under f of the out-degrees of the nodes in the subtree. Then, we define the balance value (rela-

tive to such a function f and a dissimilarity D) of an internal node in a phylogenetic tree as the

value of D applied to the f-sizes of the subtrees rooted at the children of the node. Finally, we

define the Colless-like index CD;f of a phylogenetic tree as the sum of the balance values relative

to f and D of its internal nodes.

Fig 1. Each node in this asymmetric tree has all its children with the same number of descendant leaves as well as with the same number of

descendant nodes.

https://doi.org/10.1371/journal.pone.0203401.g001
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The advantage of such a general definition is that there exist functions f such that, for every

dissimilarity D, the resulting index CD;f satisfies that CD;f ðTÞ ¼ 0 if, and only if, T is fully sym-
metric, in the sense that, for every internal node v, the subtrees rooted at the children of v have

all the same shape. Two such functions turn out to be f(n) = ln(n + e) and f(n) = en.
The different growth pace of these two functions make them quantify the trees’ balance in

different ways. We show it by finding the trees that are maximally unbalanced according to

CD;f , that is, the trees with largest CD;f value, when f is one of these two functions and D is the

variance, the standard deviation, and the mean deviation from the median. We show that the

choice of the dissimilarity D does not cause any major difference in the maximally unbalanced

trees relative to CD;f for a fixed f, but that changing the function f implies completely different

maximally unbalanced trees.

We have written an R package called CollessLike, available at the CRAN, that, among other

functionalities, computes Colless-like indices and simulates their distribution under the α-γ-

model for multifurcating trees [10]. We have used the functions in this package to perform

two experiments on the TreeBASE phylogenetic database [11]. First, we have compared the

behavior of the Colless-like index obtained by taking f(n) = ln(n + e) and as dissimilarity D the

mean deviation from the median, MDM, with two other balance indices for multifurcating

trees: the Sackin index and the total cophenetic index. Next, we have used this Colless-like

index to contrast the goodness of fit of the trees in TreeBASE to the uniform distribution for

multifurcating trees and to the α-γ-model.

Materials

Notations and conventions

Throughout this paper, by a tree we always mean a rooted, finite tree without out-degree 1

nodes. As usual, we consider such a tree to be a directed graph, with its arcs pointing away

from the root. Given a tree T, we shall denote its sets of nodes, of internal (that is, non-leaf)

nodes, and of arcs by V(T),Vint(T), and E(T), respectively, and the out-degree of a node v 2 V
(T) by deg(v). A tree T is bifurcating when deg(v) = 2 for every v 2 Vint(T). Whenever we want

to emphasize the fact that a tree need not be bifurcating, we shall call itmultifurcating. The

depth of a node in a tree T is the length (i.e., the number of arcs) of the directed path from the

root to it, and the depth of T is the largest depth of any of its leaves. We shall always make the

abuse of language of saying that two isomorphic trees are equal, and hence we shall always

identify any tree with its isomorphism class. We shall denote by T �n the set of (isomorphism

classes of) trees with n leaves, and by T � the union [n�1T
�

n.

A phylogenetic tree on a (non-empty, finite) set X of labels is a tree with its leaves bijectively

labelled in the set X. We shall always identify every leaf in a phylogenetic tree T on X with its

label, and in particular we shall denote its set of leaves by X. Two phylogenetic trees T1, T2 on

X are isomorphic when there exists an isomorphism of directed graphs between them that pre-

serves the labelling of the leaves. We shall also make always the abuse of language of consider-

ing two isomorphic phylogenetic trees as equal. Given a set of labels X, we shall denote by T X

the set of (isomorphism classes of) phylogenetic trees on X, and we shall denote by T n, for

every n� 1, the set T f1;2;...;ng. Notice that if |X| = n, then any bijection X$ {1, 2, . . ., n} induces

a bijection T X $ T n. Moreover, if |X| = n, there is a forgetful mapping pX : T X ! T �n that

sends every phylogenetic tree to the corresponding unlabeled tree, which we shall call its

shape.
No closed formula is known for the numbers jT �nj or jT nj. Felsenstein gives in Chapter 3 in

[2] an easy recurrence to compute jT nj and describes how to obtain such a recurrence for
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jT �nj; an explicit algorithm to compute the latter is provided in [12]. These numbers ðjT njÞn
and ðjT �njÞn form sequences A000311 and A000669, respectively, in Sloane’s On-Line Encyclo-
pedia of Integer Sequences [13], where more information about them can be found.

A comb is a bifurcating phylogenetic tree with all its internal nodes having a leaf child: see

Fig 2. We shall generically denote every comb in T n, as well as their shape in T �n, by Kn. A star
is a phylogenetic tree of depth 1: see Fig 3. For consistency with later notations, we shall denote

the star in T n, and its shape in T �n, by FSn.
Let T1, . . ., Tk be phylogenetic trees on pairwise disjoint sets of labels X1, . . ., Xk, respec-

tively. The phylogenetic tree T1? � � � ?Tk on X1 [ � � � [ Xk is obtained by adding to the disjoint

union of T1, . . ., Tk a new node r and new arcs from r to the root of each Ti. In this way, the

Fig 2. A comb Kn with n leaves.

https://doi.org/10.1371/journal.pone.0203401.g002

Fig 3. A star FSn with n leaves.

https://doi.org/10.1371/journal.pone.0203401.g003
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trees T1, . . ., Tk become the subtrees of T1? � � � ?Tk rooted at the children of its root r; cf. Fig 4.

A similar construction produces a tree T1? � � � ?Tk from a set of (unlabeled) trees T1, . . ., Tk.
Given a node v in a tree T, we shall denote by Tv the subtree of T rooted at v and by κv its

number of descendant leaves, that is, the number of leaves of Tv. An internal node v of a tree T
is symmetric when, if v1, . . ., vk are its children, the trees Tv1 ; . . . ;Tvk are isomorphic. A tree T is

fully symmetric when all its internal nodes are symmetric, and a phylogenetic tree is fully sym-
metric when its shape is so.

Given a number n of leaves, there may exist several fully symmetric trees with n leaves. For

instance, there are three fully symmetric trees with 6 leaves, depicted in Fig 5. In fact, every

fully symmetric tree with n leaves is characterized by an ordered factorization n1 . . . nk of n,

with n1, . . ., nk� 2. More specifically, for every k� 1 and ðn1; . . . ; nkÞ 2 N
k with n1, . . ., nk�

2, let FSn1 ;...;nk
be the tree defined, up to isomorphism, recursively as follows:

• FSn1
is the star with n1 leaves.

• If k� 2, FSn1 ;...;nk
is a tree whose root has n1 children, and the subtrees at each one of these

children are (isomorphic to) FSn2 ;...;nk
.

Every FSn1 ;...;nk
is fully symmetric, and every fully symmetric tree is isomorphic to some

FSn1 ;...;nk
. Therefore, for every n, the number of fully symmetric trees with n leaves is equal to

the number H(n) of ordered factorizations of n (sequence A074206 in Sloane’s On-Line Ency-
clopedia of Integer Sequences [13]).

Fig 4. The (phylogenetic) tree T1 ? � � � ?Tk.

https://doi.org/10.1371/journal.pone.0203401.g004

Fig 5. Three fully symmetric trees with 6 leaves: From left to right, FS6, FS2,3 and FS3,2.

https://doi.org/10.1371/journal.pone.0203401.g005
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The Colless index

The Colless index C(T) of a bifurcating tree T with n leaves is defined as follows [3]: if, for every

v 2 Vint(T), we denote by v1 and v2 its two children and by kv1
and kv2

their respective numbers

of descendant leaves, then

CðTÞ ¼
X

v2Vint ðTÞ

jkv1
� kv2

j:

The Colless index of a phylogenetic tree is simply defined as the Colless index of its shape.

It is well-known that the maximum Colless index on the set of bifurcating trees with n
leaves is reached at the comb Kn, and it is

CðKnÞ ¼
n � 1

2

 !

(see, for instance, [14]). In fact, this maximum is only reached at the comb. Since we have not

been able to find an explicit reference for this last result in the literature and we shall make use

of it later, we provide a proof here.

Lemma 1. For every bifurcating tree T with n leaves, if T 6¼ Kn, then C(T)< C(Kn).
Proof. Let T a bifurcating tree with n leaves different from the comb Kn. Let x be an internal

node of smallest depth in it without any leaf child, and let T1 ? T2 and T3 ? T4 be the subtrees

rooted at its children (see Fig 6); for every i = 1, 2, 3, 4, let ti be the number of leaves of Ti.
Assume, without any loss of generality, that t1� t2 and t1 + t2� t3 + t4. Let then T0 be the tree

obtained by pruning T2 from T and regrafting it to the other arc starting in x (see again Fig 6).

Fig 6. The trees T and T0 in the proof of Lemma 1.

https://doi.org/10.1371/journal.pone.0203401.g006
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Then C(T0)> C(T). Indeed, the only nodes whose children change their numbers of

descendant leaves from T to T0 are (cf. Fig 6): the node x; the parent y of the roots of T1 and T2

in T, which is removed in T0; and the parent z of the root of T2 in T0, which does not exist in T.

Therefore,

CðT 0Þ � CðTÞ

¼ jt3 þ t4 � t2j þ ½t3 þ t4 þ t2 � t1j � jt2 � t1j � jt3 þ t4 � t2 � t1j

¼ t3 þ t4 � t2 þ t3 þ t4 þ t2 � t1 � t2 þ t1 � t3 � t4 þ t2 þ t1

¼ t1 þ t3 þ t4 > 0:

So, this procedure takes a bifurcating tree with n leaves T 6¼ Kn and produces a new bifur-

cating tree T0 with the same number n of leaves and strictly larger Colless index. Since the

number of bifurcating trees with n leaves is finite, the Colless index cannot increase indefi-

nitely, which means that if we iterate this procedure, we must eventually stop at a comb Kn.
And since the Colless index strictly increases at each iteration, we conclude that if T 6¼ Kn,
then C(T)< C(Kn).

Methods

Colless-like indices

Let f : N! R�0 be a function that sends each natural number to a positive real number. The

f-size of a tree T 2 T � is defined as

df ðTÞ ¼
X

v2VðTÞ

f ðdegðvÞÞ:

If T 2 T X , for some set of labels X, then δf(T) is defined as δf(πX(T)).

Therefore, δf(T) is the sum of the degrees of all nodes in T, with these degrees weighted by

means of the function f. Examples of f-sizes include:

• The number of leaves, κ, which is obtained by taking f(0) = 1 and f(n) = 0 if n> 0.

• The order (the number of nodes), τ, which corresponds to f(n) = 1 for every n 2 N.

• The usual size (the number of arcs), θ, which corresponds to f(n) = n for every n 2 N.

Notice that δf satisfies the following recursion:

df ðT1 ? � � � ? TkÞ ¼ df ðT1Þ þ � � � þ df ðTkÞ þ f ðkÞ:

Table A in S2 File gives the abstract values of δf(T) for every T 2 T �n with n = 2, 3, 4, 5.

Example 2. If T is a bifurcating tree with n leaves, and hence with n − 1 internal nodes, all of
them of out-degree 2, then

df ðTÞ ¼ ðf ð0Þ þ f ð2ÞÞn � f ð2Þ:

Example 3. For every fully symmetric tree FSn1;...;nk
,

df ðFSn1 ;...;nk
Þ ¼ n1 � � � nk � f ð0Þ þ n1 � � � nk� 1 � f ðnkÞ þ � � � þ n1 � f ðn2Þ þ f ðn1Þ:
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Now let

Rþ ¼
[

k�1

Rk ¼ fðx1; . . . ; xkÞ j k � 1; x1; . . . ; xk 2 Rg

be the set of all non-empty finite-length sequences of real numbers. A dissimilarity on Rþ is

any mapping D : Rþ ! R�0 satisfying the following conditions: for every ðx1; . . . ; xkÞ 2 R
þ,

• D(x1, . . ., xk) = D(xσ(1), . . ., xσ(k)), for every permutation σ of {1, . . ., k};

• D(x1, . . ., xk) = 0 if, and only if, x1 = � � � = xk.

The dissimilarities that we shall explicitly use in this paper are themean deviation from the
median,

MDMðx1; . . . ; xkÞ ¼
1

k

Xk

i¼1

jxi � Medianðx1; . . . ; xkÞj;

the (sample) variance,

varðx1; . . . ; xkÞ ¼
1

k � 1

Xk

i¼1

xi � Meanðx1; . . . ; xkÞÞ
2
;

�

and the (sample) standard deviation,

sdðx1; . . . ; xkÞ ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðx1; . . . ; xkÞ

p
:

Let D be a dissimilarity on Rþ, f : N! R�0 a function, and δf the corresponding f-size, and

let T 2 T �. For every internal node v in T, with children v1, . . ., vk, the (D, f)-balance value of v
is

balD;f ðvÞ ¼ Dðdf ðTv1
Þ; . . . ; df ðTvkÞÞ:

So, balD,f(v) measures, through D, the spread of the f-sizes of the subtrees rooted at the chil-

dren of v. In particular, balD, f(v) = 0 if, and only if, df ðTv1Þ ¼ � � � ¼ df ðTvkÞ.
Definition 4. Let D be a dissimilarity on Rþ and f : N! R�0 a function. For every T 2 T �,

its Colless-like index relative to D and f, CD;f ðTÞ, is the sum of the (D, f)-balance values of the
internal nodes of T:

CD;f ðTÞ ¼
X

v2Vint ðTÞ

balD;f ðvÞ:

If T 2 T X , for some set of labels X, then CD;f ðTÞ is defined as CD;f ðpXðTÞÞ.
Example 5. If we take D = MDM and f the constant mapping 1, so that δf = τ, the usual order

of a tree, then

CMDM;tðTÞ ¼
X

v2Vint ðTÞ

MDMðtv1
; . . . ; tvdegðvÞ

Þ

¼
X

v2Vint ðTÞ

1

degðvÞ

XdegðvÞ

i¼1

jtv1 � Medianðtv1 ; . . . ; tvdegðvÞ
Þj;

where, for every v 2 Vint(T), v1, . . ., vdeg(v) denote its children and tv1 ; . . . ; tvdegðvÞ
their numbers of

descendant nodes.
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Notice that CD;f gets larger as the f-sizes of the subtrees rooted at siblings get more different,

and therefore it behaves as a balance index for trees, in the same way as, for instance, the Col-

less index for bifurcating trees: the smaller the value of CD;f ðTÞ, the more balanced is T relative

to the f-size δf.
It is clear that CD;f satisfies the following recursion:

CD;f ðT1 ? � � � ? TkÞ ¼ CD;f ðT1Þ þ � � � þ CD;f ðTkÞ þ Dðdf ðT1Þ; . . . ; df ðTkÞÞ:

Therefore these Colless-like indices are recursive tree shape statistics in the sense of [15], rela-

tive to the f-size δf. Table A in S2 File also gives the abstract values of CD;f ðTÞ, for D = MDM,

var, and sd, and for every T 2 T �n with n = 2, 3, 4, 5.

The next result shows that, if we take D = MDM or D = sd, then any index CD;f restricted to

only bifurcating trees defines, up to a constant factor, the usual Colless index.

Proposition 6. Let T be a bifurcating tree with n leaves and f : N! R�0 any function. Then,

CMDM;f ðTÞ ¼
f ð0Þ þ f ð2Þ

2
� CðTÞ; Csd;f ðTÞ ¼

f ð0Þ þ f ð2Þ
ffiffiffi
2
p � CðTÞ:

Proof. Notice that, for every x; y 2 R, MDMðx; yÞ ¼ 1

2
jx � yj and sdðx; yÞ ¼ 1ffiffi

2
p jx � yj. We

shall prove the statement for MDM; the proof for sd is identical, replacing the 2 in the denomi-

nator by
ffiffiffi
2
p

. For every internal node v in a bifurcating tree T, if v1 and v2 denote its children,

balMDM;f ðvÞ ¼
1

2
jdf ðTv1Þ � df ðTv2Þj

¼
1

2
jððf ð0Þ þ f ð2ÞÞkv1

� f ð2ÞÞ � ððf ð0Þ þ f ð2ÞÞkv2
� f ð2ÞÞj

ðby Example 2Þ

¼
f ð0Þ þ f ð2Þ

2
� jkv1

� kv2
j

and therefore

CMDM;f ðTÞ ¼
X

v2Vint ðTÞ

balMDM;f ðvÞ ¼
f ð0Þ þ f ð2Þ

2
�
X

v2Vint ðTÞ

jkv1
� kv2

j

¼
f ð0Þ þ f ð2Þ

2
� CðTÞ;

as we claimed.

If we define the quadratic Colless index of a bifurcating tree T as

Cð2ÞðTÞ ¼
X

v2Vint ðTÞ

ðkv1
� kv2

Þ
2

(where, for every v 2 Vint(T), v1, v2 denote its children), then, given that varðx; yÞ ¼ 1

2
ðx � yÞ2,

a similar argument proves the following result.

Proposition 7. Let T be a bifurcating tree with n leaves and f : N! R�0 any function. Then,

Cvar;f ðTÞ ¼
ðf ð0Þ þ f ð2ÞÞ2

2
� Cð2ÞðTÞ:

As for the cost of computing Colless-like indices, we have the following result.
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Proposition 8. If the cost of computing D(x1, . . ., xk) is in O(k) and the cost of computing each
f(k) is at most in O(k), then, for every T 2 T �n, the cost of computing CD;f ðTÞ is in O(n).

Proof. Assume that every f(k) is computed in time at most O(k). For every k� 2, let mk be

the number of internal nodes in T of out-degree k. Since the sizes δf(v) are additive, in the

sense that if v has children v1, . . ., vk, then df ðvÞ ¼
Pk

i¼1
df ðviÞ þ f ðkÞ, we can compute the

whole vector (δf(v))v2V(T) in time O(n + ∑k�2 mk � k) = O(n) by traversing the tree in post-

order.

Assume now that D(x1, . . ., xk) can be computed in time O(k). Then, for every internal

node v of out-degree k, balD;f ðvÞ ¼ Dðdf ðTv1
Þ; . . . ; df ðTvkÞÞ can be computed in time O(k), by

simply reading the k f-sizes of its children (which are already computed) and applying D to

them. This shows that the whole vector (balD, f(v))v 2 V(T) can be computed again in time O
(∑k�2 mk � k) = O(n). Finally, we compute CD;f ðTÞ by adding up the entries of (balD, f(v))v2V(T),

which still can be done in time O(n).

The dissimilarities mentioned previously in this subsection can be computed in a number

of sums and multiplications that is linear in the length of the input vector, and the specific

functions f that we shall consider in the next subsection, basically exponentials and logarithms,

can be approximated to any desired precision in constant time by using addition and look-up

tables [16].

Sound Colless-like indices

It is clear that for every dissimilarity D, for every function f : N! R�0 and for every fully sym-

metric tree FSn1 ;...;nk
, CD;f ðFSn1 ;...;nk

Þ ¼ 0 because balD, f(v) = 0 for every v 2 VintðFSn1 ;...;nk
Þ. We

shall say that a Colless-like index CD;f is sound when the converse implication is true.

Definition 9. A Colless-like index CD;f is sound when, for every T 2 T �, CD;f ðTÞ ¼ 0 if, and
only if, T is fully symmetric.

In other words, CD;f is sound when, according to it, the most balanced trees are exactly the

fully symmetric trees.

The Colless index C and its quadratic version C(2) are sound for bifurcating trees.

Unfortunately, this is not always so for Colless-like indices for multifurcating trees. It is not

so even for direct generalizations of C or C(2). For instance, CMDM;k, Csd;k and Cvar;k, where κ
denotes the number of leaves, are not sound; neither are CMDM;t, Csd;t and Cvar;t, where τ
denotes the number of nodes; and they are not sound even when replacing τ by θ, the usual

size, which is simply τ − 1. For example, the tree T in Fig 1 is not fully symmetric, but

CMDM;kðTÞ ¼ Cvar;kðTÞ ¼ Csd;kðTÞ ¼ CMDM;tðTÞ ¼ Cvar;tðTÞ ¼ Csd;tðTÞ ¼ 0.

The following lemma shows that the soundness of CD;f ðTÞ ¼ 0 does not depend on D, but

only on f.
Lemma 10. CD;f is sound if, and only if, δf(T1) 6¼ δf(T2) for every pair of different fully sym-

metric trees T1, T2.

Proof. For the “only if” implication: if there exist two different (i.e., non isomorphic) fully

symmetric trees T1, T2 such that δf(T1) = δf(T2), then the tree T = T1 ? T2 is not fully symmetric,

but

CD;f ðTÞ ¼ CD;f ðT1Þ þ CD;f ðT2Þ þ Dðdf ðT1Þ; df ðT2ÞÞ ¼ 0:

Conversely, assume that, for every pair of fully symmetric trees T1, T2, if δf(T1) = δf(T2) then

T1 = T2. We shall prove by complete induction on n that if T is a tree with n leaves such that
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CD;f ðTÞ ¼ 0, then T is fully symmetric. If T has only one leaf, it is clearly fully symmetric.

Now, assume that n> 1 and hence that T has depth at least 1. Let T1, . . ., Tk, k� 2, be its sub-

trees rooted at the children of its root, so that T = T1? � � � ?Tk. Then,

0 ¼ CD;f ðTÞ ¼
Xk

i¼1

CD;f ðTiÞ þ Dðdf ðT1Þ; . . . ; df ðTkÞÞ

implies, on the one hand, that CD;f ðT1Þ ¼ � � � ¼ CD;f ðTkÞ ¼ 0, and hence, by induction, that

T1, . . ., Tk are fully symmetric, and, on the other hand, that D(δf(T1), . . ., δf(Tk)) = 0, and hence

that δf(T1) = � � � = δf(Tk), which, by assumption, implies that T1 = � � � = Tk: in summary, T is

fully symmetric.

The following problem now arises:

Problem. To find functions f : N! R�0 such that CD;f is sound.

Unfortunately, many natural functions f do not define sound Colless-like indices, as the fol-

lowing examples show.

Example 11. If f(n) = an2 + bn + c, for any a, b, c, then CD;f is not sound, because, for example,
δf(FS2,2,2,7) = δf(FS14,4) = 420a + 70b + 71c.

Example 12. If f(n) = nd, for any d� 0, then CD;f is not sound. Indeed, for every d� 3 (the
case when d� 2 is a particular case of the last example), take

• k = 2d + 1 and l = 2;

• ni ¼ 2ðd� 1Þidk� i� 1

for i = 1, . . ., k − 1;

• nk = 2;

• m1 ¼ 2ðd� 1Þdk� 2þ1;

• m2 ¼ 2ððd� 1Þ2ðdk� 2 � ðd� 1Þk� 2Þþd� 1Þ=d; notice that this exponent is an integer number, because k is
odd and therefore d divides (d − 1)k + 1.

Then

n1 . . . ni� 1 � n
d
i ¼ nd

1

and hence, on the one hand,

nd
1
þ � � � þ n1 � � � nk� 2 � ndk� 1

¼ ðk � 1Þnd
1
¼ 2d � 2ðd� 1Þdk� 1

¼ ð21þðd� 1Þdk� 2

Þ
d
¼ md

1
;

and, on the other hand,

n1 � � � nk� 1 � ndk ¼ n

1� d� 1
dð Þ

k� 1
� �

1� d� 1
dð Þ

1 � ndk ¼ n
dk� 1 � ðd� 1Þk� 1

dk� 2

1 ndk

¼ 2ðd� 1Þðdk� 1 � ðd� 1Þk� 1Þþd ¼ m1md
2
:

Therefore, dndðFSn1 ;...;nk
Þ ¼ dndðFSm1 ;m2

Þ.

Of course, for any given d there may exist “smaller” counterexamples: for instance,
dn3ðFS2;10;4Þ ¼ dn3ðFS6;8Þ ¼ 3288 and dn4ðFS2;6;2;3Þ ¼ dn4ðFS8;3Þ ¼ 4744.
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Example 13. If f(n) = loga(n) (for some a> 1) when n> 0, and f(0) = 0, then CD;f is not
sound: for instance, δf(FS2,2) = δf(FS8) = loga(8). In a similar way, if f(n) = loga(n + 1) (for some
a> 1), then CD;f is not sound, either: for instance, δf(FS2,3,3) = δf(FS5,7) = loga(196608).

On the positive side, we shall show now two functions that define sound indices. The fol-

lowing lemmas will be useful to prove it.

Lemma 14. For every k, l� 1 and n1, n2, . . ., nk, m1,m2, . . .,ml� 2, if
df ðFSn1;n2 ;...;nk

Þ ¼ df ðFSm1 ;m2 ;...;ml
Þ, n1 � n2� � �nk =m1 �m2� � �ml, and nk =ml, then

df ðFSn1;...;nk� 1
Þ ¼ df ðFSm1 ;...;ml� 1

Þ.

Proof. If n1� � �nk =m1� � �ml and nk =ml, then n1� � �nk−1 =m1� � �ml−1. If, moreover,

df ðFSn1;n2 ;...;nk
Þ ¼ df ðFSm1 ;m2 ;...;ml

Þ, that is,

n1 � � � nkf ð0Þ þ n1 � � � nk� 1f ðnkÞ þ n1 � � � nk� 2f ðnk� 1Þ þ � � � þ f ðn1Þ

¼ m1 � � �mlf ð0Þþm1 � � �ml� 1f ðmlÞþm1 � � �ml� 2f ðml� 1Þþ � � � þf ðm1Þ;

then

n1 � � � nk� 2f ðnk� 1Þ þ � � � þ n1f ðn2Þ þ f ðn1Þ

¼ m1 � � �ml� 2f ðml� 1Þ þ � � � þm1f ðm2Þ þ f ðm1Þ

and hence

df ðFSn1 ;n2 ;...;nk� 1
Þ

¼ n1 � � � nk� 1f ð0Þ þ n1 � � � nk� 2f ðnk� 1Þ þ � � � þ n1f ðn2Þ þ f ðn1Þ

¼ m1 � � �ml� 1f ð0Þ þm1 � � �ml� 2f ðml� 1Þ þ � � � þm1f ðm2Þ þ f ðm1Þ

¼ df ðFSm1 ;...;ml� 1
Þ

as claimed.

Lemma 15. If n1, . . ., nk� 2, then

1þ n1 þ n1n2 þ � � � þ n1 � � � nk� 1 < n1 � � � nk:

Proof. By induction on k. If k = 1, the statement says that 1< n1, which is true by assump-

tion. Assume now that the statement is true for any n1, . . ., nk� 2, and let nk+1� 2. Then,

1þ n1 þ n1n2 þ � � � þ n1 � � � nk� 1 þ n1 � � � nk < n1 � � � nk þ n1 � � � nk

¼ 2n1 � � � nk � n1 � � � nk � nkþ1:

Proposition 16. If f(n) = en, then CD;f is sound.

Proof. Assume that there exist two non-isomorphic fully symmetric trees FSn1;...;nk
and

FSm1 ;...;ml
such that

denðFSn1 ;...;nk
Þ ¼ denðFSm1 ;...;ml

Þ;

that is, such that

n1 � � � nk þ n1 � � � nk� 1enk þ � � � þ n1en2 þ en1

¼ m1 � � �ml þm1 � � �ml� 1eml þ � � � þm1em2 þ em1 :
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Assume that l is the smallest depth of a fully symmetric tree with en-size equal to the en-size of

another fully symmetric tree non-isomorphic to it.

Since e is transcendental, the equality above implies the equality of polynomials in Z½x�

n1 � � � nk þ n1 � � � nk� 1xnk þ � � � þ n1xn2 þ xn1

¼ m1 � � �ml þm1 � � �ml� 1xml þ � � � þm1xm2 þ xm1 :

If l = 1, the right-hand side polynomial is simplym1 þ xm1 and then the equality of polynomials

implies that k = 1 and n1 =m1, which contradicts the assumption that FSn1 ;...;nk
6¼ FSm1 ;...;ml

.

Now assume that l� 2. This equality of polynomials implies the equality of their independent

terms: n1 � � � nk =m1� � �ml. On the other hand, the non-zeroth power of x with the largest coef-

ficient in the left-hand side polynomial is xnk (because all coefficients are non-negative, and, by

Lemma 15, n1 � � � nk−1 alone is larger than the sum n1� � �nk−2 + � � � + n1 + 1 of all other coeffi-

cients of non-zeroth powers of x) and, by the same reason, the non-zeroth power of x with the

largest coefficient in the right-hand side polynomial is xml . The equality of polynomials implies

then that nk =ml and hence, by Lemma 14, that denðFSn1 ;...;nk� 1
Þ ¼ denðFSm1 ;...;ml� 1

Þ, against the

assumption on l. We reach thus a contradiction that implies that there does not exist any pair

of non-isomorphic fully symmetric trees with the same en-size. By Lemma 10, this implies that

CD;en is sound.

The same argument shows that CD;f is sound for every exponential function f(n) = rn with

base r a transcendental real number. However, if r is not transcendental, then CD;rn need not be

sound. For instance, d2nðFS2;3Þ ¼ d2nðFS3;2Þ ¼ 26 and d ffiffi2
p nðFS8;10Þ ¼ d ffiffi2

p nðFS12;8Þ ¼ 352.

Proposition 17. If f(n) = ln(n + e), then CD;f is sound.

Proof. The argument is similar to that of the previous proof. Let f(n) = ln(n + e) and assume

that there exist two non-isomorphic fully symmetric trees FSn1;...;nk
and FSm1 ;...;ml

such that

df ðFSn1;...;nk
Þ ¼ df ðFSm1 ;...;ml

Þ, that is, such that

n1 � � � nk þ n1 � � � nk� 1 lnðnk þ eÞ þ � � � þ lnðn1 þ eÞ

¼ m1 � � �ml þm1 � � �ml� 1 lnðml þ eÞ þ � � � þ lnðm1 þ eÞ:

Assume that l is the smallest depth of a fully symmetric tree with f-size equal to the f-size of a

fully symmetric tree non-isomorphic to it.

Applying the exponential function to both sides of the equality above, we obtain

en1 ���nkðnk þ eÞ
n1 ���nk� 1 � � � ðn2 þ eÞ

n1ðn1 þ eÞ

¼ em1 ���mlðml þ eÞ
m1���ml� 1 � � � ðm2 þ eÞ

m1ðm1 þ eÞ:

Since e is transcendental, this implies the equality of polynomials in Z½x�

xn1 ���nkðnk þ xÞ
n1 ���nk� 1 � � � ðn2 þ xÞ

n1ðn1 þ xÞ

¼ xm1 ���mlðml þ xÞ
m1���ml� 1 � � � ðm2 þ xÞ

m1ðm1 þ xÞ;

which, since n1, . . ., nk, m1, . . .,ml� 2, on its turn implies the equalities

xn1 ���nk ¼ xm1 ���ml ; i:e:; n1 � � � nk ¼ m1 � � �ml;

ðx þ nkÞ
n1���nk� 1 � � � ðx þ n2Þ

n1ðx þ n1Þ

¼ ðx þmlÞ
m1 ���ml� 1 � � � ðx þm2Þ

m1ðx þm1Þ:
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If l = 1, the right-hand side polynomial in the second equality is simply x +m1 and then this

equality of polynomials implies that k = 1 and n1 =m1, which contradicts the assumption that

FSn1 ;...;nk
6¼ FSm1 ;...;ml

. Now assume that l� 2. From the first equality we know that n1� � �nk =

m1� � �ml. But, the root of the left-hand side polynomial in the second equality with largest

multiplicity is −nk (because, by Lemma 15, n1� � �nk−1 alone is greater than the degree of

ðx þ nk� 1Þ
n1 ���nk� 2 � � � ðx þ n2Þ

n1ðx þ n1Þ) and, similarly, the root of the right-hand side polyno-

mial in the second equality with largest multiplicity is −ml. Therefore, the equality of both

polynomials implies that nk =ml and hence, by Lemma 14, df ðFSn1 ;...;nk� 1
Þ ¼ df ðFSm1 ;...;ml� 1

Þ,

against the assumption on l. As in the previous proof, this contradiction implies that CD;f is

sound.

The same argument proves that, for every transcendental number r> 1, the function f(n) =

logr(n + r) defines sound indices CD;f . However, if r is not transcendental, then such a CD;f

need not be sound. For instance, dlog2ðnþ2ÞðFS9;6Þ ¼ dlog2ðnþ2ÞðFS20;2Þ ¼ 81þ log
2
ð11Þ.

Summarizing, each one of the functions f(n) = ln(n + e) and f(n) = en defines, for every dis-

similarity D, a Colless-like index CD;f that reaches its minimum value on each T �n, 0, at exactly

the fully symmetric trees.

Results

Maximally unbalanced trees

The next results give the maximum values of CD;f on T �n when D = MDM, var or sd and f(n) =

ln(n+ e) or f(n) = en. These maxima define the range of each CD;f on T �n, and, dividing by them,

we can define normalized Colless-like indices that can be used to compare the balance of trees

with different numbers of leaves.

We begin with the function f(n) = ln(n + e), which is covered by the following theorem.

Theorem 18. Let f be a function N! R�0 such that 0< f(k)< f(k − 1) + f(2), for every k�
3. Then, for every n� 2, the indices CMDM;f , Csd;f and Cvar;f reach their maximum values on T �n
exactly at the comb Kn. These maximum values are, respectively,

CMDM;df
ðKnÞ ¼

f ð0Þ þ f ð2Þ
4

ðn � 1Þðn � 2Þ;

Csd;df
ðKnÞ ¼

f ð0Þ þ f ð2Þ
2
ffiffiffi
2
p ðn � 1Þðn � 2Þ;

Cvar;df
ðKnÞ ¼

ðf ð0Þ þ f ð2ÞÞ2

12
ðn � 1Þðn � 2Þð2n � 3Þ:

The proof of this theorem is very long, and we devote to it the first three sections in S1 File,

one section for each dissimilarity.

It is straightforward to check that the function f(n) = ln(n + e) satisfies the hypothesis of

Theorem 18 (for the inequality f(k)� f(k − 1) + f(2), notice that ln(k + e)� ln(k + e − 1) + ln

(2) if, and only if, k + e� 2(k + e − 1), and this last inequality is true for every k 2 N). There-

fore, CMDM;lnðnþeÞ, Cvar;lnðnþeÞ, and Csd;lnðnþeÞ take their maximum values on T �n at the comb Kn. In

other words, the combs are the most unbalanced trees according to these indices. Table B in S2

File gives the values of CMDM;lnðnþeÞ, Cvar;lnðnþeÞ, and Csd;lnðnþeÞ on T �n, for n = 2, 3, 4, 5, and the

positions of the different trees in each T �n according to the increasing order of the correspond-

ing index.

And for f(n) = en, we have the following result. We have also moved its proof to the S1 File.

Theorem 19. For every n� 2:
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(a) If n 6¼ 4, then both CMDM;en and Csd;en reach their maximum on T �n exactly at the tree FS1 ?

FSn−1 (see Fig 7), and these maximum values are

CMDM;enðFS1 ? FSn� 1Þ ¼
1

2
ðen� 1 þ n � 2Þ;

Csd;enðFS1 ? FSn� 1Þ ¼
1
ffiffiffi
2
p ðen� 1 þ n � 2Þ:

(b) Both CMDM;en and Csd;en reach their maximum on T �
4
exactly at the comb K4, and these maxi-

mum values are

CMDM;enðK4Þ ¼
3

2
ðe2 þ 1Þ;

Csd;enðK4Þ ¼
3
ffiffiffi
2
p ðe2 þ 1Þ:

(c) Cvar;en always reaches its maximum on T �n exactly at the tree FS1 ? FSn−1, and the maximum
value is

Cvar;enðFS1 ? FSn� 1Þ ¼
1

2
ðen� 1 þ n � 2Þ

2
:

So, according to CMDM;en , Cvar;en , and Csd;en , the trees of the form FS1 ? FSn−1 are the most

unbalanced (except for n = 4 and D = MDM or sd, in which case the most unbalanced tree is

the comb). Table B in S2 File also gives the values of these indices on T �n, for n = 2, 3, 4, 5, and

the positions of the different trees in each T �n according to the increasing order of the corre-

sponding index.

The R package “CollessLike”

We have written an R package called CollessLike, available at the CRAN (https://cran.r-project.

org/web/packages/CollessLike/index.html), that computes the Colless-like indices and their

Fig 7. The tree FS1 ? FSn−1.

https://doi.org/10.1371/journal.pone.0203401.g007
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normalized version, as well as several other balance indices, and simulates the distribution of

these indices on T n under the α-γ-model [10]. This package contains functions that:

• Compute the following balance indices for multifurcating trees: the Sackin index S [4–6], the

total cophenetic index F [8], and the Colles-like index CD;f for several predefined dissimilari-

ties D and functions f as well as for any user-defined ones.

Our functions also compute the normalized versions (obtained by subtracting their mini-

mum value and dividing by the width of their range, so that they take values in [0, 1]) of S, F

and the Colless-like indices CD;f for which we have computed the range in Theorems 18 and

19. Recall from the aforementioned references that, for every n� 2:

• the range of S on T �n is S(FSn) = n to SðKnÞ ¼ 1

2
ðnþ 2Þðn � 1Þ

• the range of F on T �n is F(FSn) = 0 to FðKnÞ ¼
n
3

� �

Therefore, for every T 2 T n, the normalized Sackin and total cophenetic index are, respec-

tively,

SnormðTÞ ¼
SðTÞ � n

1

2
ðnþ 2Þðn � 1Þ � n

; FnormðTÞ ¼
FðTÞ
� n

3

� ;

while, for instance, the normalized version of CMDM;lnðnþeÞ is

CMDM;lnðnþeÞ;normðTÞ ¼
CðTÞ

1þlnðeþ2Þ

4
ðn � 1Þðn � 2Þ

:

• Given two natural numbers n and N, produce a random sample of N values of a balance

index S, F, or CD;f on trees in T n generated following an α-γ-model: the parameters N, n,

α, γ (with 0� γ� α� 1) can be set by the user.

Due to the computational cost of this function, we have stored the values of S, F, and

CMDM;lnðnþeÞ (denoted henceforth simply by C) on the random samples of N = 5000 trees in

each T n (for every n = 3, . . ., 50 and for every α, γ 2 {0, 0.1, 0.2, . . ., 0.9, 1} with γ� α) gener-

ated in the study reported in the next subsection. In this way, if the user is interested in this

range of numbers of leaves and this range of parameters, he or she can study the distribution

of the corresponding balance index efficiently and quickly.

• Given a tree T 2 T n, estimate the percentile qT,n,α,γ of its balance index S, F, or CD;f with

respect to the distribution of this index on T n under some α-γ-model. If n, α, γ are among

those mentioned in the previous item, for the sake of efficiency this function uses the data-

base of computed indices to simulate the distribution of the balance index on T n under this

α-γ-model.

For instance, the unlabeled tree T 2 T �
8

in Fig 8 is the shape of a phylogenetic tree ran-

domly generated under the α-γ-model with α = 0.7 and γ = 0.4 (using set.seed(1000) for

reproducibility). The values of its balance indices are given in the figure’s caption.

Fig 9 displays the estimation of the density function of the balance indices C, S, and F

under the α-γ-model with α = 0.7 and γ = 0.4 on T 8, obtained using the 5000 random trees

gathered in our database. Moreover, the estimated percentiles of the balance indices of the tree

of Fig 8 are also shown in the figure.

Fig 10 shows a percentile plot of C, S, and F under the α-γ-model for α = 0.7 and γ = 0.4 on

T 8. The percentiles of the tree of Fig 8 are given by the area to the left of the vertical lines.
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Fig 9. The estimated density function of the distribution of C, S and F on T 8 under the α-γ-model with α = 0.7

and γ = 0.4. The percentiles of the tree in Fig 8 are also represented.

https://doi.org/10.1371/journal.pone.0203401.g009

Fig 8. A tree with 8 leaves randomly generated under the α-γ-model with α = 0.7 and γ = 0.4. Its indices are CðTÞ ¼ 1:746, S(T) = 18, and F

(T) = 14, and its normalized indices are CnormðTÞ ¼ 0:06518, Snorm(T) = 0.3704, and Fnorm(T) = 0.25.

https://doi.org/10.1371/journal.pone.0203401.g008
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A special case of the α-γ-model, corresponding to the case α = γ, is Ford’s α-model for

bifurcating phylogenetic trees [17]. This model includes as special cases the Yule, or Equal-

Rate Markov, model [18, 19] and the uniform, or Proportional to Distinguishable Arrange-

ments, model [20, 21]. So, this package allows also to study this model. For example, the

unlabeled tree in Fig 11 has been generated (with set.seed(1000)) using n = 8 and α =

γ = 0.5, which corresponds to the uniform model. The figure also depicts the estimation of the

density functions and of the percentile plots of C, S, and F on T 8 under this model, as well as

the percentile values of the tree.

Experimental results on TreeBASE

To assess the performance of CMDM;lnðnþeÞ, which we abbreviate by C, we downloaded (Decem-

ber 13-14, 2015) all phylogenetic trees in the TreeBASE database [11] using the function

search_treebase()of the R package treebase [22]. We obtained 13,008 trees, from

which 80 had format problems that prevented R from reading them, so we restricted ourselves

to the remaining 12,928 trees. To simplify the language, we shall still refer to this slightly

Fig 10. Percentile plot of the distribution of C, S and F on T 8 under the α-γ-model with α = 0.7 and γ = 0.4. The

percentiles of the tree of Fig 8 are also highlighted.

https://doi.org/10.1371/journal.pone.0203401.g010
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smaller subset of phylogenetic trees as “all trees in TreeBASE”. Only 4,814 among these 12,928

trees in TreeBASE are bifurcating.

Then, for every phylogenetic tree T in this set, we have computed its Colless-like index

CðTÞ, its Sackin index S(T), and its total cophenetic index F(T). We have compared the results

in the ways we show next (all analysis have been performed with R [23]).

Behavior as functions of the number of leaves. For every number of leaves n, we have

computed the mean and the variance of C, S and F on all trees with n leaves in TreeBASE.

Then, we have computed the regression of these values as a function of n.

For the means, the best fits have been:

• Colless-like index: C � 0:5351 � n1:5848, with a coefficient of determination of R2 = 0.9869 and

a p-value for the exponent p< 2 � 10−16.

• Sackin index: S � 1:4512 � n1:4359, with a coefficient of determination of R2 = 0.9953 and a p-

value for the exponent p< 2 � 10−16.

• Total cophenetic index: F � 0:1894 � n2:5478, with a coefficient of determination of

R2 = 0.9945 and a p-value for the exponent p< 2 � 10−16.

Fig 12 depicts these mean values of C (left), S (center), and F (right) as functions of n.

Fig 11. A bifurcating tree randomly generated under the uniform model, the estimated density function of the distribution of the three

balance indices on T 8 under the uniform model, and their percentile plot.

https://doi.org/10.1371/journal.pone.0203401.g011
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Thus, S and C have similar mean growth rates, while F has a mean growth rate one order

higher in magnitude. This difference vanishes if we normalize the indices by their range width,

which is O(n2) for C and S, and O(n3) for F:

Cnorm � 0:8389 � n� 0:4152

Snorm � 2:9024 � n� 0:5641

Fnorm � 1:1364 � n� 0:4522

As for the behavior of the variances, the best fits are the following:

• Colless index: varðCÞ � 0:07599 � n3:12831, with a coefficient of determination of R2 = 0.962

and a p-value for the exponent p< 2 � 10−16.

• Sackin index: Var(S)� 0.03182 � n3.22441, with a coefficient of determination of R2 = 0.9575

and a p-value for the exponent p< 2 � 10−16.

• Total cophenetic index: Var(F)� 0.0041 � n5.2075, with a coefficient of determination of

R2 = 0.9812 and a p-value for the exponent p< 2 � 10−16.

The results are in the same line as before, with the variances of C and S having similar

growth rates, and the variance of F having a growth rate two orders of magnitude higher. This

difference vanishes again when we normalize the indices:

varðCnormÞ � 0:18677 � n� 0:87169

varðSnormÞ � 0:12728 � n� 0:77559

varðFnormÞ � 0:1476 � n� 0:7925

So, in summary, C has, on TreeBASE and relative to the range of values, a slightly larger mean

growth rate and a slightly smaller variance growth rate than the other two indices.

Numbers of ties. The number of ties (that is, of pairs of different trees with the same

index value) of a balance index is an interesting measure of quality, because the smaller its fre-

quency of ties, the bigger its ability to rank the balance of any pair of different trees. Although,

in our opinion, this ability need not always be an advantage: for instance, neither F nor S take

the same, minimum, value on all different fully symmetric trees with the same numbers of

leaves (for example, S(FS6) = 6 but S(FS2,3) = S(FS3,2) = 12; and F(FS6) = 0, but F(FS3,2) = 3

Fig 12. Growth of the mean value of C (left), S (center), and F (right) in TreeBASE, as functions of the trees’ numbers of leaves n.

https://doi.org/10.1371/journal.pone.0203401.g012
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and F(FS2,3) = 6; cf. Fig 5), while C applied to any fully symmetric tree is always 0. In this case,

we believe that these ties are fair.

Anyway, for every number of leaves n and for every one of all three indices under scrutiny,

we have computed the numbers of pairs of trees with n leaves in TreeBASE having the same

value of the corresponding index (in the case of C, up to 16 decimal digits). Fig 13 plots the fre-

quencies of ties of C, S and F as functions of n. As it can be seen in this graphic, C and F have

a similar number of ties, and consistently less ties than S.

Spearman’s rank correlation. In order to measure whether all three indices sort the trees

according to their balance in the same way or not, we have computed the Spearman’s rank cor-

relation coefficient [24] of the indices on all trees in TreeBASE, as well as grouping them by

their number of leaves n.

Fig 13. Numbers of ties of C, S, and F in TreeBASE, as functions of the trees’ numbers of leaves n.

https://doi.org/10.1371/journal.pone.0203401.g013
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The global Spearman’s rank correlation coefficient of C and S is 0.9765, and that of C and F

is 0.9619. The graphics in Fig 14 plot these coefficients as functions of n. As it can be seen,

Spearman’s rank correlation coefficient for C and S grows with n, approaching to 1, while the

coefficient for C and F shows a decreasing tendency with n.

Does TreeBASE fit the uniform model or the alpha-gamma model?

In this subsection, we test whether the distribution of the Colless-like index of the phylogenetic

trees in TreeBASE agrees with its theoretical distribution under either the uniform model for

multifurcating phylogenetic trees [25] or the α-γ-model [10] for some parameters α, γ. To do

it, we use the normalized version Cnorm of C, which can be used simultaneously on trees with

different numbers of leaves.

To estimate the theoretical distribution of this index under the two aforementioned theoret-

ical models, for every n = 3, . . ., 50 we have generated, on the one hand, 10,000 random phylo-

genetic trees in T n under the uniform model using the algorithm described in [25], and, on

the other hand, 5000 random phylogenetic trees in T n under the α-γ-model for every pair of

parameters (α, γ)2{0, 0.1, 0.2, . . ., 0.9, 1}2 with γ� α. We have computed the value of Cnorm on

all these trees, and we have used the distribution of these values as an estimation of the corre-

sponding theoretical distribution. To test whether the distribution of the normalized Colless-

like index on TreeBASE (or on some subset of it: see below) fits one of these theoretical distri-

butions, we have performed two non-parametric statistical tests on the observed set of indices

of TreeBASE and the corresponding simulated set of indices: Pearson’s chi-squared test and

the Kolmogorov-Smirnov test, using bootstrapping techniques in the latter to avoid problems

with ties.

As a first approach, we have performed these tests on the whole set of trees in TreeBASE.

The p-values obtained in all tests, be it for the uniform model or for any considered pair (α, γ),

have turned out to be negligible. Then, we conclude confidently that the distribution of the

normalized Colless-like index on TreeBASE does not fit either the uniform model or any α-γ-

model when we round α, γ to one decimal place. For instance, Fig 15 displays the distribution

Fig 14. Spearman’s rank correlation coefficient of C and S (left) and of C and F (right) in TreeBASE, as functions of the trees’ numbers

of leaves n.

https://doi.org/10.1371/journal.pone.0203401.g014
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of Cnorm on TreeBASE and its estimated theoretical distribution under the uniform model. As

it can be seen, these distributions are quite different, which confirms the conclusion of the sta-

tistical test.

Fig 16 displays the distribution of Cnorm for all trees in TreeBASE and its estimated theoreti-

cal distribution under the α-γ-model for the pair of parameters α, γ that gave the largest p-

values in the goodness of fit tests, which are α = 0.7 and γ = 0.4. Although graphically both dis-

tributions are quite similar, the p-values of the Pearson chi-squared test and of the Kolmogo-

rov-Smirnov test are virtually zero. One might think that the high “peaks” of the theoretical

distribution near 0 and 1 could have influenced the outcome of these statistical tests. For this

Fig 15. The distribution of Cnorm on all trees in TreeBASE (black line) and its estimated theoretical distribution under the uniform

model (red line).

https://doi.org/10.1371/journal.pone.0203401.g015

Sound Colless-like balance indices for multifurcating trees

PLOS ONE | https://doi.org/10.1371/journal.pone.0203401 September 25, 2018 23 / 27

https://doi.org/10.1371/journal.pone.0203401.g015
https://doi.org/10.1371/journal.pone.0203401


reason, we have repeated them without taking into account these “extreme” values, and the

results have been the same.

Since TreeBASE gathers phylogenetic trees of different types and from different sources, we

have also considered subsets of it defined by means of attributes. More specifically, besides the

whole TreeBASE as explained above, we have also considered the following subsets of it:

• All trees in TreeBASE up to repetitions: we have removed 513 repeated trees (which repre-

sent about a 4% of the total).

Fig 16. The distribution of Cnorm on all trees in TreeBASE (black line) and its estimated theoretical distribution under the α-γ-model

with α = 0.7 and γ = 0.4 (blue line).

https://doi.org/10.1371/journal.pone.0203401.g016
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• All trees with their kind attribute equal to “Species”. This kind attribute can take three val-

ues: “Barcode tree”, “Gene Tree” and “Species Tree”.

• All trees with their kind attribute equal to “Species” and their type attribute equal to

“Consensus”. This type attribute can take two values: “Consensus” and “Single”.

• All trees with their kind attribute equal to “Species” and their type attribute equal to

“Single”.

We have repeated the study explained above for these four subsets of TreeBASE, comparing

the distribution of the normalized Colless-like indices of their trees with the estimated theoret-

ical distributions by means of goodness-of-fit tests, and the results have been the same, that is,

all p-values have also turned out to be negligible. Our conclusion is, then, that neither the

whole TreeBASE nor any of these four subsets of it seem to fit either the uniform model or

some α-γ-model.

Conclusions

In this paper we have introduced a family of Colless-like balance indices CD;f , which depend on

a dissimilarity D and a function f : N! R�0, that generalize the Colless index to multifurcat-

ing phylogenetic trees. We have proved that every combination of a dissimilarity D and a func-

tion either f(n) = ln(n + e) or f(n) = en, defines a Colless-like index that is sound in the sense

that the maximally balanced trees according to it are exactly the fully symmetric ones. But, the

growth of the function f determines strongly which are the most unbalanced trees according to

CD;f , and hence it has influence on the very notion of “balance” measured by the index.

In our opinion, choosing ln(n + e) instead of en seems a more sensible decision, because, on

the one hand, the most unbalanced trees according to the former are the expected ones—the

combs—and, on the other hand, we have encountered several hard numeric problems when

working with the extremely large figures that appear when using en-sizes on trees with internal

nodes of high degree. With respect to the choice of the dissimilarity D, MDM and sd define

indices that are proportional to the Colless index when applied to bifurcating trees. From these

two options, we recommend to use MDM because it only involves linear operations, and

hence it has less numerical precision problems than sd, that uses a square root of a sum of

squares. This is the reason we have stuck to CMDM;lnðnþeÞ in the numerical experiments reported

in the Results section.

To end this paper, we would like to call the reader’s attention on the problem posed in the

subsection “Sound Colless-like indices:” to find functions f such that CD;f is sound. Our conjec-

ture is that there is no function f : N! N taking values in the set of natural numbers that sat-

isfies this property.
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