On the use of mixed thia/aza macrocycles in the development of fluorescent chemosensors for toxic heavy metals and fluorescent materials

  1. Bencini, A. 1
  2. Lippolis, V. 2
  3. López-de-Luzuriaga, J.M. 3
  4. Olmos, M.E. 3
  1. 1 University of Florence

    University of Florence

    Florencia, Italia

  2. 2 University of Cagliari

    University of Cagliari

    Cagliari, Italia

  3. 3 Universidad de La Rioja

    Universidad de La Rioja

    Logroño, España

Phosphorus, Sulfur and Silicon and the Related Elements

ISSN: 1563-5325

Year of publication: 2019

Type: Article

Exportar: RIS
DOI: 10.1080/10426507.2019.1603701 SCOPUS: 2-s2.0-85064658478
bar_chart Ver indicadores


The main results from the work of the authors, concerning the use of mixed thia/aza medium sized macrocycles for the development of optically selective fluorescent chemosensors for toxic heavy metals, and luminescent gold(I) complexes will be discussed. Particular attention will be paid to underline both the role played by these macrocyclic ligands in determining the properties of the systems developed and the structure/function relationships observed.

Bibliographic References

  • Sigel, A.,; Sigel, H.,; Sigel, R. K. O. Neurodegenerative Diseases and Metal Ions; New York: Wiley, 2006.
  • Bordberg, G. F.,; Fowler, B. A.,; Nordberg, M.,; Friberg, L. Handbook on the Toxicology of Metals, 3rd ed.; Amsterdam: Elsevier, 2007.
  • de Silva, A. P.,; Gunaratne, H. Q. N.,; Gunnlaugsson, T.,; Huxley, A. J. M.,; McCoy, C. P.,; Rademacher, J. T.,; Rice, T. E. Signaling Recognition Events with Fluorescent Sensors and Switches. Chem. Rev. 1997, 97, 1515–1666. DOI: 10.1021/cr960386p.
  • Fabbrizzi, L. (Guest Ed.) Coord. Chem. Rev 2000, 205, 1. (Special Issue on Luminescent Sensors)
  • Rurack, K. Flipping the Light Switch “on”-the Design of Sensors Molecules That Show Cation-Induced Fluorescence Enhancement with Heavy and Transition Metal Ions. Spectrochim. Acta A 2001, 57, 2161–2195. DOI: 10.1016/S1386-1425(01)00492-9.
  • de Silva, A. P.,; de Silva, S. A. Fluorescent Signaling Crown Ethers; “Switching on” of Fluorescence by Alkali Metal Ion Recognition and Binding in Situ. J. Chem. Soc. Chem. Commun. 1986, 23, 1709–1710. DOI: 10.1039/C39860001709.
  • Bencini, A.,; Lippolis, V. Probing Biologically and Environmentally Important Metal Ions with Fluorescent Chemosensors: Thermodynamic versus Optical Response Selectivity in Some Study Cases. Coord. Chem. Rev. 2012, 256, 149–169. DOI: 10.1016/j.ccr.2011.05.015.
  • Blake, A. J.,; Bencini, A.,; Caltagirone, C.,; De Filippo, G.,; Dolci, L. S.,; Garau, A.,; Isaia, F.,; Lippolis, V.,; Mariani, P.,; Prodi, L.,; et al. A New Pyridine-Based 12-Membered Macrocycle Functionalized with Different Fluorescent Subunits; Coordination Chemistry towards Cu 2+ , Zn 2+ , Cd 2+ , Hg 2+ , and Pb 2+ . Dalton Trans. 2004, 2771–2779. DOI: 10.1039/B407037B.
  • Aragoni, M. C.,; Arca, M.,; Bencini, A.,; Blake, A. J.,; Caltagirone, C.,; De Filippo, G.,; Devillanova, F. A.,; Garau, A.,; Gelbrich, T.,; Hursthouse, M. B.,; et al. Tuning the Selectivity/Specificity of Fluorescent Metal Ion Sensors Based on N2S2 Pyridine-Containing Macrocyclic Ligands by Changing the Fluorogenic Unit: Spectrofluorimetric and Metal Ion Binding Studies. Inorg. Chem. 2007, 46, 4548–4559. DOI: 10.1021/ic070169e.
  • Aragoni, M. C.,; Arca, A.,; Bencini, A.,; Caltagirone, C.,; Garau, A.,; Isaia, A.,; Light, M. E.,; Lippolis, V.,; Lodeiro, C.,; Mameli, M.,; et al. Zn 2+ /Cd 2+ Optical Discrimination by Fluorescent Chemosensors Based on 8-Hydroxyquinoline Derivatives and Sulfur-Containing Macrocyclic Units. Dalton Trans. 2013, 42, 14516–14530. DOI: 10.1039/c3dt51292d.
  • Shamsipur, M.,; Zahedi, M. M.,; De Filippo, G.,; Lippolis, V. Development of a Novel Flow Injection Liquid-Liquid Microextraction Method for the on-Line Sepration and Preconcentration for Determination of Zinc(II) Using 5-(8-Hydroxy-2-Quinolinylmethyl)2,8-Dithia-5-Aza-2,6-Pyridinophane as a Sensitive and Selective Fluorescent Sensors. Talanta. 2011, 85, 687–693. DOI: 10.1016/j.talanta.2011.04.049.
  • Mameli, M.,; Aragoni, M. C.,; Arca, M.,; Caltagirone, C.,; Demartin, F.,; Farruggia, G.,; De Filippo, G.,; Devillanova, F. A.,; Garau, A.,; Isaia, F.,; et al. A Selective. Nontoxic, off-on Fluorescent Molecular Sensor Based on 8-Hydroxyquinoline for Probing Cd 2+ in Living Cells. Chem. Eur. J. 2010, 16, 919–930. DOI: 10.1002/chem.200902005.
  • Bazzicalupi, C.,; Caltagirone, C.,; Cao, Z.,; Chen, Q.,; Di Natale, C.,; Garau, A.,; Lippolis, V.,; Lvova, L.,; Liu, H.,; Lundström, I.,; et al. Multimodal Use of New Coumarin-Based Fluorescent Chemosensors: Towards Highly Selective Optical Sensors for Hg 2+ Probing. Chem. Eur. J. 2013, 19, 14639–14653. DOI: 10.1002/chem.201302090.
  • Arca, M.,; Caltagirone, C.,; De Filippo, G.,; Formica, M.,; Fusi, V.,; Giorgi, L.,; Lippolis, V.,; Prodi, L.,; Rampazzo, E.,; Scorciapino, M. A.,; et al. A Fluorescent Ratiometric Nanosized System for the Determination of Pd II in Water. Chem. Commun 2014, 50, 15259–15262. DOI: 10.1039/C4CC07969H.
  • Shamsipur, M.,; Hosseini, M.,; Alizadeh, K.,; Alizadeh, N.,; Yari, A.,; Caltagirone, C.,; Lippolis, V. Novel Fluorimetric Bulk Optode Membrane Based on Dansylamidopropyl Pendant Arm Derivative of 1-Aza-4,10-Dithia-7-Oxacyclododecane ([12]aneNS 2 O) for Selective Subnanomolar Detection of Hg(II) Ions. Anal. Chim. Acta 2005, 533, 17–24. DOI: 10.1016/j.aca.2004.10.069.
  • Shamsipur, M.,; Alizadeh, K.,; Hosseini, M.,; Caltagirone, C.,; Lippolis, V. A Selective Optode Membrane for Silver Ion Based on Fluorescence Quenching of the Dansylamidopropyl Pendant Arm Derivative of 1-Aza-4,7,10-Trithiacyclododecane ([12]aneNS 3 ). Sensors and Actuators B 2006, 113, 892–899. DOI: 10.1016/j.snb.2005.03.117.
  • Yam, V. W.-W.,; Cheng, E. C.-C. Highlights on the Recent Advances in Gold Chemistry - a Photophysical Perspective. Chem. Soc. Rev. 2008, 37, 1806–1813. DOI: 10.1039/b708615f.
  • Fernández, E. J.,; Laguna, A.,; López-de-Luzuriaga, J. M.,; Monge, M.,; Montiel, M.,; Olmos, M. E.,; Pérez, J. Thallium(I) Acetylacetonate as Building Blocks of Luminescent Supramolecular Architectures. Organometallics 2004, 23, 774–782. DOI: 10.1021/om034167n.
  • Uson, R.,; Laguna, A.,; Manzano, B. R.,; Jones, P. G.,; Sheldrick, G. M. Synthesis and reactivity of bimetallic Au–Ag polyfluorophenyl complexes; crystal and molecular structure of [{AuAg(C 6 F 5 ) 2 (SC 4 H 8 )}n] and [{AuAg(C 6 F 5 ) 2 (C 6 H 6 )}n] J. Chem. Soc., Dalton Trans. 1984, 2, 285–292. DOI: 10.1039/DT9840000285;.
  • Fernández, E. J.,; Lopez de-Luzuriaga, J. M.,; Olmos M. E. Vapochromism in Complexes of Stiochiometry [Au 2 Ag 2 R 4 L 2 ] n . Zeitschrift fur Naturforsch. - Sect. B J. Chem. Sci. 2009, 64, 1500–1512. DOI: 0932–0776/09/1100–1500.
  • Blake, A. J.,; Donamaria, R.,; Lippolis, V.,; López de Luzuriaga, J. M.,; Manso, E.,; Monge, M.,; Olmos, M. E. Influence of Crown Thioether Ligands in the Structures and of Perhalophenyl Groups in the Optical Properties of Complexes with Argentoaurophilic Interactions. Inorg. Chem. 2014, 53, 10471–10484. DOI: 10.1021/ic501515c.
  • Donamaria, R.,; Lippolis, V.,; López de Luzuriaga, J. M.,; Monge, M.,; Nieddu, M.,; Olmos, M. E. Influence of the Number of Metallophilic Interactions and Structures on the Optical Properties of Heterometallic Au/Ag Complexes with Mixed-Donor Macrocyclic Ligands. Inorg. Chem. 2018, 57, 11099–11112. DOI: 10.1021/acs.inorgchem.8b01687.