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Abstract: The clarification process removes colloidal particles that are suspended in waste water.
The efficiency of this process is influenced by a series of inputs or parameters of the coagulation
process, of which the most commonly used are initial turbidity, natural coagulant dosage, temperature,
mixing speed and mixing time. The estimation of the natural coagulant dosage that is required to
effectively remove these total suspended solids is usually determined by a jar test. This test seeks
to achieve the highest efficiency of removal of the total suspended solids while reducing the final
turbidity of waste water. This is often configured in iterative fashion, and requires significant
experimentation and coagulant. This paper seeks to identify regression models that relate the
clarification process parameters to the process outputs (final turbidity and total suspend solid) by the
Response Surface Methodology (RSM) based on experiments of Central Composite Design (CCD) of
experiments that involve three emerging natural coagulants. Several clarification process scenarios
also were proposed and demonstrated using the Multi-Response Surface (MRS) with desirability
functions. The experimental results were found to be in close agreement to what are provided by
the regression models. This validates the use of the MRS-based methodology to achieve satisfactory
predictions after minimal experimentation.

Keywords: clarification process; coagulation; waste water treatment; Multi-Response Surface
methodology

1. Introduction

The management of waste water impacts directly aquatic ecosystems’ biological diversity and
affects significantly our life support systems. The management of waste water is an important
component of the ecosystem and functions in all sectors. These include fresh water and marine water.
The fresh water is exposed to all types of human activity, the water is captured, diverted, treated
and reused to sustain communities and their economies. The water that is used in most human is
not returned to the watershed from which it is caned. Instead, 80–90 percent of the waste water of
developing countries is discharged into surface water, which contains dissolved suspended matter or
dissolved solids that are harmful. Waste water discharges that are not regulated are harmful to the
biological diversity and the planet’s resilience and its capacity to provide basic ecosystem services.
This affects the rural and urban populations. It affects various sectors of human activity, ranging
from agriculture, fisheries, industry to health [1]. Coagulation–flocculation is a commonly used
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chemical treatment process for water [2] and waste water [3]. It has a wide range of application in
water and waste water facilities, because it is efficient and simple to operate [4]. Domestic waste
water usually contains pathogens, suspended solids, nutrients and organic materials [5]. Waste
water treatment is undertaken to satisfy the requirements for discharging treated water into the
environment [6]. The processes of coagulation–flocculation followed by sedimentation and filtration are
used globally in the treatment process before discharging the treated water into the river. Solid–liquid
separation by a coagulation process is considered to be an important process in primary waste water
treatment. Coagulation is a term that is used to describe the process of aggregation of colloidal particles
into large aggregates to attain better stability. Aggregation of the particles occurs by two distinct
mechanisms—charge neutralization and a sweep-floc mechanism. The charge neutralization may be
caused by a specific chemical reaction between positively charged coagulants and negatively charged
colloids, and natural organic matter. Alternatively, it may be caused by the shielding of the negatively
charged sites, resulting in precipitation [7]. The coagulation process is an effective, efficient and
simple method of treating water and waste water and is widely used in treating industrial effluent
or water waste. The selection process and the coagulant dose that is added to the waste water are
extremely important. Inorganic coagulants are frequently used in the coagulation process. In this
regard, many researchers have conducted research of inorganic coagulant (aluminum ferric sulfate
and chloride), synthetic organic polymers (polyacrylamide derivatives and polyethylene amine) [8,9].
However, prolonged and excessive usage of them can have detrimental effects on human health
and living organisms. In addition, these inorganic coagulants can be ineffective in low-temperature
water, result in a high procurement cost and generate significant amounts of toxic sludge. In contrast,
natural coagulants, which are favored, are biodegradable, low in toxicity, cheaper and produce less
sludge [10,11]. Because natural organic coagulants have proved to be effective in removing colloidal
particles and are less expensive than other synthetic and inorganic coagulants [12], their use has been
rising in recent years. In addition, organic coagulants do not contain metallic elements or reduce the
alkalinity of the medium, because it is not subject to hydrolysis in solutions. Due to these characteristics,
this coagulant is an ideal coagulant. The efficiency of the coagulation process is governed by various
factors. These include the type, dosage and alkalinity of the coagulant [13–15], effluent pH [16,17],
mixing speed and time [18] and temperature [19]. Therefore, optimization of these factors or inputs
is crucial in increasing the coagulation treatment efficiency. Consequently, before application of
natural coagulants for the clarification process, these factors must be optimized in order to increase
the efficiency of the treatment. In this regard, the traditional method of experimentation, which is
termed one-variable-at-a-time, involves changing one factor at a time to obtain the optimal conditions.
However, it fails to resolve the relationship between multi-variables due to the complex influences of
these factors. Further, this approach is time-consuming, laborious, and expensive because it requires a
large number of experiments to be carried out [20,21]. To find a solution to this problem, Design of
Experiments (DoE) and Response Surface Methodology (RSM) have been employed to study the effect
of variables and their responses using a minimum number of experiments. RSM is an effective and
efficient mathematical statistical method to build regression models, evaluate the effects of multiple
variables and determine the optimal conditions that will provide desirable responses that successfully
overcome the limitations of the conventional method [19,22–27]. Estimating the amount of coagulant
that is necessary to remove the colloidal particles is normally accomplished by experiment using a
jar test. The jar testing, which was developed almost 100 years ago, is still used to determine the
optimal coagulation condition. Additionally, in solving waste water treatment engineering problems,
soft computing and machine learning-based methods have proved their usefulness [22]. To treat
and purify waste water, researchers have modelled and optimized many factors that influence
the coagulation–flocculation process by means of regression models that were based on machine
learning techniques. Baxter et al. [28], for example, modelled water quality with Artificial Neural
Networks (ANNs) considering the water’s turbidity and final color as outputs variables. In addition,
the optimum dose of chemical flocculants that were necessary for maximum clarification of the waste
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water was found. Multiple Linear Regression (MLR) and ANN were used by other researchers [29]
to model turbidity and aluminum in treated water. Many factors or inputs were considered in
this work including hardness, pH, color, silica, conductivity and turbidity. More recently [30], two
types of Support Vector Machine (SVM) that employed different kernel functions were examined
for use in predicting with K-Nearest Neighbors (KNN) the necessary coagulant dosage in water
treatment plants for various levels of water turbidity. The input parameters in this study were the
dosage, pH and temperature. In this case, the differential functions were radial basis functions and
polynomial functions.

Several researchers have used also the RSM to obtain the optimal combination of inputs or process
variables in the clarification process. However, most of their work is based on the modelling and
optimization of relatively few output and input variables. This makes the optimization problem
much easier. For example, Trinh and Kang [31] used the RSM technique to optimize the coagulation
process in treatment of drinking water. In this case, the input parameters were pH and coagulant
dose, whereas the output variables were turbidity and dissolved organic carbon. Other authors, such
as Khayet et al. [32], investigated the effects of aluminium sulphate for coagulation/flocculation in
removing dye from highly concentrated solutions at different temperatures and initial pH values. Li et
al. [33] recently implemented a Multiple Response Surface (MRS) to optimize the coagulation process
using polyferric chloride and optimizing three process parameters. They were coagulant dosage, pH
and basicity. Subramonian et al. [10] applied RSM based on Central Composite Design (CCD) to
investigate the effects of the main process variables, which included the coagulant dosage, pH and
mixing time, in optimizing the coagulation process using Cassia obtusifolia seed gum and alum.

In the present study, final turbidity (finTurb) and total suspended solids (TSS), as the outputs of
the clarification process, were considered. Meanwhile, the inputs or parameters of the coagulation
process were initial turbidity (iniTurb), dosage of natural coagulant (cuaDose), process temperature (T),
mixing speed (s) and mixing time (t). The main objective of this work was to conduct a comprehensive
optimization study on three different and emerging natural coagulants in the treatment of raw domestic
waste water. Regression models that relate the clarification process parameters to the outputs of the
process were obtained with the use of RSM based on experiments of a CCD. Five clarification process
scenarios were proposed and achieved using the MRS with desirability functions. The work is focused
on the following ranges of input parameters, in which the regression models and the optimization
achieved with MRS were valid: mixing time (t) (30–120 sec), mixing speed (s) (50–100 rpm), water
temperature (T) (10–20 ◦C), initial turbidity (iniTurb) (40–140 NTU) and coagulant dosage (cuaDose)
(1–6 mL). The experimental results were found to be close to the prediction that was derived from the
regression models.

2. Materials and Methods

2.1. Materials

The samples of waste water that was used in this study were collected from the Water Waste
Treatment Plant (WWTP) in Logroño (Spain). The waste water samples were transported to the
laboratory within 15 minutes and then characterized (see Table 1). Three different coagulants were
used in this study. They were ECOTAN BIO 90D, ECOTAN BIO 100 and ECOTAN BIO G150 (Servyeco
Group, Castellón, Spain). The three coagulants that were studied were cationic organic polymers of
essentially vegetal origin and strongly coagulating and flocculating action that act on the systems of
colloidal particles. They neutralize charges and create bridges between these particles. This is the
process that is responsible for the floc formation and consequently the separation by decantation.
None of the coagulants that were used in the research modify the pH of the treated water, because
they did not reduce the alkalinity of the medium. However, they were effective in a pH range of
4.5–8.0. The three emerging natural coagulants can be dosed directly to the water to be treated. Their
application must be carried out at a point where the agitation guarantees the correct homogenization



Water 2019, 11, 398 4 of 21

of the water with the product, to favor the reaction of the polymer with the finest particles and allow
for the formation of flocs. The jar test that was used in the experiments involved a programmable
apparatus (FLOCUMATIC, Selecta, Spain [34]) according to the standard American Society of Testing
Materials (ASTM) D2035-13 [35]. The apparatus consisted of six paddles on a bench. The paddles
were connected to each other by a gear mechanism, and were rotated simultaneously by the same
motor at a controlled speed and time. A jar test procedure was established at different temperatures
for each experimental run. Waste water samples with a volume of 1000 mL each were transferred to
the jars. Then, the required doses of different coagulants were added to each beaker during the flash
mixing stage (the speed of the jar test and the time were varied throughout each experiment). Finally,
the treated waste water was left to settle for 30 min. After the jar test had been completed, the treated
waste water was analyzed to determine the finTurb, TSS and hence the extent of pollutant removal.
The finTurb measurement was conducted with a 2100Q Turbidimeter (HACH, Loveland, CO, USA)
according to the ASTM D1889-00 [36] standard, and TSS was performed following the standard ASTM
D5907-10 method [37].

Table 1. Waste water characterization.

pH DQO (mg/L) DBO (mg/L) Nt (mg/L) NH4 (mg/L) Pt (mg/L)

7.48 306.71 147.84 34.21 18.54 4.26

Response Surface Method for Optimizing the Clarification Process

The RSM method determines the relationships between input variables and one or more output
variables. It was introduced by Box and Wilson in 1951 [38] for experimental data to be used for a
model or optimal response. RSM was developed initially to model experimental responses. However,
it has found use in optimizing industrial processes and products [39,40]. RSM often appears as a series
of statistical techniques that require a regression model that depends on a low-degree polynomial
function (Equation (1)):

Y = f(X1, X2, X3, ..., Xk) + e (1)

where Y is an experimental response, f consists of cross products of polynomial’s terms, X1, X2, X3, . . . ,
Xk are input vectors, and e is the error. The quadratic (second-order) model is a polynomial function
that is frequently used, and is written as Equation (2):

Y = b0 +
n

∑
i=1

bi × Xi +
n

∑
i =1

bii × X2
i +

n−1

∑
i=1

n

∑
j = i + 1

bij × Xi × Xj + e (2)

where the linear part constitutes the first summation, the quadratic part forms the second part, and the
third part is the product of the pairs of variables. Regression analysis is used to determine the values of
the coefficients b0, bi, bii, and bi. However, good results are not always possible with these functions, if
the problem is complex and involves many inputs and nonlinearities. The reason is that the coefficients
cannot be adjusted if the data are sparse-like continuous functions that are described by polynomials.
The p-value (or Prob. > F) is the probability that the result that will equal or exceed the value that
was actually observed assuming that the model produces results that are accurate. The p-value can
be determined by analysis of the variance (ANOVA). If the model’s Prob. > F and no term exceeds
the level of significance (e.g., α = 0.05), one can consider the model to be acceptable within a (1 − α)
confidence interval. Some investigators have used ANOVA to study the effect of inputs or process
variables on process outputs [41,42]. If a problem has more than one outputs, the latter is termed MRS.
Normally, it causes conflicting solutions, as the optimal configuration may vary significantly from one
output to another. A compromise was suggested by Harrington [43]. It involves desirability functions
for each output, Equations (3) and (4). It also involves an overall desirability. The latter is the mean
value of the desirability (D) of each output (Equation (5)). Equations (3)–(5) can be described as:
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dmax
r =


0 if fr(X) < A(

fr(X)−A
B−A

)S
if A ≤ fr(X) ≤ B

1 if fr(X) > B

(3)

dmin
r =


1 if fr(X) < A(

fr(X)−B
A−B

)S
if A ≤ fr(X) ≤ B

0 if fr(X) > B

(4)

D =

(
R

∏
r=1

dr

)1/R

(5)

where A and B are limiting values, s indicates the importance of reaching the target value, X is the input
vector, and fr is the model for prediction. It is beneficial to use a second-higher-degree polynomial to
optimize responses [44]. In the desirability approach, each estimated response is transformed into a
unit-less utility that is bounded by 0 < dr < 1. A higher value of dr signifies a more desirable response
value. The optimization function of the R package v.1.6 [45] searches for a combination of importance
factors (or weights of 1, 2 or −3) that satisfy the process criteria for each response and input.

2.2. Experiments Design

In order to create accurate models with the minimum amount of data that is necessary to support
the initial hypotheses, RSM must establish a DoE [46]. There are several methods available. However,
they require the construction of a design matrix (inputs) to measure the responses or outputs. In this
case, a CCD [47] that involved three factors and three levels was chosen. The input variables that
were selected to develop the DoE were time (t), temperature (T), speed (S), initial turbidity (iniTurb),
and coagulant dosage (cuaDose). The factors that were selected by experiment for optimization and
their respective ranges were: mixing time (30–120 sec), mixing speed (50–100 rpm), water temperature
(10–20 ◦C), initial turbidity (40–140 NTU) and coagulant dosage (1–6 mL). The model was valid only
inside the region of the parameters studied. The variable ranges that are provided in Table 2 were
adopted to cover the intervals that are commonly utilized in the literature [48–50].

Table 2. Parameters of the coagulation process and levels.

Input Notation Magnitude
Levels

−1 0 1

time t sec 30 75 120
speed S rpm 50 75 100

temperature T ◦C 10 15 20
initial turbidity iniTurb NTU 40 90 140

coagulant dosage cuaDose mL 1 3.5 6

After the parameters of the coagulation process and levels were set as in Table 1, the design matrix
(Table 3) was generated by the R Statistical Software [45]. In order to provide for all possibilities and to
select the optimum process of clarification, 54 experiments were required in this case.

After establishing the inputs or parameters of the coagulation process from the DoE, the output
variables of the process were determined experimentally (Table 4).
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Table 3. Design matrix for clarification of waste water.

Sample
Parameters of the Coagulation Process

Time (t)
(sec)

Speed (s)
(rpm)

Temp (T)
(◦C)

Initial Turbidity
(iniTurb) (NTU)

Coagulant Dosage
(cuaDose) (mL)

1 30 100 20 40 1
2* 75 75 15 90 3.5
3 120 50 10 40 6
4 30 50 20 40 6
5 30 50 20 140 1
6 30 100 20 140 6
7 75 75 15 90 1
8 30 100 10 140 6
9 75 75 15 40 3.5

10 120 50 10 140 1
11 30 50 10 140 1
12 75 75 15 90 3.5
13 75 75 15 90 3.5
14 30 50 10 40 6
15 120 100 20 40 1
16 120 100 20 40 6
17 120 100 10 40 1
18 30 75 15 90 3.5
19 120 50 20 40 1
20 75 75 15 90 6
21 120 100 10 140 6
22* 75 75 15 90 3.5
23 120 50 20 140 6
24* 75 75 15 90 3.5
25* 75 75 15 90 3.5
26 75 75 15 140 3.5
27 75 75 20 90 3.5
28 120 50 20 140 1
29 75 50 15 90 3.5
30 30 100 20 40 6
31 75 100 15 90 3.5
32 30 50 20 140 6
33 30 50 10 140 6
34 120 50 10 140 6
35* 75 75 15 90 3.5
36 30 100 20 140 1
37* 75 75 15 90 3.5
38 120 100 20 140 1
39 30 50 10 40 1
40* 75 75 15 90 3.5
41 120 50 20 40 6
42 75 75 10 90 3.5
43 30 100 10 40 1
44 120 100 20 140 6
45 120 100 10 40 6
46 120 50 10 40 1
47* 75 75 15 90 3.5
48 30 50 20 40 1
49 30 100 10 140 1
50* 75 75 15 90 3.5
51 120 75 15 90 3.5
52* 75 75 15 90 3.5
33 30 100 10 40 6
54 120 100 10 140 1
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Table 4. Experimental design matrix for the clarification process in waste water treatment.

Sample

Outputs

ECOTAN BIO 90D ECOTAN BIO 100 ECOTAN BIO G150

finTurb
(NTU)

TSS
(mg/L)

finTurb
(NTU)

TSS
(mg/L)

finTurb
(NTU)

TSS
(mg/L)

1 20.09 598.3 31.11 696.0 30.20 227
2 12.67 203.7 36.10 689.0 27.30 600
3 11.71 42.0 17.99 318.0 33.30 327
4 19.10 48.0 25.00 631.0 41.30 414
5 34.90 658.0 22.50 134.0 41.70 432
6 9.60 107.8 21.60 394.0 25.90 91
7 12.85 273.3 35.30 528.0 32.70 585
8 13.11 392.0 35.40 110.0 41.30 201
9 9.60 119.5 27.90 429.0 36.70 586
10 6.83 413.0 13.51 555.0 11.50 291
11 15.30 368.0 28.90 507.0 19.10 609
12 9.20 302.0 27.50 694.3 23.90 535
13 11.90 396.0 25.70 629.0 30.40 551
14 28.90 641.9 22.20 5.0 53.90 32
15 10.04 514.7 23.80 423.0 35.10 238
16 6.95 611.3 22.60 29.3 21.70 261
17 6.45 249.0 22.30 414.0 40.70 332
18 18.2 761.9 46.70 285. 63.90 771
19 9.57 354.6 10.70 507.0 35.30 514
20 13.10 596.0 41.20 134.0 39.50 27
21 5.87 563.9 7.63 482.0 48.00 38
22 8.70 707.3 37.20 505.0 32.20 690
23 13.18 362.0 28.70 629.0 46.30 620
24 8.43 387.0 27.40 463.0 30.20 708
25 6.62 261.2 29.90 230.0 33.60 709
26 12.6 388.5 22.70 289.0 14.10 235
27 9.80 576.0 32.10 398.0 27.40 561
28 19.80 57.0 9.83 128.0 14.88 377
29 8.67 423.9 30.20 652. 21.40 390
30 21.30 141.0 26.70 190.0 37.90 215
31 15.20 355.0 19.80 827.9 22.70 211
32 6.30 75.8 20.30 410.0 55.90 166
33 20.10 229.0 53.70 528.0 30.00 546
34 6.82 160.6 66.50 242.0 36.20 571
35 9.63 539.2 39.00 648.0 14.81 260
36 16.10 430.0 13.00 592.0 17.00 255
37 4.97 395.1 39.80 227.0 28.24 473
38 10.70 220.0 31.90 396.0 14.55 670
39 34.30 443.0 28.70 703.0 39.80 534
40 14.60 525.8 49.80 687.0 28.26 198
41 6.63 550.0 28.60 97.0 47.70 4
42 7.68 139.0 49.20 490.0 45.70 357
43 15.60 539.1 17.30 475.0 37.00 383
44 7.65 529.0 5.83 523.0 22.10 276
45 14.34 769.0 20.90 403.0 33.30 275
46 8.45 215.2 25.40 312.0 43.70 307
47 9.10 618.6 60.90 470.0 23.80 486
48 17.55 598.5 35.10 472.0 30.20 420
49 23.10 673.0 24.90 623.0 21.50 463
50 12.80 390.5 47.50 419.2 31.20 467
51 17.82 752.0 38.70 101.0 29.60 520
52 3.87 392.0 19.50 246.0 30.70 604
53 32.60 464.0 13.60 24.0 44.10 74
54 6.83 164.0 12.53 880.0 12.46 432
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3. Results and Discussion

This methodology was found to be an efficient and direct way to obtain the optimal dose of
coagulant with which finTurb and TSS were reduced, when several inputs or process parameters
of the coagulation process were considered. The inputs were: initial turbidity (iniTurb), dosage of
natural coagulant (cuaDose), process temperature (T), mixing speed (s) and mixing time (t). The
proposed method has been applied to three emerging natural coagulants. The proposed method has
been applied to various types of natural coagulants.

3.1. Experimental Results

Table 4 shows the experimental results for the outputs of the process (finTurb and TSS) according
to the CCD DoE design matrix for each of the three emerging natural coagulants (Table 3).

3.2. Analysis of Variance

The data that appear in Table 2 were used in fitting Equation (2) to obtain by the R Base package
regression equations for the responses [48]. Second-order polynomial models then were constructed
for each response. Then, several criteria (p-value, Mean Absolute Error (MAE), Root Mean Squared
Error (RMSE) and Correlation (Corr.)) were used in the selection of the model that provided the
greatest accuracy.

Equations (6)–(11) show the reduced quadratic regression models that were obtained to model
finTurb and TSS for each coagulant tested. These equations show how a combination of second-order
polynomials is formed by combining the input variables that provide the output. An ANOVA was used
to reduce the size of these regression models by removing the insignificant terms of the polynomial [49].
This method, called step-wise regression, automatically removes the features of no significance for
each model [50].

finTurb = 36.7506673 − 0.9446782·t + 0.0039169·t2 - 0.2203728 ·s + 0.000966·t·s + 3.5979252·T +
0.0096595·t·T − 0.1570211·T2 + 0.009553·T·iniTurb − 0.0005356·iniTurb2 + 0.0102462·t·cuaDose +
0.0183188·s·cuaDose − 0.1771652·T·cuaDose − 0.0170971·iniTurb·cuaDose + 0.2285438·cuaDose2

(6)

TSS = −107.42648 − 36.95502·t + 0.16738·t2 + 0.06127·t·s − 0.04981·s2 + 195.53517·T +
0.23366·t·T − 6.46003·T2 + 13.57065·iniTurb − 0.07392·iniTurb2 − 101.30295·cuaDose +

1.00312·t·cuaDose + 0.90183·s·cuaDose − 3.98293·T·cuaDose
(7)

finTurb = −94.889721 − 0.065567·t + 3.138794·s − 0.021709·s2 + 0.023985·s·T +
0.336475·iniTurb − 0.002649·s·iniTurb − 0.013975·T·iniTurb + 6.61089·cuaDose −

0.049384·S·cuaDose − 0.280453·T·cuaDose + 0.025552·iniTurb·cuaDose
(8)

TSS = 2301.0174 + 19.1258·t − 0.1315·t2 − 67.1235·s + 0.4737·s2 − 0.1496·T·iniTurb −
0.9338·S·cuaDose + 4.391·T·cuaDose + 0.8546·iniTurb·cuaDose − 17.0285·cuaDose2 (9)

finTurb = −18.290656 − 1.140292·t + 0.007104·t2 + 3.264461·s − 0.01929·s2 − 0.021824·s·T −
0.454037·iniTurb + 0.012343·T·iniTurb − 0.025762·s·cuaDose + 0.04546·iniTurb·cuaDose

(10)

TSS = 75.98257 − 15.657·t + 0.08411·t2 + 46.44557·s − 0.30951·s2 − 150.0361·T +
0.17174·t·T + 4.19307·T2 + 5.53688·iniTurb − 0.0266·iniTurb2 + 211.01884·cuaDose −

0.67333·s·cuaDose − 28.27164·cuaDose2
(11)

In addition, an ANOVA test was conducted in order to determine whether the variables used
in the regression models are statistically significant. It is well known that p-value (or Prob. > F) is
the probability of receiving a result that equals or exceeds what was observed. If the Prob. is greater
than the F value of the model, and the model has no term with a level of significance that exceeds,
for example, α = 0.05, then the model is acceptable at a confidence interval of (1 – α). In this case, most
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of the variables have a p-value that is less than 0.05. This indicates that the variables that were used on
the quadratic models are statistically significant. Tables 5–10 show the results of the ANOVA test for
each of the final quadratic models for each coagulant that was tested.

Table 5. ANOVA values for the “finTurb” quadratic model for ECOTAN BIO 90D.

Variable Df 1 Sum of Square Mean Square F Value p-value

t 1 916.346 916.346 53.236 8.428 × 10−6

t2 1 323.793 323.793 18.811 9.867 × 10−5

s 1 31.219 31.219 1.814 0.18584
t·s 1 3.638 3.638 0.211 0.64825
T 1 18.473 18.473 1.073 0.30660

t·T 1 102.780 102.780 5.971 0.01917
T2 1 57.522 57.522 3.342 0.07520

T·iniTurb 1 2.850 2.850 0.166 0.68631
iniTurb2 1 153.633 153.633 8.925 0.00484

t·cuaDose 1 15.650 15.650 0.909 0.34620
s·cuaDose 1 4.262 4.262 0.248 0.62155
T·cuaDose 1 311.691 311.691 18.108 0.00013

iniTurb·cuaDose 1 136.885 136.885 7.952 0.00751
cuaDose2 1 30.343 30.343 1.763 0.19200
Residuals 39 671.306 17.213

1 Degrees of freedom (Df).

Table 6. ANOVA values for the “TSS” quadratic model for ECOTAN BIO 90D.

Variable Df 1 Sum of Square Mean Square F Value p-value

t 1 12123.226 12123.226 0.486 0.48969
t2 1 142.315 142.315 0.006 0.94016
t·s 1 125559.858 125559.858 5.035 0.03045
s2 1 5888.921 5888.921 0.236 0.62966
T 1 45.924 45.924 0.002 0.96598

t·T 1 47902.024 47902.024 1.921 0.17345
T2 1 201652.233 201652.233 8.086 0.00699

iniTurb 1 9905.698 9905.698 0.397 0.53212
iniTurb2 1 164612.655 164612.655 6.601 0.01403
cuaDose 1 53839.319 53839.319 2.159 0.14957

t·cuaDose 1 371281.918 371281.918 14.888 0.00041
s·cuaDose 1 98334.840 98334.840 3.943 0.05395
T·cuaDose 1 74204.701 74204.701 2.976 0.09225
Residuals 40 997539.737 24938.493

1 Degrees of freedom (Df).

Table 7. ANOVA values for the “finTurb” quadratic model for ECOTAN BIO 100.

Variable Df 1 Sum of Square Mean Square F Value p-value

t 1 166.585 166.585 1.675 0.203000
s 1 394.790 394.790 3.970 0.053178
s2 1 2208.677 2208.677 22.209 2.943 × 10−5

s·T 1 11.438 11.438 0.115 0.736274
iniTurb 1 0.034 0.034 0.000 0.985279

s·iniTurb 1 223.193 223.193 2.244 0.141956
T·tubrIni 1 696.807 696.807 7.007 0.011558
cuaDose 1 118.417 118.417 1.191 0.281708

s·cuaDose 1 414.589 414.589 4.169 0.047805
T·cuaDose 1 311.029 311.029 3.128 0.084605

iniTurb·cuaDose 1 298.428 298.428 3.001 0.090926
Residuals 40 3977.917 99.448

1 Degrees of freedom (Df).



Water 2019, 11, 398 10 of 21

Table 8. ANOVA values for the “TSS” quadratic model for ECOTAN BIO 100.

Variable Df 1 Sum of Square Mean Square F Value p-value

t 1 3433.556 3433.556 0.134 0.71620
t2 1 134355.201 134355.201 5.242 0.02714
s 1 11120.751 11120.751 0.434 0.51369
s2 1 212994.469 212994.469 8.310 0.00619

T·iniTurb 1 641.102 641.102 0.025 0.87509
s·cuaDose 1 407001.590 407001.590 15.879 0.00026
T·cuaDose 1 91379.561 91379.561 3.565 0.06592

iniTurb·cuaDose 1 301130.135 301130.135 11.749 0.00137
cuaDose2 1 177895.900 177895.900 6.941 0.01175
Residuals 42 1076504.55 25631.061

1 Degrees of freedom (Df).

Table 9. ANOVA values for the “finTurb” quadratic model for ECOTAN BIO G150.

Variable Df 1 Sum of Square Mean Square F Value p-value

t 1 270.772 270.772 4.612 0.03742
t2 1 329.885 329.885 5.619 0.02231
s 1 255.758 255.758 4.357 0.04282
s2 1 411.999 411.999 7.018 0.01124
s·T 1 332.273 332.273 5.660 0.02186

iniTurb 1 710.517 710.517 12.103 0.00116
T·iniTurb 1 199.801 199.801 3.403 0.07195
s·cuaDose 1 768.059 768.059 13.083 0.00077

iniTurb·cuaDose 1 1120.611 1120.611 19.089 7.74 × 10−5

Residuals 43 2524.340 58.706
1 Degrees of freedom (Df).

Table 10. ANOVA values for the “TSS” quadratic model for ECOTAN BIO G150.

Variable Df 1 Sum of Square Mean Square F Value p-value

t 1 1423.529 1423.529 0.057 0.81278
t2 1 158135.752 158135.752 6.312 0.01602
s 1 107521.882 107521.882 4.292 0.04463
s2 1 226926.055 226926.055 9.058 0.00446
T 1 704.326 704.326 0.028 0.86767

t·T 1 63037.289 63037.289 2.516 0.12036
T2 1 40058.639 40058.639 1.599 0.21319

iniTurb 1 10881.901 10881.901 0.434 0.51354
iniTurb2 1 25196.398 25196.398 1.006 0.32181
cuaDose 1 293880.040 293880.040 11.731 0.00141

s·cuaDose 1 45925.039 45925.039 1.833 0.18317
cuaDose2 1 85936.210 85936.210 3.430 0.07122
Residuals 41 1027147.47 25052.377

1 Degrees of freedom (Df).

From Table 5, it is observed that for ECOTAN BIO 90D, there is a notable influence of t (p-value =
8.428 × 10–6) on finTurb, whereas for s (p-value = 0.18584) and for T (p-value = 0.30660), its influence is
much smaller. On the other hand, iniTurb has a certain influence on finTurb when it interacts with
itself (p-value = 0.00484), as well as when it interacts with T (p-value = 0.00013). Finally, cuaDose has a
notable influence on finTurb when it interacts with iniTurb (p-value = 0.00751) and with T (p-value
= 0.00013). From Table 6, it is observed that for ECOTAN BIO 90D, there is no significant influence
of any input on TSS, at least when the variables do not interact. However, Table 5 also shows that
cuaDose has a notable influence when it interacts with t (p-value = 0.00041) and s (p-value = 0.05395).
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In addition, t has a notable influence when it interacts with s (p-value = 0.03045), and with T as well
when it interacts with itself (p-value = 0.00699). From Table 7, it is observed that for ECOTAN BIO
100, there is a notable influence of s (p-value = 0.053178) on finTurb, whereas for t (p-value = 0.203000)
its influence is limited. In addition, this table also shows that s has an important influence when it
interacts with itself (p-value = 2.943 × 10−5) and when it interacts with cuaDose (p-value = 0.047805).
On the other hand, iniTurb also has a notable influence when it interacts with T (p-value = 0.011558). In
the same manner that occurs with ECOTAN BIO 90D, Table 8 shows that for ECOTAN BIO 100, there
is no significant influence of any input on TSS, at least when the variables do not interact. However, in
Table 8, it is observed that t and s have a notable influence on TSS when it interacts with itself (p-value
= 0.02714 and p-value = 0.00619, respectively). These two variables also have a notable influence
on cuaDose, which is also significantly influenced when it interacts with s (p-value = 0.00026), with
iniTurb (p-value = 0.00137), and with itself (p-value = 0.01175). Finally, regarding ECOTAN BIO G150
(Table 9), it is observed that t, s and iniTurb have an important influence on finTurb (p-value = 0.03742,
p-value = 0.04282 and p-value = 0.00116, respectively), and on cuaDose, where very low values are
obtained for p-value (for s·cuaDose: p-value = 0.00077; and for iniTurb·cuaDose: p-value = 7.74 ×
10−5). For this same coagulant, it is also observed that s and cuaDose have a significant influence
on TSS (p-value = 0.04463 and p-value = 0.00141, respectively), while t also influences TSS when it is
interacting with itself (p-value = 0.01602). T has no influence on TSS in any way.

Once the results of the ANOVA were presented, it was concluded that the input T has no influence
on any of the coagulants for finTurb as well as for TSS. Thus, T can be eliminated from this study, while
t and s are the most influential variables. By contrast, in ECOTAN BIO G150, iniTurb and cuaDose
have a very important influence on finTurb and TSS, in addition to the aforementioned s and t.

MAE and RMSE were calculated to determine the generalization capacity of the quadratic models
using the samples shown in Table 4 according to Equations (12) and (13):

MAE =
1
m

·
m

∑
k=1

∣∣Yk Experiment − Yk Model
∣∣ (12)

RMSE =

√
1
m

m

∑
k=1

(
Yk Experiment − Yk Model

)2 (13)

In this case, Yk Experiment are the experimentally obtained responses and Yk Model are responses
from the quadratic models that RSM and m experiments produced. The prediction errors are shown in
Table 11. The maximum error corresponds to TSS (the MAE equals to 0.14905 and the RMSE equals to
0.17981). The minimum error corresponds to finTurb (the MAE equals to 0.09261 and the RMSE equals
to 0.11363).

Table 11. Results of the errors in FinTurb and TSS using the quadratic models.

Coagulant Outputs Correlation MAE 1 Train RSMSE 2 Train

BIO 90D
finTurb 0.87095 0.09261 0.11363

TSS 0.73405 0.14905 0.18695

BIO 100
finTurb 0.74100 0.11541 0.14416

TSS 0.74466 0.13621 0.16444

BIO G150
finTurb 0.79713 0.10266 0.13171

TSS 0.71259 0.14427 0.17981
1 Mean Absolute Error (MAE), 2 Root Mean Squared Error (RMSE).

In order to test the proposed models, 11 new experiments that had not been used during the
training process were conducted. They were used to test the proposed second-order regression models
with previously unused regression model parameters. These new 11 experiments were generated
randomly. Table 12 shows the test matrix for the clarification process in waste water treatment.
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Table 12. Test matrix for clarification process in waste water treatment.

Sample
Parameters of the Coagulation Process

Time (t)
(sec)

Speed (s)
(rpm)

Temp (T)
(◦C)

Initial Turbidity
(iniTurb) (NTU)

Coagulant Dosage
(cuaDose) (mL)

1 44 84 12.0 78 3.35
2 60 80 17.0 115 4.35
3 88 56 14.5 103 4.80
4 94 57 19.0 133 3.75
5 80 96 15.0 76 2.05
6 69 55 10.0 134 4.20
7 76 81 12.0 97 2.30
8 95 87 16.0 131 1.50
9 83 73 13.0 124 3.30

10 69 81 11.0 59 4.90
11 59 55 15.0 116 3.05

Once the 11 new experiments had been completed, the errors that arose during the testing stage
were calculated (see Table 13). This table shows that the maximum error corresponds to TSS (an MAE
of 0.1741 and an RMSE of 0.2342), whereas the minimum error corresponds to finTurb (an MAE of
0.1206 and an RMSE of 0.1630). The errors indicate that the adjustment of the regression models and
the results of the experiments are relatively accurate.

Table 13. Results of the errors in finTurb and TSS using the second-order regression models.

Errors
ECOTAN BIO 90D ECOTAN BIO 100 ECOTAN BIO G150

finTurb
(NTU)

TSS
(mg/L)

finTurb
(NTU)

TSS
(mg/L)

finTurb
(NTU)

TSS
(mg/L)

MAE 0.14902 0.1600 0.12016 0.17693 0.15815 0.17413
RMSE 0.19515 0.22979 0.16307 0.21898 0.2145 0.23425

After determining the errors in the prediction from the regression models of the training and
test data, a scatter diagram of the variables was created. Figure 1 shows the scatter diagrams or
relationships between the actual values that were obtained experimentally and the values of finTurb
that were predicted by the quadratic models of (Figure 1a,c and e) and TSS (Figure 1b,d and f) for each
of the tested coagulants—ECOTAN BIO 90D, ECOTAN BIO 100 and ECOTAN BIO G150. The blue
points relate to the 54 data points that appear in Table 2. The red points relate to the 11 additional
experiments that the regression models used. They appear in Table 11. If the variables in this case are
correlated, the points will follow the diagonal line or curve. The better the correlation, the closer the
points will be to the line. Because all of the red dots (test data) are closer to the diagonal line than are
most blue dots (training data), their correlation is greater. Because there are fewer test data points than
training data points, the MAE and RMSE errors in the testing analysis and training analysis are similar
(see Tables 11 and 12).
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3.3. Multi-Response Optimization

Tables 14–18 show the combination of parameters of the coagulation and outputs of the process
that were studied when examining the clarification process in waste water treatment by desirability
functions. The examination involved the desirability package [51] for three different emerging natural
coagulants and five different criteria. The first column of each table shows the coagulant that was
used in the tests. The second and third columns show, respectively, the parameters of the coagulation
and the outputs of the process that were studied, as well as the goal that was established for the
optimization process. The fourth column indicates the degrees of importance considered in the
optimization process. For all cases studied, it was assumed that all objectives had an importance level
of 1.0. The fifth column shows the optimized values that were obtained. The desirability values that
were obtained appear in the sixth column. Table 14 shows the results when all coagulation parameters
and process outputs are equally important and the design requirements are based on minimizing
t, s, T, iniTurb, finTurb and TSS. In this case, the values of the overall desirability were 0.841 for
ECOTAN BIO 90D, 0.797 for ECOTAN BIO 100, and 0.774 for ECOTAN G150. Table 15 shows the
results when the design requirements were based on minimizing the energy that the coagulation
process consumes (the energy is a function of t, s, and T) and obtaining the highest removal efficiency
of turbidity (minimizing finTurb) while minimizing TSS. The overall desirability values that were
obtained were 0.88 for ECOTAN BIO 90D, 0.791 for ECOTAN BIO 100, and 0.768 for ECOTAN G150.
Table 16 provides the results when the design requirements were based on minimizing the energy that
was consumed to obtain the highest removal efficiency of turbidity (minimizing finTurb) and minimize
TSS, when the waste water has a high degree of turbidity (iniTurb is maximum). In this case, the overall
desirability values that were obtained for the natural coagulants were 0.857 for ECOTAN BIO 90D,
0.716 for ECOTAN BIO 100, and 0.794 for ECOTAN G150. Table 17 shows the results when the design
requirements are based on maximizing the efficiency in removing turbidity (minimizing the finTurb)
and minimizing TSS, while the waste water has a high degree of turbidity (iniTurb is maximum) and a
very low temperature (T is minimum). The overall desirability values that were obtained were 0.986
for ECOTAN BIO 90D, 0.754 for ECOTAN BIO 100, and 0.774 for ECOTAN G150. Finally, Table 18
shows the results when the design requirements are based on maximizing the efficiency in removing
turbidity (minimizing the finTurb) and minimizing TSS, when the waste water has a high degree of
turbidity (iniTurb is maximum) and a high temperature (T is maximum). The overall desirability values
obtained were 0.976 for ECOTAN BIO 90D, 0.941 for ECOTAN BIO 100, and 0.774 for ECOTAN G150.
Additionally, the results that appear in Tables 14–18 indicate that the outputs of the process that was
studied (cuaDose and TSS) are very similar for all different optimization scenarios in a range of inputs
or parameters of the coagulation process that was considered. For example, the ranges of values for the
cuaDose of the different optimization scenarios that considered for the natural coagulants extend from
3.007 to 5.455 for the ECOTAN BIO 90D, from 1.000 to 5.441 for the ECOTAN BIO 100, and from 1.062 to
5.422 for the ECOTAN G150. In addition, the ranges of values for the TSS of the different optimization
scenarios for each natural coagulant extend from 0.000 to 51.901 for the ECOTAN BIO 90D, from 0.000
to 441.478 for the ECOTAN BIO 100, and from 194.109 to 343.679 for the ECOTAN G150. From these
results, it appears that the optimal parameters of coagulation for different clarification optimization
scenarios are found in a relatively narrow range.
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Table 14. The first clarification optimization scenario: all variables are considered to be equally
important.

Coagulant Parameters Goal Importance Value Desirability

ECOTAN BIO 90D

t min 1.0 67.197 0.587
s min 1.0 51.481 0.97
T min 1.0 8.598 0.978

iniTurb min 1.0 52.207 0.862
cuaDose inRange 1.0 4.704 1.000
finTurb min 1.0 12.057 0.736

TSS min 1.0 5.010 1.000
Overall Desirability 0.841

ECOTAN BIO 100

t min 1.0 32.057 0.977
s min 1.0 59.857 0.803
T min 1.0 12.027 0.882

iniTurb min 1.0 41.924 0.831
cuaDose inRange 1.0 5.441 1.000
finTurb min 1.0 37.85 0.472

TSS min 1.0 51.273 0.947
Overall Desirability 0.797

ECOTAN BIO
G150

t min 1.0 36.344 0.93
s min 1.0 50.476 0.99
T min 1.0 13.437 0.738

iniTurb min 1.0 42.971 0.936
cuaDose inRange 1.0 1.062 1.00
finTurb min 1.0 38.788 0.479

TSS min 1.0 343.679 0.557
Overall Desirability 0.774

Table 15. The second clarification optimization scenario: the energy consumption is minimized to
obtain the highest efficiency of turbidity removal and TSS.

Coagulant Parameters Goal Importance Value Desirability

ECOTAN BIO 90D

t min 1.0 65.57 0.605
s min 1.0 52.019 0.960
T min 1.0 8.569 0.980

iniTurb inRange 1.0 127.612 1.000
cuaDose inRange 1.0 3.162 1.000
finTurb min 1.0 5.655 0.942

TSS min 1.0 51.901 0.986
Overall Desirability 0.88

ECOTAN BIO 100

t min 1.0 31.967 0.978
s min 1.0 59.857 0.803
T min 1.0 12.027 0.882

iniTurb inRange 1.0 40.099 1.000
cuaDose inRange 1.0 5.441 1.000
finTurb min 1.0 37.882 0.472

TSS min 1.0 50.807 0.948
Overall Desirability 0.791

ECOTAN BIO G150

t min 1.0 51.271 0.764
s min 1.0 50.858 0.983
T min 1.0 13.779 0.712

iniTurb inRange 1.0 133.808 1.000
cuaDose inRange 1.0 3.781 1.000
finTurb min 1.0 18.325 0.87

TSS min 1.0 328.925 0.576
Overall Desirability 0.768
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Table 16. The third clarification optimization scenario: the energy consumption is minimized to obtain
the highest efficiency of turbidity removal and TSS, when the sample water is very turbid.

Coagulant Parameters Goal Importance Value Desirability

ECOTAN BIO 90D

t min 1.0 49.463 0.784
s min 1.0 62.784 0.744
T min 1.0 10.473 0.838

iniTurb max 1.0 164.399 0.995
cuaDose inRange 1.0 3.007 1.000
finTurb min 1.0 9.222 0.828

TSS min 1.0 51.098 0.987
Overall Desirability 0.857

ECOTAN BIO 100

t min 1.0 34.399 0.951
s min 1.0 55.619 0.888
T min 1.0 20.819 0.514

iniTurb max 1.0 184.576 0.998
cuaDose inRange 1.0 3.490 1.000
finTurb min 1.0 28.824 0.621

TSS min 1.0 441.478 0.501
Overall Desirability 0.716

ECOTAN BIO G150

t min 1.0 51.271 0.764
s min 1.0 50.858 0.983
T min 1.0 13.779 0.712

iniTurb max 1.0 173.808 0.939
cuaDose inRange 1.0 3.781 1.000
finTurb min 1.0 18.325 0.87

TSS min 1.0 328.925 0.576
Overall Desirability 0.794

Table 17. The fourth clarification optimization scenario: the turbidity and TSS are minimized when
sample water is very cold and turbid.

Coagulant Parameters Goal Importance Value Desirability

ECOTAN BIO 90D

t inRange 1.0 81.887 1.000
s inRange 1.0 53.278 1.000
T min 1.0 8.567 0.980

iniTurb max 1.0 160.591 0.966
cuaDose inRange 1.0 5.267 1.000
finTurb min 1.0 1.213 1.000

TSS min 1.0 57.980 1.000
Overall Desirability 0.986

ECOTAN BIO 100

t inRange 1.0 110.137 1.000
s inRange 1.0 88.552 1.000
T min 1.0 9.751 0.977

iniTurb max 1.0 173.27 0.933
cuaDose inRange 1.0 1.110 1.000
finTurb min 1.0 24.719 0.689

TSS min 1.0 429.117 0.515
Overall Desirability 0.754

ECOTAN BIO G150

t inRange 1.0 81.887 1.000
s inRange 1.0 53.278 1.000
T min 1.0 10.261 0.980

iniTurb max 1.0 177.957 0.966
cuaDose inRange 1.0 5.267 1.000
finTurb min 1.0 20.331 0.831

TSS min 1.0 281.105 0.639
Overall Desirability 0.774
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Table 18. The fifth clarification optimization scenario: the turbidity and TSS are minimized when the
sample water is turbid and hot.

Coagulant Parameters Goal Importance Value Desirability

ECOTAN BIO 90D

t inRange 1.0 45.363 1.000
s inRange 1.0 79.840 1.000
T max 1.0 20.926 0.942

iniTurb max 1.0 136.59 0.966
cuaDose inRange 1.0 5.455 1.000
finTurb min 1.0 3.964 0.997

TSS min 1.0 4.730 1.000
Overall Desirability 0.976

ECOTAN BIO 100

t inRange 1.0 92.101 1.000
s inRange 1.0 78.240 1.000
T max 1.0 31.458 0.931

iniTurb max 1.0 138.785 0.964
cuaDose inRange 1.0 1.197 1.000
finTurb min 1.0 13.487 0.874

TSS min 1.0 20.112 1.000
Overall Desirability 0.941

ECOTAN BIO G150

t inRange 1.0 62.737 1.000
s inRange 1.0 99.463 1.000
T max 1.0 20.050 0.767

iniTurb max 1.0 139.986 0.980
cuaDose inRange 1.0 2.5140 1.000
finTurb min 1.0 5.4220 1.000

TSS min 1.0 194.109 0.752
Overall Desirability 0.774

After the different clarification optimization scenarios were obtained, five new experiments were
conducted using the combination of process variables that appear in Tables 14–18 prepared in order
to determine the accuracy of the proposed methodology. Tables 19–21 show the values of different
outputs variables (finTurb and TSS) according to the five clarification optimization scenarios that were
studied for each of the three emerging coagulants. These tables show that the experimentally obtained
values for the five clarification optimization scenarios for the different coagulants that were studied do
not differ significantly from those of the MRS methodology produced (see the results of Tables 14–18).
To compare the different errors that arise in predicting outputs in this case in accordance with the five
design requirements, the normalized data provide MAE and RMSE. Normalizing the data in statistical
processes is a common practice. This ensures that the same scale is used by all variables (i.e., 0–1).
To normalize the data in this case, the minimum value was subtracted from each original value and
the result was divided by the range of each variable, as seen in Equation (14):

Yk, norm =
Yk − min(Y)

range(Y)
(14)

where Yk,norm are the normalized, experimental outputs of the models that were developed using RSM.
The errors in the last columns concern the MAE and RMSE that were normalized for each variable in
each clarification optimization scenario to be studied. The normalized MAE and RMSE that appear
in the last two rows relate to the errors in the outputs variables that were examined. For example,
Tables 19–21 show that the output variable that produce the greatest error in prediction for each of
the three natural coagulants studied is the TSS variable (ECOTAN BIO 90D: MAE = 0.08, ECOTAN
BIO 100: MAE = 0.08 and ECOTAN BIO G150: MAE = 0.29). These values correspond to the errors
that appear in Table 13. In the latter table, the maximum MAE corresponds to the output variable TSS
for the three natural coagulants that were studied. However, in Tables 19–21, the third optimization
scenario has the highest MAE and RMSE values for the three studied coagulants. The reason for this
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may be that the samples of raw water in this optimization scenario required a high turbidity to analyze
each of the natural coagulants to obtain the highest efficiency of turbidity removal and TSS. In this case,
a greater initial turbidity of the raw water sample, also as a greater requirement in turbidity removal,
could produce this maximum MAE for this scenario.

Table 19. Experimental outputs that were obtained according to the five clarification optimization
scenarios for ECOTAN BIO 90D.

Opt. Scenario
Experimental Values Obtained

finTurb TSS MAE RMSE

1st Scenario 0.86 0.02 0.07 0.10
2nd Scenario 0.48 0.76 0.10 0.10
3rd Scenario 0.65 0.72 0.12 0.13
4th Scenario 0.01 0.90 0.05 0.07
5th Scenario 0.20 0.01 0.03 0.04

MAE 0.07 0.08
RMSE 0.08 0.10

Table 20. Experimental outputs that were obtained according to the five clarification optimization
scenarios for ECOTAN BIO 100.

Opt. Scenario
Experimental Values Obtained

finTurb TSS MAE RMSE

1st Scenario 0.87 0.05 0.08 0.09
2nd Scenario 0.82 0.06 0.10 0.13
3rd Scenario 0.62 0.80 0.11 0.14
4th Scenario 0.48 0.84 0.08 0.10
5th Scenario 0.03 0.01 0.02 0.02

MAE 0.07 0.08
RMSE 0.10 0.11

Table 21. Experimental outputs that were obtained according to the five clarification optimization
scenarios for ECOTAN G150.

Opt. Scenario
Experimental Values Obtained

finTurb TSS MAE RMSE

1st Scenario 0.98 0.62 0.20 0.27
2nd Scenario 0.37 0.55 0.18 0.25
3rd Scenario 0.48 0.57 0.21 0.25
4th Scenario 0.37 0.75 0.12 0.13
5th Scenario 0.03 0.20 0.12 0.15

MAE 0.05 0.29
RMSE 0.06 0.30

4. Conclusions

Physical–chemicals methods are usually used for waste water treatment processes. One such
physical–chemical method is coagulation, and determining the amount of coagulant that is necessary
to clarify a waste water sample is a complicated task that is usually done with a jar test. This article
describes a methodology to obtain the optimal combination of the clarification process parameters for
efficient removal of turbidity (finTurb), and TSS from a waste water sample collected from the WWTP
in Logroño (Spain). In this case, the clarification process parameters considered were: initial turbidity
(iniTurb), dosage of natural coagulant (cuaDose), process temperature (T), mixing speed (s) and mixing
time (t). The methodology proposed is based on the RSM with desirability functions, and was applied
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to three natural coagulants (ECOTAN BIO 90D, ECOTAN BIO 100 and ECOTAN G150). A CCD was
used to study the effects of the process parameters and inputs variables on the water clarification
process through quadratic regression models. An ANOVA test was performed on the regression
models obtained, and it was observed that the process parameter T has no influence on finTurb or
on TSS for the studied coagulants. Thus, these parameters could be eliminated in this study. For the
natural coagulant ECOTAN BIO G150, iniTurb and cuaDose exercise a strong influence on finTurb
and TSS, in addition to those variables mentioned above: s and t. Finally, the optimal combination of
process parameters according to five optimization scenarios was determined by applying MRS based
on desirability functions. The optimization study reveals that ECOTAN BIO 90D is more efficient than
ECOTAN BIO 100 and ECOTAN G150 for removal of turbidity. ECOTAN BIO 90D is recommended
for clarification of high-turbidity water. For water that is turbid and hot, both ECOTAN BIO 90D
and ECOTAN BIO 100 should be considered. A compromise was made of the removal efficiencies
of turbidity and TSS, along with the coagulant dose required. If other parameters are taken into
account, such as the low water temperature of samples with high turbidity, the ECOTAN BIO 90D
is the coagulant that will demonstrate greatest efficiency in removal of turbidity and TSS. Of the
five optimization scenarios that were analyzed, ECOTAN G150 is the natural coagulant that is least
efficient in eliminating both turbidity and TSS. This paper has demonstrated that using RMS with
desirability functions can be an efficient method for use in selecting and adjusting the parameters
of a clarification process using different coagulants, in a short period of time and with the minimal
experimentation necessary.
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