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Abstract. We consider settings of the Dunkl Laplacian, the Dunkl harmonic oscillator, and the Dunkl

Ornstein-Uhlenbeck operator with the underlying group of reflections isomorphic to Zd
2. In each of

these contexts we admit all real-valued multiplicity functions, not necessarily bounded from below, and

construct the corresponding ‘exotic’ transform or orthogonal system. This leads to new Dunkl operator

based frameworks, which generalize those yet well known, and in which harmonic analysis can reasonably
be developed. To support the last claim, in all the cases we study the associated heat semigroup maximal

operators and prove that they are bounded on Lp, p > 1, and from L1 to weak L1.

1. Introduction and preliminaries

In this paper we consider three settings related to the Dunkl operators in Rd, d ≥ 1, with the underlying
group of reflections isomorphic to Zd2. For this reflection group the associated multiplicity functions are
represented by multi-parameters α ∈ Rd. In our notation, which for technical reasons differs from the
common one by a shift by 1/2 in each coordinate of α, the parameter α0 = (−1/2, . . . ,−1/2) corresponds
to the trivial multiplicity function. For basic concepts, facts, and results concerning the Dunkl theory we
refer to [1, 2, 3, 4].

Let d ≥ 1 and α ∈ Rd. The Dunkl operators

Tαj f(x) =
∂

∂xj
f(x) + (2αj + 1)

f(x)− f(σjx)

2xj
, j = 1, . . . , d,

form a commuting system of difference-differential operators acting on sufficiently regular functions de-
fined on Rd; here σj denotes the reflection with respect to the hyperplane in Rd orthogonal to the jth
coordinate vector. The Dunkl Laplacian is naturally defined as

[DL,Zd2] ∆αf(x) = −
d∑
j=1

(
Tαj
)2
f(x)

= −
d∑
j=1

(
∂2

∂x2
j

f(x) +
2αj + 1

xj

∂

∂xj
f(x)− (2αj + 1)

f(x)− f(σjx)

2x2
j

)
.

Closely related to ∆α there are two other important difference-differential operators occurring in the
Dunkl theory, namely the Dunkl harmonic oscillator and the Dunkl Ornstein-Uhlenbeck operator:

[DHO,Zd2] Lαf(x) = ∆αf(x) + |x|2,

[DOU,Zd2] Uαf(x) = ∆αf(x) + 2x · ∇f(x).

A variant of Uα with the standard Euclidean gradient ∇ replaced by the Dunkl one, ∇α = (Tα1 , . . . , T
α
d ),

also appears in the literature; see e.g. [5].
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When α ∈ (−1,∞)d all the three operators, ∆α, Lα and Uα, ‘govern’ harmonic analysis frameworks
in which they play roles similar to that of the Euclidean Laplacian in the classical harmonic analysis
(actually, ∆α0

= −∆, ∇α0
= ∇, and we recover the classical situations). In case of ∆α there exists an

analogue of the Fourier transform called the Dunkl transform, and for Lα and Uα there are orthogonal
bases of eigenfunctions in suitable L2 spaces consisting of the so-called generalized Hermite functions and
polynomials, respectively. This enables one to define in a canonical way self-adjoint extensions of ∆α, Lα
and Uα, and then develop harmonic analysis related to them.

However, if α /∈ (−1,∞)d this nice picture breaks down. The Dunkl transform is not even defined in
the relevant L2 space, and the same for the above mentioned orthogonal systems. Thus the motivation
and the main aim of this paper is to bring in an ‘exotic’ Dunkl transform and ‘exotic’ orthogonal systems
so that for any α ∈ Rd (i.e. for any real-valued multiplicity function) the difference-differential operators
∆α, Lα and Uα can be extended to self-adjoint operators in a fashion indicated above. This leads to new
harmonic analysis frameworks related to Dunkl operators. Our inspiration comes from similar questions
investigated by Hajmirzaahmad [6, 7] in the contexts of Jacobi and Laguerre expansions, as well as from
a recent paper in a similar spirit by Sjögren, Szarek and one of the authors [8], where also the (modified)
Hankel transform setting was considered.

To show that the exotic situations are in fact by no means exotic in the sense of basic harmonic analysis
results, in all the cases we study the associated heat semigroups and their maximal operators. As the
main results we prove that the latter are bounded on Lp, p > 1, and satisfy weak type (1, 1) estimates.
This implies in a standard way pointwise almost everywhere convergence of the semigroups in Lp, p ≥ 1,
to their initial values. It must be emphasized that in the exotic situations the associated measures are
not even locally finite (there exist balls of arbitrarily small radii and infinite measure), hence analysis of
the maximal operators is even more delicate than usually. In this aspect we relay heavily on the results,
methods, and tools elaborated in [8].

The paper is organized as follows. Below, still in this section, we introduce the basic notation used
throughout the paper. Then we also recall some standard facts and conventions concerning Bessel func-
tions needed subsequently. In Sections 2–4 we treat the settings related to ∆α, Lα and Uα, respectively
(in Section 4 also a variant of Uα involving ∇α is considered). In each case we introduce the exotic
situation and prove the maximal theorem. For the sake of clarity and the reader’s convenience, the exotic
contexts are each time presented first in dimension one.

Notation. We use the following notation and abbreviations:

R+ = (0,∞) (positive half-line),

1 = (1, . . . , 1) ∈ Rd+,

〈α〉 = α1 + . . .+ αd (length of a multi-parameter α ∈ Rd),

1 ≡ the constant function equal to 1 on Rd or Rd+,

|x| =
√
x2

1 + . . .+ x2
d (Euclidean norm of x ∈ Rd),

x · y = x1y1 + . . .+ xdyd (dot product of x, y ∈ Rd),

xγ = xγ11 · . . . · x
γd
d , x ∈ Rd+, γ ∈ Rd,

xy = (x1y1, . . . , xdyd), x, y ∈ Rd,
x ∨ y = max(x, y), x, y ∈ R,
x ∧ y = min(x, y), x, y ∈ R.

Given a measure µ, we denote by 〈·, ·〉dµ the standard inner product in L2(dµ). For definitions of A(E)
and mE(α) see the beginning of Section 2.2. We use standard conventions concerning empty sums and
products.

The notation X . Y is used to indicate that X ≤ CY with a positive constant C independent of
significant quantities. We write X ' Y when simultaneously X . Y and Y . X.

Facts and conventions concerning Bessel functions. In this paper we use the Bessel functions Jν(z)
and Iν(z), see e.g. [9], and the parameter will always satisfy ν > −1 (ν is called sometimes the order).
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Jν is the most standard Bessel function, it has infinitely many oscillations (and zeros) over the half-line
R+. On the other hand, the modified Bessel function Iν(z) is strictly positive on R+. Both Jν(z) and
Iν(z) are smooth for z > 0.

In general, the Bessel functions cannot be expressed directly via elementary functions. However, this
is possible if (and only if) ν is half-integer, but not integer. In particular,

J−1/2(z) =

√
2

πz
cos z, J1/2(z) =

√
2

πz
sin z,(1.1)

I−1/2(z) =

√
2

πz
cosh z, I1/2(z) =

√
2

πz
sinh z.(1.2)

Basic asymptotics of Jν(z) and Iν(z) are the following:

Jν(z) ' zν , z → 0+, Jν(z) = O(z−1/2), z →∞,(1.3)

Iν(z) ' zν , z → 0+, Iν(z) ' z−1/2ez, z →∞.(1.4)

Throughout the paper it is understood that

(1.5) z−νJν(z) =

∞∑
n=0

(−1)n(z/2)2n

2νn!Γ(n+ ν + 1)
, z−νIν(z) =

∞∑
n=0

(z/2)2n

2νn!Γ(n+ ν + 1)
,

so that both z 7→ z−νJν(z) and z 7→ z−νIν(z) are even smooth functions of z ∈ R. Their value at z = 0
is 2−ν/Γ(ν + 1).

We now list some inequalities satisfied by Iν(z). In view of [10, Theorem 1], we have

(1.6) Iν+ε(z) < Iν(z), z > 0, ν ≥ −ε/2, ν > −1, ε > 0.

With ε = 1 this is Soni’s inequality (see [11])

(1.7) Iν+1(z) < Iν(z), z > 0, ν ≥ −1/2.

In the spirit of (1.7), taking into account (1.7) and (1.4), we can write

(1.8) Iν+1(z) ≤ CνIν(z), z > 0, ν > −1,

where Cν = 1 for ν ≥ −1/2 (this is optimal, as can be easily verified with the aid of more precise than
(1.4) large argument asymptotics for Iν) and necessarily Cν > 1 in case −1 < ν < −1/2. In fact, see e.g.
[12, Section 3.2], one has

(1.9) Iν+1(z) > Iν(z), z > Mν , −1 < ν < −1/2,

with sufficiently large constants Mν .

2. The Dunkl Laplacian context

In this section we focus on the setting related to the Dunkl Laplacian ∆α. For the sake of clarity of
the presentation, we begin with the one-dimensional situation.

2.1. Classical and exotic [DL,Zd2] contexts in dimension one. We consider the one-dimensional
Dunkl Laplacian ∆α for any α ∈ R. This operator is formally symmetric in L2(R, dwα), where

dwα(x) = |x|2α+1 dx.

The classical Dunkl Laplacian context occurs when α > −1. Then there exists a natural self-adjoint
extension of ∆α (acting initially on, say, C2

c (R \ {0})), call it ∆cls
α , that is given spectrally by the Dunkl

transform. The latter is defined for suitable functions f as

Dαf(z) =
1

2

∫
R
f(x)ψαz (x) dwα(x), z ∈ R,

where
ψαz (x) = ϕαz (x) + ixzϕα+1

z (x), x, z ∈ R,
with

ϕαz (x) = (xz)−αJα(xz).

Observe that (see (1.5)) ϕαz (x) is even with respect to x and also to z. Note that Dα extends to an isometry
on L2(dwα) and its inverse is, up to a reflection, the identity: D−1

α f(z) = Dαf(−z). Further, one has
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∆αψ
α
z = z2ψαz , z ∈ R, and consequently Dα(∆αf)(z) = z2Dαf(z) for sufficiently regular functions.

Therefore ∆cls
α is defined by

∆cls
α f = D−1

α

(
z2Dαf(z)

)
,

Dom ∆cls
α =

{
f ∈ L2(dwα) : z2Dαf(z) ∈ L2(dwα)

}
.

The semigroup Wα
t = exp(−t∆cls

α ) has in L2(dwα) the integral representation

(2.1) Wα
t f(x) =

1

2

∫
R
Wα

t (x, y)f(y) dwα(y), x ∈ R, t > 0,

where

Wα
t (x, y) = Wα

t (x, y) + xyWα+1
t (x, y).

Here

Wα
t (x, y) =

1

(2t)α+1
exp

(
− 1

4t

(
x2 + y2

))(xy
2t

)−α
Iα

(xy
2t

)
;

notice that (see (1.5)) Wα
t (x, y) is an even function of both x and y that is jointly smooth in (x, y, t) ∈

R2 × R+. Note also that, see (1.7)–(1.9),

(2.2) |xy|Wα+1
t (x, y) ≤ CαWα

t (x, y), x, y ∈ R, t > 0,

with the optimal Cα = 1 in case α ≥ −1/2 and Cα > 1 when −1 < α < −1/2.
The kernel Wα

t (x, y) is strictly positive for α ≥ −1/2, see (1.7), whereas for −1 < α < −1/2 it takes
both positive and negative values; thus in the latter case there is no positivity in the sense that Wα

t f ≥ 0
whenever f ≥ 0. Further, the asymptotics (1.4) show that the integral representation (2.1) provides
a pointwise definition of Wα

t f , t > 0, for all f ∈ Lp(dwα), 1 ≤ p ≤ ∞. Since the Bessel semigroup
is conservative, it follows (see Remark 2.1 below) that Wα

t 1 = 1, t > 0. Thus {Wα
t } is a Markovian

symmetric diffusion semigroup for α ≥ −1/2. When −1 < α < −1/2 each Wα
t , t > 0, is not contractive

on L∞ (the counterexample is the odd function f(y) = χ(0,∞)(y)− χ(−∞,0)(y); see the computations in
[13], particularly Lemmas 2.2 and 2.3 there).

Remark 2.1. The Dunkl Laplacian context is connected with that of the (modified) Hankel transform.
The latter expresses as

Hαf(z) =

∫ ∞
0

f(x)ϕαz (x) dwα(x), z > 0,

and the associated heat kernel is precisely Wα
t (x, y) (considered for x, y > 0). It is sometimes also called

the Bessel heat kernel, since the corresponding semigroup of operators is the classical Bessel semigroup,
see e.g. [13, Section 6].

We now pass to the exotic situation and, to begin with, assume that α < 0. Consider the ‘reflected’
functions

ψ̃αz (x) = ϕ̃αz (x) + ixzϕ̃α+1
z (x), x, z ∈ R,

with

ϕ̃αz (x) = |xz|−2αϕ−αz (x)

and define the exotic Dunkl transform by

D̃αf(z) =
1

2

∫
R
f(x)ψ̃αz (x) dwα(x), z ∈ R,

for sufficiently regular f . Decomposing f into its even and odd parts and using basic properties of the

Hankel/exotic Hankel transforms (see [8]), one finds that D̃α extends to an isometry on L2(dwα) and the

inverse coincides with its reflection, D̃−1
α f(z) = D̃αf(−z). Moreover, ∆αψ̃

α
z = z2ψ̃αz , as easily verified.

Thus D̃α(∆αf)(z) = z2D̃αf(z) for suitable f and this leads us to defining an exotic self-adjoint extension
of the Dunkl Laplacian (acting initially on C2

c (R \ {0})) as

∆exo
α f = D̃−1

α

(
z2D̃αf(z)

)
,

Dom ∆exo
α f =

{
f ∈ L2(dwα) : z2D̃αf(z) ∈ L2(dwα)

}
.
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The exotic semigroup W̃α
t = exp(−t∆exo

α ) has in L2(dwα) the integral representation

(2.3) W̃
α

t f(x) =
1

2

∫
R
W̃α

t (x, y)f(y) dwα(y), x ∈ R, t > 0,

with the kernel

W̃α
t (x, y) = W̃α

t (x, y) + xyW̃α+1
t (x, y),

being

W̃α
t (x, y) = |xy|−2αW−αt (x, y).

The kernel W̃α
t (x, y) is not non-negative, it takes both positive and negative values for any given

α < 0. By (1.4) we see that the integral representation (2.3) provides a pointwise definition of W̃α
t f ,

t > 0, for f ∈ Lp(dwα), all 1 ≤ p ≤ ∞, provided that α ≤ −1/2. Furthermore, for such α the operators

{W̃α
t } satisfy the semigroup property on each Lp(dwα), 1 ≤ p ≤ ∞. When α ∈ (−1/2, 0) the so-called

pencil phenomenon occurs, that is, for any given t > 0, the requirement that W̃α
t f is well defined by

(2.3) for all f ∈ Lp(dwα) forces the restriction p > 2α + 2. Furthermore, if we in addition require that

W̃α
t f is in Lp(dwα) then the dual restriction p < (2α+ 2)/(2α+ 1) comes into play.
For further reference we note that, see (1.7)–(1.9),

(2.4) W̃α
t (x, y) ≤ Cα|xy|W̃α+1

t (x, y), x, y ∈ R, t > 0,

and here the optimal Cα = 1 for α ≤ −1/2 whereas Cα > 1 whenever α ∈ (−1/2, 0). Moreover, in the
range where the classical and exotic settings overlap with no pencil phenomenon interfering, one has the
control

(2.5) |xy|W̃α+1
t (x, y) ≤ CαWα

t (x, y), x, y ∈ R, t > 0, α ∈ (−1,−1/2],

with Cα = 1 and equality for α = −1/2. This follows from (1.6).

Remark 2.2. The connection of the exotic Dunkl Laplacian situation with the exotic Hankel one is the
following, cf. [8]. The exotic (modified) Hankel transform is

H̃αf(z) =

∫ ∞
0

f(x)ϕ̃αz (x) dwα(x), z > 0,

and the corresponding exotic Bessel semigroup has the integral kernel W̃α
t (x, y) restricted to x, y > 0.

Remark 2.3. The case α = −1/2 corresponds to the trivial multiplicity function. Then, see (1.1),

ψ−1/2
z (x) =

√
2

π

(
cos(xz) + i sin(xz)

)
=

√
2

π
eixz,

D−1/2 is the Fourier transform, and 1
2W

−1/2
t (x, y), see (1.2), is the Gauss-Weierstrass kernel. However,

in the exotic situation

ψ̃−1/2
z (x) =

√
2

π
sign(xz)

(
sin(xz) + i cos(xz)

)
=

√
2

π
sign(xz)ie−ixz

so, in a sense, D̃−1/2 arises from the Fourier transform by exchanging the roles of contributions of the

cosine and sine transforms. Furthermore, W̃
−1/2
t (x, y) = sign(xy)W

−1/2
t (x, y), so 1

2W̃
−1/2
t (x, y) is the

Gauss-Weierstrass kernel multiplied by sign(xy).

2.2. Multi-dimensional [DL,Zd2] situation and the maximal theorem. The general Dunkl Lapla-
cian context arises by taking a product of one-dimensional classical and exotic Dunkl Laplacian situations
in the following way. Let d ≥ 1 and α ∈ Rd be a multi-parameter. Consider the product measure in Rd

wα = wα1
⊗ . . .⊗ wαd .

We assume that α ∈ A(E) for some fixed E ⊂ {1, . . . , d}, where the set A(E) is defined by

A(E) =
{
α ∈ Rd : αi < 0 for i ∈ E and αi > −1 for i ∈ Ec

}
;
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here and elsewhere Ec is the complement of E in {1, . . . , d}. The set E indicates which axes are exotic,
thus the particular E = ∅ corresponds to the classical multi-dimensional [DL,Zd2] situation. For α ∈ A(E)
denote its maximal exotic coordinate by

mE(α) =

{
max{αi : i ∈ E}, E 6= ∅,
−∞, E = ∅.

For z ∈ Rd define

Ψα,E
z =

d⊗
i=1

{
ψ̃αizi , i ∈ E ,
ψαizi , i ∈ Ec.

These are eigenfunctions of the d-dimensional Dunkl Laplacian ∆α with the corresponding eigenvalues
|z|2. For suitable f , the generalized Dunkl transform is defined by

Dα,Ef(z) =
1

2d

∫
Rd
f(x)Ψα,E

z (x) dwα(x), z ∈ Rd.

By the corresponding properties of the one-dimensional classical and exotic Dunkl transforms it follows
that Dα,E is an isometry on L2(Rd, dwα) and its inverse is D−1

α,Ef(z) = Dα,Ef(−z).
We consider the self-adjoint extension of ∆α (acting initially on C2

c ((R \ {0})d)) given by

∆α,Ef = D−1
α,E
(
|z|2Dα,Ef(z)

)
,

Dom ∆α,E =
{
f ∈ L2(dwα) : |z|2Dα,Ef(z) ∈ L2(dwα)

}
.

The semigroup Wα,E
t = exp(−t∆α,E) has in L2(dwα) the integral representation

(2.6) Wα,E
t f(x) =

1

2d

∫
Rd

Wα,E
t (x, y)f(y) dwα(y), x ∈ Rd, t > 0,

where the kernel has the product structure

Wα,E
t (x, y) =

∏
i∈E

W̃αi
t (xi, yi)

∏
i∈Ec

Wαi
t (xi, yi), x, y ∈ Rd, t > 0.

This kernel is strictly positive if E = ∅ and α ∈ [−1/2,∞)d; otherwise it takes both positive and negative
values.

When mE(α) ≤ −1/2 the integral formula (2.6) provides a definition of the semigroup Wα,E
t , t > 0,

on all Lp(dwα) spaces, 1 ≤ p ≤ ∞. On the other hand, in case mE(α) > −1/2 a pencil type phenomenon

occurs. For each t > 0 fixed, Wα,E
t is defined by (2.6) in Lp(dwα) and maps this space into itself if and

only if p satisfies

2mE(α) + 2 < p < 1 +
1

2mE(α) + 1
.

Now bring in the maximal operator

Wα,E
∗ f = sup

t>0

∣∣Wα,E
t f

∣∣.
Our objective is to study Lp mapping properties of Wα,E

∗ , especially the weak type (1, 1) estimate (the
latter makes sense only when mE(α) ≤ −1/2). The more subtle and much less standard case mE(α) >
−1/2 requires qualitatively different analysis that is beyond the scope of this paper; cf. [14, 15].

Our main result concerning the [DL,Zd2] context reads as follows.

Theorem 2.4. Let d ≥ 1 and α ∈ A(E) for some E ⊂ {1, . . . , d}. Assume that mE(α) ≤ −1/2. Then

Wα,E
∗ is bounded on Lp(Rd, dwα) for 1 < p ≤ ∞, and satisfies the weak type (1, 1) estimate

wα
{
x ∈ Rd : Wα,E

∗ f(x) > λ
}
≤ C

λ

∫
Rd
|f(x)| dwα(x)

with a constant C independent of λ > 0 and f ∈ L1(Rd, dwα).
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In the classical multi-dimensional Dunkl Laplacian setting (the case of E = ∅) this result is already
known, as well as its weighted generalization, see e.g. [16, Theorem 2.1] and also [17].

Let us introduce an auxiliary maximal operator, acting on functions on Rd+,

Vα,E∗ : f(x) 7→ sup
t>0

∫
Rd+

Vα,Et (x, y)|f(y)| dwα(y),

with the kernel

Vα,Et (x, y) =
∏
i∈E

xiyiW̃
αi+1
t (xi, yi)

∏
i∈Ec

Wαi
t (xi, yi), x, y ∈ Rd+, t > 0.

In view of (2.2), (2.4) and the symmetries involved, it is clear that the following result implies Theorem
2.4.

Lemma 2.5. Let d, α and E be as in Theorem 2.4. Then Vα,E∗ is bounded on Lp(Rd+, dwα) for 1 < p ≤ ∞
and from L1(Rd+, dwα) to weak L1(Rd+, dwα).

Proving Lemma 2.5 we first make several reductions. Observe that we can assume that f ≥ 0, since

the kernel Vα,Et (x, y) is positive. Further, we can consider only α satisfying mE(α) ≤ −1, because of the
majorization (2.5); then E can be dropped from the notation. Finally, in view of the known results in the
non-exotic situation we let E 6= ∅ and furthermore assume, for symmetry reasons, that E = {1, . . . , d′}
for some 1 ≤ d′ ≤ d. Then α = (α′, α′′) ∈ (−∞,−1]d

′ × (−1,∞)d−d
′

and our kernel can be written as

Vαt (x, y) = (x′y′)−2α′−1′
W−α

′−1′

t (x′, y′)Wα′′

t (x′′, y′′), x, y ∈ Rd+, t > 0,

where for z ∈ Rd we denote z′ = (z1, . . . , zd′) ∈ Rd′ and z′′ = (zd′+1, . . . , zd) ∈ Rd−d′ , and W−α
′−1′

t (x′, y′)

and Wα′′

t (x′′, y′′) are d′- and d′′-dimensional classical Bessel heat kernels that are simply products of one-
dimensional Bessel heat kernels. Notice that the double prime part may be void.

We will prove that the maximal operator Vα∗ is bounded on L∞(Rd+) and from L1(Rd+, dwα) to weak

L1(Rd+, dwα). Then the rest of Lemma 2.5 will follow by interpolation.
Considering the L∞-boundedness, since the Bessel semigroup is conservative, it follows immediately

from the one-dimensional lemma below.

Lemma 2.6. Let β ≤ −1/2. Then∫ ∞
0

(xy)−2β−1W−β−1
t (x, y) dwβ(y) ≤ C <∞

with C independent of x > 0 and t > 0.

Proof. The integral in question, denote it by I, can be expressed in terms of a function Hη,γ introduced
in [13, p. 440]. Namely, by [13, Lemma 2.2]

I = H1/2,−β

(x2

4t

)
.

Since [13, Lemma 2.3] implies ‖H1/2,−β‖L∞(R+) <∞, the conclusion follows. �

The proof of the weak type (1, 1) of Vα∗ , in view of the product structure of Vαt (x, y) and weak type
(1, 1) of the Bessel heat maximal operator, reduces to showing the following two lemmas.

Lemma 2.7. For any d ≥ 1, 1 ≤ d′ ≤ d and each α ∈ (−∞,−1]d
′ × (−1,∞)d−d

′
the maximal operator

f(x) 7→ sup
t>0

∫
Rd+
χ{xi/2≤yi≤2xi for i=1,...,d′}Vαt (x, y)f(y) dwα(y), f ≥ 0,

is weak type (1, 1) with respect to dwα.

Proof. We follow the proof of [8, Lemma 3.3], see also the proof of [8, Lemma 4.2]. According to the
notation used there, the operator we need to estimate is

f(x) 7→ sup
t>0

∫
y′∼x′

(x′y′)−2α′−1′
W−α

′−1′

t (x′, y′)Wα′′

t (x′′, y′′)f(y) dwα(y)

' sup
t>0

∫
y′∼x′

W α̌
t (x, y)f(y) dwα̌(y),
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where α̌ = (−α′−1′, α′′) ∈ (−1,∞)d. From here the argument is exactly as in [8], using weak type (1, 1)
of the Bessel heat maximal operator. We leave the details to the reader. �

Lemma 2.8. For each β ≤ −1 the one-dimensional operator

Nβf(x) =

∫ ∞
0

χ{y<x/2 or y>2x}

[
(xy)−2β−1 sup

t>0
W−β−1
t (x, y)

]
f(y) dwα(y), f ≥ 0,

is bounded on L1(R+, dwβ).

Proof. We proceed as in the proof of [8, Lemma 4.3]. The kernel of Nβ is comparable with

N(x, y) = χ{y<x/2 or y>2x}(xy)−2β−1 sup
t>0

(xy + t)β+1/2 1√
t

exp

(
− (x− y)2

4t

)
. (xy)−2β−1(x ∨ y)2β .

Then it suffices to verify that
∫∞

0
(xy)−2β−1(x ∨ y)2β dwβ(x) . 1, which is straightforward. �

Now Lemma 2.5, hence also Theorem 2.4, are proved.

3. The Dunkl harmonic oscillator context

This section is devoted to the Dunkl harmonic oscillator framework. In contrast with the previous
setting, here we deal with discrete orthogonal expansions rather than continuous ones (in terms of the
classical and exotic Dunkl transforms). As we shall see, the maximal theorem in this context can be
concluded without much effort from the analysis in Section 2.

3.1. Classical and exotic [DHO,Zd2] contexts in dimension one. We consider the one-dimensional
Dunkl harmonic oscillator Lα = ∆α + x2 with all α ∈ R admitted. For any α, this operator is formally
symmetric in L2(R, dwα).

The classical Dunkl harmonic oscillator context occurs when α > −1. Then there is a natural self-
adjoint extension of Lα (acting initially on C2

c (R \ {0})), denote it by Lcls
α , given spectrally in terms of

eigenfunction expansions. To make it more precise, let {hαn : n ∈ N} be the system of generalized Hermite
functions, which is an orthonormal basis in L2(dwα) of eigenfunctions of the Dunkl harmonic oscillator,
Lαh

α
n = (2n+ 2α+ 2)hαn. Then the self-adjoint operator Lcls

α is defined by

Lcls
α f =

∞∑
n=0

(2n+ 2α+ 2)〈f, hαn〉dwαhαn

on the domain DomLcls
α consisting of all f ∈ L2(dwα) for which the above series converges in the L2

sense.
The generalized Hermite functions hαn can be represented in terms of Laguerre functions of convolution

type

`αk (x) = cαk e
−x2/2Lαk (x2), k ≥ 0,

where Lαk are the classical Laguerre polynomials and cαk > 0 are normalizing constants so that {`αk : k ∈ N}
is an orthonormal basis in L2(R+, dwα). We have

hα2k(x) = (−1)k2−1/2`αk (x), hα2k+1(x) = (−1)k2−1/2x`α+1
k (x),

where k ≥ 0 and x ∈ R.
The semigroup Gα

t = exp(−tLcls
α ) has in L2(dwα) the integral representation

(3.1) Gα
t f(x) =

1

2

∫
R
Gα
t (x, y)f(y) dwα(y), x ∈ R, t > 0,

with the kernel given by
Gα
t (x, y) = Gαt (x, y) + xyGα+1

t (x, y),

and here

Gαt (x, y) =
1

(sinh 2t)α+1
exp

(
− cosh 2t

2 sinh 2t

(
x2 + y2

))( xy

sinh 2t

)−α
Iα

(
xy

sinh 2t

)
.

The latter is an even function of both x and y that is jointly smooth in (x, y, t) ∈ R2 × R+.
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Remark 3.1. The Dunkl harmonic oscillator context is deeply connected with the setting of Laguerre
function expansions of convolution type. In particular, expansions of even functions with respect to the
system {hαn} reduce to expansions with respect to {`αn} on R+. Furthermore, Gαt (x, y) restricted to x, y > 0
is exactly the heat kernel in the Laguerre situation; see e.g. [18].

Observe that the kernels Wα
t (x, y) and Gαt (x, y) are very similar. Excluding the exponential factors

(which do not depend on α), the latter one is just the first one with 2t replaced by sinh 2t. Thus an
analogue of (2.2) holds,

(3.2) |xy|Gα+1
t (x, y) ≤ CαGαt (x, y), x, y ∈ R, t > 0,

with the optimal Cα = 1 in case α ≥ −1/2 and Cα > 1 when −1 < α < −1/2. Moreover, it is well known
that the Bessel heat kernel controls pointwise the Laguerre one,

(3.3) Gαt (x, y) < Wα
t (x, y), x, y, t > 0, α > −1.

This is clear at least at a formal level, since the Laguerre and Bessel Laplacians differ only by the
(positive) harmonic confinement x2. A direct verification of (3.3) is straightforward by means of (1.5)
and the elementary bounds sinh 2t > 2t and coth 2t > 1/(2t) for t > 0. The estimate (3.3) is crucial
for our purposes since it makes it possible to reduce analysis of the heat maximal operator in the Dunkl
harmonic oscillator context to what we have already proved in the Dunkl Laplacian situation.

The kernel Gα
t (x, y) has similar properties to Wα

t (x, y), which are justified essentially in the same way.
In particular, it is strictly positive for α ≥ −1/2, but it takes both positive and negative values when
−1 < α < −1/2; in the latter case f ≥ 0 does not imply Gα

t f ≥ 0. Further, the integral representation
(3.1) provides a pointwise definition of Gα

t f , t > 0, for all f ∈ Lp(dwα), 1 ≤ p ≤ ∞. In view of (3.3),
Gα
t 1(x) < 1, x ∈ R, t > 0. Accordingly, {Gα

t } is a submarkovian (but not Markovian) symmetric
diffusion semigroup when α ≥ −1/2. On the other hand, for −1 < α < −1/2 the operators Gα

t are
not contractive on L∞ when t > 0 is sufficiently small (the relevant counterexample is the odd function
f(y) = χ(0,∞)(y)− χ(−∞,0)(y)).

Next, we consider the exotic situation. To this end, we assume that α < 0 and bring in the ‘reflected’

system {h̃αn : n ∈ N},

h̃α2k(x) = (−1)k2−1/2 ˜̀α
k (x), h̃α2k+1(x) = (−1)k2−1/2x˜̀α+1

k (x),

where k ≥ 0, x ∈ R, and ˜̀α
k (x) = |x|−2α`−αk (x).

One verifies that {h̃αn} is an orthonormal basis in L2(dwα) and, moreover, these are eigenfunctions of the
Dunkl harmonic oscillator,

Lαh̃
α
n =

(
2n− 2α+ (−1)n2

)
h̃αn, n ≥ 0.

This leads to the following self-adjoint extension of Lα (acting initially on C2
c (R \ {0})):

Lexo
α f =

∞∑
n=0

(
2n− 2α+ (−1)n2

)
〈f, h̃αn〉dwα h̃αn,

DomLexo
α consisting of all f ∈ L2(dwα) for which this series converges in L2(dwα).

The exotic semigroup G̃α
t = exp(−tLexo

α ) has in L2(dwα) the integral representation

(3.4) G̃α
t f(x) =

1

2

∫
R
G̃α
t (x, y)f(y) dwα(y), x ∈ R, t > 0,

the kernel being

G̃α
t (x, y) = G̃αt (x, y) + xyG̃α+1

t (x, y),

with
G̃αt (x, y) = |xy|−2αG−αt (x, y).

One can check that the kernel G̃αt (x, y) here is actually (after restricting to x, y > 0) the exotic Laguerre
heat kernel in the context of expansions in Laguerre functions of convolution type, cf. [8, 18].

All the comments preceding Remark 2.2 carry over into the present situation. Thus the kernel G̃α
t (x, y)

takes both positive and negative values for any given α < 0. The integral representation (3.4) provides a

pointwise definition of G̃α
t f , t > 0, for f ∈ Lp(dwα), all 1 ≤ p ≤ ∞, provided that α ≤ −1/2. Further,
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for such α the operators {G̃α
t } satisfy the semigroup property on each Lp(dwα), 1 ≤ p ≤ ∞. When

α ∈ (−1/2, 0) the pencil phenomenon occurs leading to the restrictions 2α+ 2 < p < (2α+ 2)/(2α+ 1).
Moreover,

(3.5) G̃αt (x, y) ≤ Cα|xy|G̃α+1
t (x, y), x, y ∈ R, t > 0,

and here the optimal Cα = 1 for α ≤ −1/2 whereas Cα > 1 whenever α ∈ (−1/2, 0). One also has

|xy|G̃α+1
t (x, y) ≤ CαGαt (x, y), x, y ∈ R, t > 0, α ∈ (−1,−1/2],

with Cα = 1 and equality for α = −1/2.

Remark 3.2. The case α = −1/2 corresponds to the trivial multiplicity function and so L−1/2 = −∆+x2

is the classic harmonic oscillator. Then in the non-exotic situation {h−1/2
n } is the system of classical

Hermite functions satisfying L−1/2h
−1/2
2k = (4k + 1)h

−1/2
2k , L−1/2h

−1/2
2k+1 = (4k + 3)h

−1/2
2k+1, k ≥ 0. On the

other hand, in the exotic situation

h̃
−1/2
2k (x) = sign(x)h

−1/2
2k+1(x), h̃

−1/2
2k+1(x) = sign(x)h

−1/2
2k (x),

and L−1/2h̃
−1/2
2k = (4k+ 3)h̃

−1/2
2k , L−1/2h̃

−1/2
2k+1 = (4k+ 1)h̃

−1/2
2k+1, k ≥ 0. Furthermore, the relation between

the heat kernels is G̃
−1/2
t (x, y) = sign(xy)G

−1/2
t (x, y).

3.2. Multi-dimensional [DHO,Zd2] situation and the maximal theorem. As in Section 2.2, we
now let d ≥ 1, α ∈ Rd and consider the product measure wα in Rd. We assume that α ∈ A(E) for some
fixed E ⊂ {1, . . . , d}.

For n ∈ Nd define

hα,En =

d⊗
i=1

{
h̃αini , i ∈ E ,
hαini , i ∈ Ec.

The system {hαn : n ∈ Nd} is an orthonormal basis in L2(Rd, dwα) consisting of eigenfunctions of the
d-dimensional Dunkl harmonic oscillator Lα = ∆α + |x|2. One has Lαh

α,E
n = λα,En hα,En , where

λα,En = 2|n|+
∑
i∈E

(
− 2αi + (−1)ni2

)
+
∑
i∈Ec

(2αi + 2).

We consider the self-adjoint extension of Lα (acting initially on C2
c ((R \ {0})d)) defined by

Lα,Ef =
∑
n∈Nd

λα,En 〈f, hα,En 〉dwαhα,En

on the domain DomLα,E consisting of all f ∈ L2(dwα) for which the above series converges in the L2

sense.
The semigroup Gα,Et = exp(−tLα,E) has in L2(dwα) the integral representation

(3.6) Gα,Et f(x) =
1

2d

∫
Rd

Gα,Et (x, y)f(y) dwα(y), x ∈ Rd, t > 0,

where the kernel has the product structure

Gα,Et (x, y) =
∏
i∈E

G̃αi
t (xi, yi)

∏
i∈Ec

Gαi
t (xi, yi), x, y ∈ Rd, t > 0.

This kernel is strictly positive if E = ∅ and α ∈ [−1/2,∞)d; otherwise it takes both positive and negative
values. When mE(α) ≤ −1/2 the integral formula (3.6) provides a pointwise definition of the semigroup

Gα,Et , t > 0, on all Lp(dwα) spaces, 1 ≤ p ≤ ∞. On the other hand, in case mE(α) > −1/2 a pencil type
phenomenon occurs leading to the restriction

2mE(α) + 2 < p < 1 +
1

2mE(α) + 1
.

We have the following result for the maximal operator

Gα,E∗ f = sup
t>0

∣∣Gα,Et f
∣∣.
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Theorem 3.3. Let d ≥ 1 and α ∈ A(E) for some E ⊂ {1, . . . , d}. Assume that mE(α) ≤ −1/2. Then

Gα,E∗ is bounded on Lp(Rd, dwα) for 1 < p ≤ ∞, and from L1(Rd, dwα) to weak L1(Rd, dwα).

Proof. In view of (3.2), (3.5), the symmetries involved and the crucial majorization (3.3), the result
follows from Lemma 2.5. �

In the classical multi-dimensional Dunkl harmonic oscillator setting (i.e. when E = ∅) the result of
Theorem 3.3 and its weighted extension are known, see [18, Theorem 3.1] and also [19, Theorem 1.9(a)].

4. The Dunkl Ornstein-Uhlenbeck operator context

The last framework we consider is that of the Dunkl Ornstein-Uhlenbeck operator Uα. Here we are
more brief comparing to the previous two sections, since the reader is already familiar with the whole
procedure. In the last subsection we treat also an alternative Dunkl Ornstein-Uhlenbeck setting related
to the variant of Uα defined via the Dunkl gradient ∇α. The corresponding maximal theorem concerns
a restricted maximal operator only, but this also suffices to infer almost everywhere convergence of the
semigroup to Lp initial data for 1 ≤ p ≤ ∞.

4.1. Classical and exotic [DOU,Zd2] contexts in dimension one. Consider Uα = ∆α + 2x d
dx with

α ∈ R. This operator is formally symmetric in L2(R, dγα), where

dγα(x) = |x|2α+1e−x
2

dx.

The classical Dunkl Ornstein-Uhlenbeck context occurs when α > −1. Then the generalized Hermite
polynomials

Hα
n (x) = ex

2/2hαn(x), n ∈ N,
form an orthonormal basis in L2(dγα) of eigenfunctions of Uα, being UαH

α
n = 2nHα

n . This leads to a
natural in this situation self-adjoint extension U cls

α of the difference-differential operator Uα.
The semigroup Bα

t = exp(−tU cls
α ) has an integral representation

(4.1) Bα
t f(x) =

1

2

∫
R
Bα
t (x, y)f(y) dγα(y), x ∈ R, t > 0,

with

Bα
t (x, y) = Bαt (x, y) + e−2txyBα+1

t (x, y),

where

Bαt (x, y) = e2(α+1)te(x2+y2)/2Gαt (x, y).

The kernel Bα
t (x, y) and the integral representation (4.1) have analogous properties as their counterparts

in Section 2.1. In particular, {Bα
t } is a Markovian symmetric diffusion semigroup for α ≥ −1/2. We also

have

(4.2) e−2t|xy|Bα+1
t (x, y) ≤ CαBαt (x, y), x, y ∈ R, t > 0,

with the optimal Cα = 1 when α ≥ −1/2 and Cα > 1 for α ∈ (−1,−1/2).
Passing to the exotic situation, we now let α < 0 and consider the ‘reflected’ system

H̃α
n (x) = ex

2/2h̃αn(x), n ∈ N,

which forms an orthonormal basis in L2(dγα). Moreover,

UαH̃
α
n =

(
2n− 4α− 2 + (−1)n2

)
H̃α
n , n ∈ N.

Thus the exotic self-adjoint extension U exo
α of Uα is defined in the natural way.

The exotic semigroup B̃α
t = exp(−tU exo

α ) has the integral representation

(4.3) B̃α
t f(x) =

1

2

∫
R
B̃α
t (x, y)f(y) dγα(y), x ∈ R, t > 0,

with

B̃α
t (x, y) = B̃αt (x, y) + e−2txyB̃α+1

t (x, y),

being

B̃αt (x, y) = e4αt|xy|−2αB−αt (x, y).
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Again, the kernel B̃α
t (x, y) and the representation (4.3) have analogous properties as their counterparts

from Section 2.1, including the pencil phenomenon. Further, we have the bound

(4.4) B̃αt (x, y) ≤ Cαe−2t|xy|B̃α+1
t (x, y), x, y ∈ R, t > 0,

where the optimal Cα = 1 for α ≤ −1/2 and Cα > 1 if α ∈ (−1/2, 0). Furthermore, one also has

(4.5) e−2t|xy|B̃α+1
t (x, y) ≤ CαBαt (x, y), x, y ∈ R, t > 0, α ∈ (−1,−1/2],

with Cα = 1 and equality for α = −1/2.

4.2. Multi-dimensional [DOU,Zd2] situation and the maximal theorem. Let d ≥ 1, α ∈ Rd and
consider the product measure

γα = γα1 ⊗ . . .⊗ γαd
in Rd. Assume that α ∈ A(E) for some E ⊂ {1, . . . , d}.

For n ∈ Nd define

Hα,En =

d⊗
i=1

{
H̃αi
ni , i ∈ E ,

Hαi
ni , i ∈ Ec.

The system {Hα,En : n ∈ Nd} is an orthonormal basis in L2(Rd, dγα) of eigenfunctions of Uα = ∆α+2x ·∇.
We consider the natural in this situation self-adjoint extension Uα,E of Uα acting initially on C2

c ((R\{0})d).
The semigroup Bα,Et = exp(−tUα,E) has the integral representation

Bα,Et f(x) =
1

2d

∫
Rd

Bα,Et (x, y)f(y) dγα(y), x ∈ Rd, t > 0,

where the kernel is

Bα,Et (x, y) =
∏
i∈E

B̃αi
t (xi, yi)

∏
i∈Ec

Bαi
t (xi, yi), x, y ∈ Rd, t > 0.

Basic properties of the representation and the kernel are completely analogous to those for their coun-
terparts in Section 2.2.

For the maximal operator

Bα,E∗ f = sup
t>0

∣∣Bα,Et f
∣∣

we prove the following result, which in the non-exotic case E = ∅ is already known, see [5, 19, 20].

Theorem 4.1. Let d ≥ 1 and α ∈ A(E) for some E ⊂ {1, . . . , d}. Assume that mE(α) ≤ −1/2. Then

Bα,E∗ is bounded on Lp(Rd, dγα) for 1 < p ≤ ∞, and satisfies the weak type (1, 1) estimate

γα
{
x ∈ Rd : Bα,E∗ f(x) > λ

}
≤ C

λ

∫
Rd
|f(x)| dγα(x)

with a constant C independent of λ > 0 and f ∈ L1(Rd, dγα).

The proof reduces to analysis of an auxiliary maximal operator, acting on functions on Rd+,

Sα,Et : f(x) 7→ sup
t>0

∫
Rd+

Sα,Et (x, y)f(y) dγα(y),

where the kernel is given by

Sα,Et (x, y) =
∏
i∈E

e−2txiyiB̃
αi+1
t (xi, yi)

∏
i∈Ec

Bαit (xi, yi), x, y ∈ Rd+, t > 0.

Taking into account (4.2), (4.4) and the symmetries involved, we see that in order to prove Theorem 4.1
it suffices to show the following.

Lemma 4.2. Let d, α, E be as in Theorem 4.1. Then Sα,E∗ is bounded on Lp(Rd+, dγα) for 1 < p ≤ ∞
and from L1(Rd+, dγα) to weak L1(Rd+, dγα).
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When E = ∅ this result is well-known since up to a simple change of variables xi 7→ x2
i and yi 7→ y2

i

it corresponds to analogous mapping properties of the maximal operator of the Laguerre polynomial
semigroup; see [8] for details and further references.

Proving Lemma 4.2 we make analogous reductions to those introduced to prove Lemma 2.5 in Section
2.2; we also use the same notation. Thus we consider f ≥ 0, may assume mE(α) ≤ −1 (see (4.5)) and
E 6= ∅, E = {1, . . . , d′} for some 1 ≤ d′ ≤ d; we also drop E from the notation. The kernel then can be
assumed to have the form

Sαt (x, y) = e4〈α′〉t+2d′t(x′y′)−2α′−1′
B−α

′−1′

t (x′, y′)Bα
′′

t (x′′, y′′), x, y ∈ Rd+, t > 0,

where B−α
′−1′

t (x′, y′) and Bα
′′

t (x′′, y′′) are d′- and d′′-dimensional kernels that are simply products of

one-dimensional Laguerre-type kernels Bβit (xi, yi).
In view of interpolation, it is enough to prove that Sα∗ is bounded from L1(Rd+, dγα) to weak L1(Rd+, dγα)

and bounded on L∞(Rd+). As for the latter, since the d′′-dimensional semigroup defined via Bα
′′

t (x′′, y′′)
is conservative, the L∞-boundedness follows readily from the following one-dimensional result.

Lemma 4.3. Let β ≤ −1/2. Then

e2(2β+1)t

∫ ∞
0

(xy)−2β−1B−β−1
t (x, y) dγβ(y) ≤ C <∞

with C independent of x > 0 and t > 0.

Proof. The expression on the left-hand side of the inequality, denote it by J , can be expressed in terms
of a function Hη,γ from [13, p. 440]. Indeed, after some computations (see [13, Lemma 2.2]) one gets

J = H1/2,−β

(
e−2tx2

2 sinh 2t

)
.

Then [13, Lemma 2.3] gives the desired conclusion. �

To proceed with the weak type (1, 1) bound for Sα∗ , we invoke the kernel

Kα
s (x, y) = s−d/2

d∏
i=1

(
xi +

√
s
)−2αi−1

exp

(
|x|2 − |(1 + s)x− (1− s)y|2

8s

)
from [8, Section 2.2] that controls Bαt (x, y) after a suitable ‘time’ transformation. In dimension one, one
has

Bαt(s)(x, y) . Kα
s (x, y), x, y > 0, t(s) =

1

2
log

1 + s

1− s
, s ∈ (0, 1).

Then Sα∗ is controlled by the maximal operator

Kα∗ f(x) = sup
0<s<1

∫ ∞
0

Kαs (x, y)f(y) dγα(y), x ∈ Rd+, 0 ≤ f ∈ L1(Rd+, dγα),

where
Kαs (x, y) = (1− s)−2〈α′〉−d′(x′y′)−2α′−1′

K−α
′−1′

s (x′, y′)Kα′′

s (x′′, y′′).

Our task then reduces to showing the following.

Lemma 4.4. Let d ≥ 1 and α ∈ (−∞,−1]d
′ × (−1,∞)d−d

′
for some 1 ≤ d′ ≤ d. Then Kα∗ satisfies

γα
{
x ∈ Rd+ : Kα∗ f(x) > λ

}
≤ C

λ

∫
Rd+
f(x) dγα(x), λ > 0, 0 ≤ f ∈ L1(Rd+, dγα),

with a constant C independent of λ and f .

The proof of this, taking into account the product structure of Kαs (x, y) and [8, Theorem 2.6], boils
down to showing Lemmas 4.5–4.8 below that are suitable modifications of [8, Lemmas 3.3–3.6].

Lemma 4.5. For any d ≥ 1, 1 ≤ d′ ≤ d and each α ∈ (−∞,−1]d
′ × (−1,∞)d−d

′
the maximal operator

Kα∗,1f(x) = sup
0<s<1

∫
Rd+
χ{xi/2≤yi≤2xi for i=1,...,d′}Kαs (x, y)f(y) dγα(y), f ≥ 0,

is of weak type (1, 1) with respect to γα on Rd+.
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Proof. Observe that in the definition of Kαs (x, y) neglecting the factor (1− s)−2〈α′〉−d′ makes the kernel
even bigger. Then one can proceed as in the proof of [8, Lemma 3.3], with the aid of [8, Theorem 2.6],
see also the proof of Lemma 2.7. �

Lemma 4.6. For each β ≤ −1 the one-dimensional operator

Nβ
1 f(x)

=

∫ ∞
0

χ{y<x/2 or y>2x}

[
(xy)−2β−1 sup

0<s≤1/4

(1− s)−2β−1K−β−1
s (x, y)

]
f(y) dγβ(y), f ≥ 0,

is of strong type (1, 1) with respect to γβ on R+.

Proof. The relevant kernel is comparable with

N1(x, y)

= χ{y<x/2 or y>2x}(xy)−2β−1 sup
0<s≤1/4

s−1/2(x+
√
s)2β+1 exp

(
x2 − |(1 + s)x− (1− s)y|2

8s

)
.

Proceeding as in the proof of [8, Lemma 3.4], with the aid of the triangle inequality and [8, Lemma 2.3],
we get

N1(x, y) . (x ∧ y)−2β−1(x ∨ y)−1ex
2

.

Then it is enough to verify that
∫∞

0
(x ∧ y)−2β−1(x ∨ y)−1ex

2

dγβ(x) . 1, y > 0, which is immediate. �

Lemma 4.7. For each β ≤ −1 and δ > −1 the one-dimensional operators

Nβ
2 f(x) = χ(0,1)(x)

∫ ∞
0

[
(xy)−2β−1 sup

1/4<s<1

(1− s)−2β−1K−β−1
s (x, y)

]
f(y) dγβ(y), f ≥ 0,

Nδ
3 f(x) = χ(0,1)(x)

∫ ∞
0

[
sup

1/4<s<1

Kδ
s (x, y)

]
f(y) dγδ(y), f ≥ 0,

are of strong type (1, 1) with respect to γβ and γδ on R+, respectively.

Proof. The strong type (1, 1) of Nδ
3 is a part of [8, Lemma 3.5]. To treat Nδ

2 , we follow the proof of [8,
Lemma 3.5]. The relevant kernel is controlled by

N2(x, y) = χ(0,1)(x)(xy)−2β−1 sup
1/4<s<1

(1− s)−2β−1 exp
(
− 1

16
|(1− s)y|2

)
.

This implies N2(x, y) . χ(0,1)(x)x−2β−1. Since
∫ 1

0
x−2β−1 dγβ(x) <∞, the conclusion follows.

�

Lemma 4.8. For any d ≥ 1, 1 ≤ d′ ≤ d and each α ∈ (−∞,−1]d
′ × (−1,∞)d−d

′
the operator

Kα∗,2f(x) = χRd1 (x)

∫
Rd+

sup
1/4<s<1

Kαs (x, y)f(y) dγα(y), f ≥ 0,

is of weak type (1, 1) with respect to γα on Rd+; here Rd1 := [1,∞)d.

Proof. It is enough to show that sup1/4<s<1Kαs (x, y) is controlled by the right-hand side of [8, (21)]. This

will give the desired conclusion, in view of the proof of [8, Lemma 3.6].
We proceed as in the preliminary part of the just mentioned proof. Taking into account that 1/4 <

s < 1 and then using [8, Lemma 3.7] with suitably chosen parameters we get

Kαs (x, y)

. (1− s)−2〈α′〉−d′(x′y′)−2α′−1′
(x′)2α′+1′

(x′′)−2α′′−1′′
exp

(
|x|2 − |(1 + s)x− (1− s)y|2

8

)
. x−2α−1 exp

(
|x|2 − |(1 + s)x− (1− s)y|2

16

)
uniformly in 1/4 < s < 1, x ∈ Rd1 and y ∈ Rd+. This bound already implies what is needed, see the details
in the proof of [8, Lemma 3.6]. �
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This finishes proving Theorem 4.1.

4.3. Alternative [DOU,Zd2] context. We briefly consider a variant of the Dunkl Ornstein-Uhlenbeck
context where the standard gradient in Uα is replaced by the Dunkl gradient; this situation was studied
e.g. in [5]. Thus now our operator is

U∇α = ∆α + 2x · ∇α.
In dimension one, for α > −1 we have

U∇α H
α
n =

{
2n, n even
2n+ 4α+ 2, n odd

}
×Hα

n

and for α < 0

U∇α H̃
α
n =

{
2n− 4α, n even
2n− 2, n odd

}
× H̃α

n ,

so proceeding as in Section 4.1 one can define classical and exotic self-adjoint extensions of U∇α . Then the
one-dimensional classical and exotic semigroups have integral representations, analogous to those from
Section 4.1, with the kernels

Bα,∇
t (x, y) =Bαt (x, y) + e−4(α+1)txyBα+1

t (x, y),

B̃α,∇
t (x, y) =B̃αt (x, y) + e−4(α+1)txyB̃α+1

t (x, y),

respectively, where Bαt (x, y) and B̃αt (x, y) are as before.
In the multi-dimensional situation, assuming that α ∈ A(E) for some E ⊂ {1, . . . , d}, Hα,En are eigen-

functions of U∇α , so proceeding as in Section 4.2 we arrive at the semigroup {Bα,∇,Et } represented as

Bα,∇,Et f(x) =
1

2d

∫
Rd

Bα,∇,Et (x, y)f(y) dγα(y), x ∈ Rd, t > 0,

with
Bα,∇,Et (x, y) =

∏
i∈E

B̃αi,∇
t (xi, yi)

∏
i∈Ec

Bαi,∇
t (xi, yi), x, y ∈ Rd, t > 0.

For the restricted maximal operator

Bα,∇,E∗,T f = sup
0<t<T

∣∣Bα,∇,Et

∣∣
we can readily conclude the following result.

Theorem 4.9. Let d ≥ 1 and α ∈ A(E) for some E ⊂ {1, . . . , d}. Assume that mE(α) ≤ −1/2. Then for

any fixed 0 < T < ∞, Bα,∇,E∗,T is bounded on Lp(Rd, dγα) for 1 < p ≤ ∞, and from L1(Rd, dγα) to weak

L1(Rd, dγα).

Proof. This result is implicitly contained in the proof of Theorem 4.1, due to domination of even and odd

parts of the one-dimensional component kernels Bα,∇
t (x, y) and B̃α,∇

t (x, y) by their counterparts from
Section 4.2. �
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