
Reasoning about UML/OCL Class Diagrams using
Constraint Logic Programming and Formula

Beatriz Péreza,1, Ivan Porresb

aDepartment of Mathematics and Computer Science,
University of La Rioja, E-26004 – La Rioja, Spain

bDepartment of Information Technologies,
Åbo Akademi University, FIN-20520 – Turku, Finland

∗Corresponding author
Email address: beatriz.perez@unirioja.es (Beatriz Pérez)

Preprint submitted to Information Systems July 24, 2018

Summary

Model Driven Engineering promotes the use of models as the main artifacts

in software and system development. Verification and validation of models are

key activities to ensure the quality of the system under development. This paper

presents a framework to reason about the satisfiability of class models described

using the Unified Modeling Language (UML). The proposed framework allows

us to identify possible design flaws as early as possible in the software devel-

opment cycle. More specifically, we focus on UML Class Diagrams annotated

with Object Constraint Language (OCL) invariants, which are considered to be

the main artifacts in Object-Oriented analysis and design for representing the

static structure of a system. We use the Constraint Logic programming (CLP)

paradigm to reason about UML Class Diagrams modeling foundations. In par-

ticular, we use Formula as a model–finding and design space exploration tool.

We also present an experimental Eclipse plug–in, which implements our UML

model to Formula translation proposal following a Model Driven Architecture

(MDA) approach. The proposed framework can be used to reason, validate, and

verify UML Class Diagram software designs by checking correctness properties

and generating model instances using the model exploration tool Formula.

Key words: UML ; OCL ; Constraint Logic Programming ; reasoning

1. Introduction

Model Driven Engineering (MDE) [1] promotes models as cornerstone com-

ponents in software development. Verification and validation of models become

important activities to ensure the quality of a system. Effective model verifica-

tion and validation methods can reduce time to market and decrease develop-5

ment costs. In the context of MDE, the Unified Modeling Language (UML) and

the Object Constraint Language (OCL) constitute two of the most commonly

used modeling languages. UML [2] has been widely accepted as the de-facto

standard object-oriented software modeling language. OCL [3] is an integral

2

part of UML which has been introduced into UML as a declarative language to10

express integrity constraints that UML diagrams cannot convey by themselves.

Software models, as any other software artifact, may contain defects. Un-

fortunately, in some occasions, possible design flaws are not detected until the

later implementation stages, thus increasing the cost of development [4, 5]. This

situation requires a wide adoption of formal methods as well as verification and15

validation approaches. In this line, there have been remarkable efforts to for-

malize UML semantics, and to address and solve ambiguity, uncertainty, and

underspecification issues detected in UML semantics. In particular, the formal-

ization and analysis of specific UML artifacts can be done by carrying out a

translation to another language that preserves the semantics [4, 5, 6, 7, 8, 9].20

The resulting translation can be used for several purposes, such as to reason

about implicit properties in UML models and about particular model instances.

In this paper we propose an overall framework to reason about specific

UML Class Diagram (CDs) based on the Constraint Logic programming (CLP)

paradigm. More specifically, we focus on UML Class Diagrams, annotated25

with OCL constraints, which are considered to be the mainstay of object-

oriented analysis and design representing the static structure of a system, and

whose formalization and analysis have motivated a significant number of pro-

posals [4, 10, 11]. As reasoning tool, we use a model–finding and design space

exploration tool called Formula [12], which presents distinctive strength proper-30

ties compared to other similar tools, including more expressivity [13, 14]. More

specifically, Formula is based on algebraic data types and CLP, and relies on the

Formula solver Z3 as underlying engine to reason about models where proof

goals are encoded as CLP satisfiability problem. Formula utilizes a bounded

verification approach by means of which the reasoning process is carried out35

by establishing finite bounds for the number of instances of the model to be

considered during the verification process. In the case that Z3 finds a solution

that satisfies all encoded constraints, Formula will reconstruct a complete model

from this information derived of known facts.

Our approach can be used for several different purposes. It can be used to40

3

rigorously reason about a UML design, by checking predefined correctness prop-

erties about the original model, such as satisfiability or the lack of redundant

constraints [5]. Additionally, our proposal can be used to inspect models of

complex system development contexts, to search for conforming object models

and to choose those that better fit domain needs. Overall, our proposal can45

contribute to software design validation and verification.

The results presented in this paper are based on the work published by

the authors of this paper in [15, 16]. In this paper we provide a revised and

extended version of those works, focusing mainly on the conceptual definition of

our framework, constituting the first paper that includes a complete description50

of our proposal. Additionally, in this paper we provide extra material regarding

the reasoning process to follow when using our approach and a more detailed

explanation about the comparison among our proposal and others.

The paper is structured as follows. Next, we motivate and present an

overview of our approach, introducing the case study we use throughout the55

paper. Section 3 provides a brief introduction to Formula. Section 4 presents

the translation of a UML class diagram to Formula, while Section 5 describes the

OCL fragment we consider in our proposal and its representation into Formula.

Section 6 describes the CD2Formula tool we have developed to implement our

Class diagram to Formula translation proposal, and illustrates the usefulness of60

our overall approach by applying it to the case study. Section 7 summarizes the

strengths and weaknesses of our approach and discusses related work. Finally,

Section 8 contains our main conclusions.

2. Motivation and overview

2.1. The need for class diagram verification and validation65

In order to motivate our proposal, we build upon the case study shown in

Figure 1 to identify inconsistent modeling features. This class diagram has been

designed for explanation purposes and covers a representative number of UML

Class Diagrams elements from those our approach supports. More specifically,

4

parents

0..2

Person

name: String
age: Integer
gender: Gender

children *
Gender

male
female

<<enumeration>>
(1) context Person inv:

self.age >=18

(2) context Company inv: self.employee ->
forAll(e:Employee|e.salary>1000)

(3) context Company inv: self.employee ->
select(e:Employee| e.gender = Gender::female)

-> size() >= 2

(4) context Person def: ancestors: Set(Person)=
self.parents -> union(self.parents ->

collect(ge| ge.ancestors))

context Person inv:
self.ancestors -> forAll(p | p!= self.spouse1)

spouse2

spouse1

0..1

0..1

marriage

1..*

Employee

Company

name: String

salary: Real

1..*

employee

employer

Department

name: String
activity: String

13..*

Project

name: String
startDate: Date
deadline: Date

1

1..*

1

2..*

1

1..*

worksOn
controls

memberOf department

driver

project

participant

project

makesUpOf

PartTimeEmployee FullTimeEmployee

drives *

1

family

worksIn

Assigned

date: Date
{complete, disjoint}

hireEmployee(
e:Employee)

Figure 1: Case study.

it describes part of the organizational and functional structure of companies70

regarding their employees, departments, and the projects undertaken by the

companies. The whole/part strong dependency between a company and its

departments has been represented by a strong composition. The relationship

between an employee and the department to which he/she is assigned is repre-

sented by the association class “Assigned”. The CD also registers the projects75

controlled by each department and the employees who work on each project,

including the employee driver of each project. In order to make the example

more interesting, a three-level hierarchy has been considered to represent differ-

ent types of people in the system. The “family” and “marriage” relationships

among people registered in the system have also been represented. A set of80

business rules has been established by OCL constraints, which particularly will

be used to explain our proposal for the translation of Class Diagram constraints.

In particular, as we will see later, our proposal could help us to detect

unsatisfiable models. As an example, let’s consider the following constraint

in the case study of Figure 1: “every department has a project with an only85

employee as participant”. Such a constraint can be defined in OCL as:

5

Class diagram

(.uml2)

Formula

specification

(.4ml)

Instantation

of the model

(Satisfiable)

No instantation

(Try with

larger bounds?)

Formula

tool

Answer

R
e

a
s

o
n

in
g

 R
e

s
u

lts

1

Translation

Reasoning tool

2

2a

2b

User-defined

bounds

Figure 2: Architecture of the framework.

context Department inv: self.project->

exists(p: Project | p.participant -> size()=1)

Considering this constraint, the overall model would be unsatisfiable due to

the conflict of this constraint, which forces each department to have a project

with a single participant, and the multiplicity of “Employee” in the association

“worksOn”, which forces each project to have at least two participants (2..*).90

Frameworks like the one we propose could help us to detect these situations,

which motivates their use.

2.2. Proposed solution

The overall framework we propose to reason about class diagram models

annotated with OCL constraints consists of two steps: (1) translating the class95

diagram model to the Formula language and, (2) using Formula for reasoning

about such a model. The overview of our framework is represented diagram-

matically in Figure 2.

2.2.1. First step. From the Class diagram model to the Formula language

First, we need to translate the class diagram, annotated with OCL con-100

straints, which we want to reason about, into the input specification language

of the Formula tool (see step number 1 in Figure 2). On the one hand, the trans-

lation of the class diagram to Formula is carried out by following the guidelines

explained in Section 4. In this step, the user would have to manually indicate

the number of valid instances (user–defined bounds) of the class diagram the105

6

user desires Formula to generate as part of the resulting instantiation of the

model (that is, the object diagram).

On the other hand, the translation of CD constraints to Formula is performed

as described in Section 5. Since OCL constraints are essentially first order

predicate logic statements [6], and validity in FOL is undecidable (also known110

as Church’s Theorem, see the survey paper [17]), checking the correctness of

OCL constraints is an undecidable problem [5, 6]. Therefore, we have identified

a fragment of OCL, which can be checked for finite satisfiability, while being

considerably expressive. In Section 5 we also show how to translate such an

OCL fragment to Formula by giving, as an intermediate step, a representation115

of the OCL constraints as First-Order Logic (FOL) expressions.

More specifically, our class diagram to Formula translation proposal follows

a MOF-like metamodeling approach [2], based mainly on the proposal the devel-

opers of the Formula tool gave in [14, 18]. Their proposal provided a represen-

tation in Formula of part of the key concepts defined both at the M2 meta-level,120

and at the M1 model-level [2]. The resulting Formula expressions are grouped

in a Formula unit, which is used by the Formula solver Z3 to find, if it exists,

a valid set of instances of arbitrary CDs at the M1 level (conforming with their

M2 representation) and its corresponding instances representing the OD at the

M0 level (conforming with their M1 representation). We note that the authors125

in [14, 18] did not provide a representation approach of specific OCL constraints

included in the UML model.

Based on this proposal, we have extended and modified it, giving weight to

three main aspects. First, we have mainly focused on obtaining a more faithful

representation of the level–based distribution, specifying a richer metamodeling130

framework. Our extended proposal is materialized into four different Formula

units distributed along the M2, M1 and M0 levels, which ease the application

and understandability of our approach, while promoting unit reutilization. We

also give support for the translation of more UML model elements (such as

user-defined data types, including enumeration types, multiplicities of proper-135

ties, strong composition or full support of generalization). Second, in contrast

7

to [14, 18], we have developed an approach for the translation of OCL con-

straints to Formula, which (1) identifies a significantly expressive fragment of

OCL, and (2) provides a translation into Formula of OCL constraints defined

by such a fragment (or OCL equivalent expressions). Finally, in order to pro-140

vide tool support of our proposal, we have developed an Eclipse plug-in called

CD2Formula based on MDA, which implements our CD to Formula translation

approach to easily and automatically perform the translation process.

2.2.2. Second step. Reasoning process

Once the CD model has been translated into the Formula language, the145

Formula finder is used to detect whether the model is satisfiable (see step number

2 in Figure 2). At this point, if positive, the tool returns an instantiation of

the model, verifying all the established constraints (see substep 2a). Otherwise,

the Formula tool does not return an instantiation of the model which, however,

does not constitute a proof of unsatisfiability beyond the analyzed domain, that150

is, it does not necessarily mean that the model is not satisfiable in general (see

substep 2b). More specifically, in this latter situation when no instantiation

model is returned, the tool shows an “unsatisfiable” label together with a mark

on the Formula queries that are not satisfied by the model considering the given

bounds. Such queries can give the user a clue about whether the result has been155

motivated (1) by a problem in the model definition, because it would be indeed

unsatisfiable, or (2) by the chosen bounds, which could motivate the user to

retry the process changing the bounds in order to make subsequent analysis.

Overall, as described previously, our framework can be used both for software

model design reasoning by checking correctness properties and for generating160

model instances automatically using Formula, thus contributing to software de-

sign validation and verification.

3. A brief overview of Formula

Formula distinguishes three different units to represent a system: domains,

models, and partial models. Modeling in Formula always starts with specifying165

8

Figure 3: An extract of a Formula domain.

the problem domain and formalizing an abstraction of the problem that can be

used by Formula to reason about the design [12]. A Formula domain (FD) is

the basic specification unit for an abstraction and allows specifying algebraic

data types and a logic program describing properties of the abstraction. As

an example, line 3 in Figure 3 shows the definition of an FD called MetaLevel170

containing an algebraic data type named Class. The CLP paradigm provides

a formal and declarative approach for specifying such abstractions [12], which

in Formula are represented by rules and queries (which we will explain later).

Domains can extend other domains by including the extends keyword (see line 1

in Figure 3 where the MetaLevel domain extends the domain UserDataTypes).175

A Formula model (FM) is a finite set of data type instances built from

constructors defined in the associated domain FD and satisfies all FD con-

straints [18]. As an example, the Formula expression Class(“Person”, false)

would correspond to an instance of the data type Class described previously.

Formula allows specifying individual concrete instances of the design-space or180

parts thereof, in a specific Formula unit called partial model.

A Formula partial model (FPM) is a set of instance-specific facts placed along

with some explicitly mentioned unknowns, which correspond to the parts of the

FM that must be solved [12]. Partial models allow unknowns to be combined

with parts of the model that are already fixed [18]. They are essentially lower185

bounds on the type of models we want to find. Fixed parts of a model can be

9

included in the partial model explicitly, specifying the corresponding Formula

instructions inside the model, or implicitly by an “including” instruction (using

the includes keyword) in the head of the partial model. Additionally, it is

necessary to specify the domain(s) the partial model conforms by using the of190

keyword. Partial models can include different generation options that Formula

provides for search configuration, and which are based on the use of search

space boundaries. An example of such generation options is the use of the

Introduce(f,n) option, which adds at most n terms of the form f to the partial

model. For example, the instruction Introduce(Class,2) would cause Formula195

to generate at most two arbitrary instances of the Class element. The values

allowed for n are positive integers or zero. If improper values are set for such n

terms (such as zero or negative integers), the Formula tool detects it as an error

when loading the model into the tool interpreter.

An FD consists of algebraic data types, rules, and queries. First, algebraic200

data types constitute the key syntactic elements of Formula. Based on the

defined data types, a number of rules and queries are specified as logic program

expressions ensuring the remaining constraints [12]. In general, rules specify

implications and queries restrict the valid states by specifying forbidden states.

Next, we explain the main characteristics of these Formula constructors.205

Algebraic data types. They are defined by the operator ::=, indicating on the

right hand side their properties by fields. Properties in data types are defined

by means of fields, which must be of some concrete type (Formula built–in types

or other user data types). Data types can be labeled in their definition with

the primitive keyword, defining primitive constructors, which intuitively can be210

used to extend the program taking part in other type definitions. Otherwise,

the data type definition results in a derived constructor. As an example, the

definition of the primitive data type Class is illustrated on line 3 in Figure 3.

This data type defines several fields together with their types (such as field

name of type String). Furthermore, the derived type Classifier is defined as215

the union (+) of the Class and Association types (see line 6 of Figure 3).

10

Additionally, constants are defined using the operator ::=. This operator can

be used to define data types with a fixed value or a list of fixed values within curly

brackets. For example, the constant Star defined as Star::={star}, would

represent the unspecified upper bound in the multiplicities of associations.220

Around data types, Formula defines different categorizations of structural

elements as building blocks for defining Formula expressions. These elements

are mainly terms and predicates. As an example of a term, on line 8 of Fig-

ure 3 we list Association(name1, , , , , ,), which represents all instances of

the Association term, where the first field is set to a fixed property (name1).225

The other fields are filled with a do-not-care symbol (‘ ’), so that Formula will

find valid assignments. Terms are the basis for defining predicates, which con-

stitute basic units of data, used for defining queries and rules. An example

of a predicate is a1 is Association(name1, , , , , ,) (see line 8), where the

variable a1 is bound to the Association type.230

Additionally, Formula allows using different annotations in the definition of

data types to reduce the size of the search space. For example, the [Closed] an-

notation, whose syntax is [Closed(DT fields)], which instructs Formula to ap-

ply a closed check to instances of the corresponding data type (DT) that is, using

only the instances of that type given in the model. Otherwise Formula would235

be able to invent new instances, which is a desired behavior for general model-

finding problems. An example of the [Closed] annotation is illustrated on line

4 in Figure 3 where it ensures that Formula instances of associations are created

by class instances that exist in the model. Additionally, [Unique], whose syntax

is [Unique(DT fields -> DT fields)], requires all records with identical fields240

on the left of the arrow (->) to have identical fields to the right of the arrow.

By adding the [Unique] attribute to a constructor type definition, Formula in-

troduces new queries to the containing domain, which ensure that an element

of the domain of the relation is mapped to a single element of the codomain.

As an example, the [Unique] annotation on line 2 in Figure 3 checks that there245

are not two class instances with the same field values.

11

Rules. A rule behaves like a universally quantified implication; whenever the

relations on the right hand side of a rule hold for some substitution of the

variables, then the left hand side holds for that same substitution [14, 18].

The intuition behind rules is production; they create new entries in the fact-250

base of Formula, populating previously defined types with facts representing

the members in the collection presented in the rule. Rules are specified by

means of the operator :-, indicating in the left–hand of the expression a simple

term and on the right–hand the list of predicates specifying the rule.

Queries. A query corresponds to a rule where the left–hand side is a nullary255

construction [14, 18]. A query behaves like a propositional variable that is true

if and only if the right-hand side of the definition is true for some substitu-

tion [14, 18]. Queries are constructed using the operator :=, joining Formula

predicates that specify the forbidden states. Additionally, queries can be used

like propositional variables to construct other queries. In particular, Formula de-260

fines in every domain the conforms standard query, where all constraints come

together and define a valid instance of the domain. Based on the existential

quantification semantics of queries, the universal quantification can be achieved

by verifying the negation of a query representing the opposite of the original

predicate. For example, to ensure that upper bounds of multiplicities in as-265

sociations are greater than or equal to lower bounds, we first need to define

a query representing the existence of associations verifying the opposite (see

query error meta BadMultInterval on line 7 of Figure 3). With this query, we

consider such an incoherent situation as a valid state. Thus, to verify that such

a situation is not valid, we need to include the negation (‘!’) of the query in the270

conforms query (see line 10 of Figure 3).

Finally, to explore the design–space, Formula loads the domains and the

partial models defined for the specific problem and executes the logic program.

The execution locates all intermediate facts that can be derived from the given

facts in the partial models, and attempts to find valid assignments for the un-275

knowns. Formula relies on the Formula solver Z3 to carry out this step. In the

12

case that Z3 finds a solution that satisfies all encoded constraints, Formula will

reconstruct a complete model from this information derived of known facts [12].

4. Translation of Class Diagram structural elements

This section presents a brief introduction of the rules we have defined to280

transform a CD, conforming with the UML metamodel [2], into Formula. First,

we explain the translation of a set of basic structural UML Class Diagram fea-

tures frequently used for modeling structural aspects of systems (UML class,

property, bidirectional association, and generalization, considering also the dif-

ferent types of generalization set constraints). We finish the section with the285

translation of other elements, such as classifiers, association classes, strong

composition, and user–defined data types (including enumeration data types).

Thus, in this paper, we provide a more detailed and complete explanation of

the proposal we presented in [15, 16] where the elements class, property, bidi-

rectional association, classifier and association class were briefly handled.290

The Formula instructions generated from the translation of the CD elements

are classified into the M2, M1 and M0 levels. For the entire explanation, we

rely on Table 1 (to explain the elements in the M2 level), in Tables 2 and 3

(to present the elements in the M1 level), and in Table 5 (to explain the el-

ements in the M0 level). In these tables, we represent in bold font the fixed295

elements in the translation. To allow the reader a better understanding of our

approach, we reinforce our explanation for the specific translation of classes,

and in particular the class Person of our case study, illustrating it in Figure 4.

In this figure, the four Formula units defined in our approach are represented

by rectangles, which include the transformation patterns defined in each case,300

while the Formula expressions resulted from the application of such patterns are

depicted by rhomboids. To improve readability, we also represent the arity of

each Formula data type as dataTypeName/n, where n is the arity of the data

type dataTypeName.

13

[Unique(name -> isAbstract)]

primitive Class::=(name:String,isAbstract:Boolean)

M2

Legend

Formula
extension

Formula
instance of

Formula
inclusion (UML

instance of)

Formula
domain

Formula
(partial)
model

MetaLevel
FD

Domain

ClassPerson is Class("Person'', false)
M1

CDModel
FM

Model

[Closed(type)][Unique(id -> type)]

primitive InstancePerson::=(id: Integer, type: Class).

className:= InstancePerson(_,y), y.name!="Person''.

InstanceLevel
FD

Domain

M0

[Introduce(InstancePerson,2)]

CDInstance
FPM

Partial Model

Classc.name is Class(“c.name”, c.isAbstract) [Closed(type)][Unique(id ->type)]

primitive Instancec.name ::= (id: Integer, type: Class).

className := Instancec.name(_,y), y.name!=“c.name”.

[Introduce(Instancec.name, number)]

extendsof

of
includes

Figure 4: Formula expressions generated for classes.

4.1. Level M2.305

For each metamodel element Class, Association, Property and General-

ization, we define a primitive Formula data type with the same name and

specific fields (see Table 1). For example, in the case of the Class meta-

model element, we define the data type Class/2 with two fields: name, of type

String, and isAbstract, of type Boolean (see Table 1 as well as in Figure 4).310

In the case of the Association metamodel element, we define the data type

Association/7 with several fields representing the name, the associated classes

(srcType and dstType), and the multiplicities of such classes in the association.

Regarding the Property metamodel element, we define a type for each built–in

type, called typeName Property/4, with specific fields (see Table 1). In addition315

to Integer, String, and Boolean, included in [18], we also give support to Real,

LiteralNull, and UnlimitedNatural types. As stated in [2], we also consider

lower/upper bounds representing property multiplicity constraints. Further-

more, a derived data type named Property is created as the union of all types of

properties to be used as a generic property type. The data type HasProperty/2 is320

14

Table 1: Excerpt of the proposal regarding M2 level.

[Unique(name -> isAbstract)]

primitive Class ::= (name: String, isAbstract: Boolean).

primitive StringProperty ::=(name:String, def:String,

lower:Natural, upper: UpperBound).

...

primitive LiteralNullProperty ::= (name: String, def: Null,...).

primitive UnlimitedNaturalProperty ::= (name:String,

def: UnlimitedNatural ,...)

Property::= StringProperty + ...+userDataTypeProperties .

[Closed(owner, prop)]

primitive HasProperty ::= (owner: Classifier,

prop: Property).

[Closed(sup, sub)]

primitive Generalization ::= (sup: Class, sub: Class).

supClass ::= (sup: Class, sub: Class).

supClass (x, y) :- Generalization(x, y).

supClass (x, z) :- supClass(x, y), supClass(y,z).

inhsProp ::= (owner: Classifier, prop: Property).

inhsProp (cl, prop) :- HasProperty (cl, prop).

inhsProp (csub, prop) :- supClass (csup, csub),

HasProperty (csup, prop).

inhsAsso ::= (owner: Classifier, asso: Association).

inhsAsso(cl, a) :- a is Association(_,cl,_,_,_,_,_),

... Generalization(cl, _).

inhsAsso(csub, Association(a.name,csub,a.srcLower ,...)) :-

supClass(csup, csub), inhsAsso(csup, a),

... a is Association(_, csup,_,_,_,_,_).

Class Association

Property Generalization

[Closed(srcType, dstType)]

primitive Association ::= (name: String,

srcType: Class, srcLower: Natural, srcUpper: UpperBound ,

dstType: Class, dstLower: Natural, dstUpper: UpperBound).

M2 level

also defined to represent the possession of a property by a classifier.

Finally, we represent the Generalization metamodel element by the data

type Generalization/2, with two fields of the data type Class previously defined

(sup and sub) representing the superclass and subclass of the generalization (see

Table 1). It is worth noting that, in order to represent additional semantics325

of generalizations, we create specific Formula expressions for several purposes.

First, to allow Formula to generate the complete structure of inheritance from

direct relationships (if C specializes B, and B specializes A, then C specializes

A), we define a new data type supClass, together with two rules which allow

Formula to populate the supClass data type with facts representing the overall330

structure of inheritance (see translation for generalizations in Table 1). Simi-

larly, in order to hold inherited properties and associations, we define two new

data types inhsProp and inhsAsso, together with two–four rules, respectively,

which allow Formula to populate such new data types with facts representing

inherited properties and associations. These Formula rules allow us to give335

support for multiple inheritance, since such rules create new facts representing

inherited properties and association facts from superclasses to subclasses (in

contrast to authors in [14, 18], which do not consider associations’ inheritance

15

in subclasses, but just properties’ inheritance). To sum up, these data types

allow Formula to create Formula instances representing specific UML classes,340

associations, types of properties, and generalizations at the M1 level.

Furthermore, we have used Formula [Unique] and [Closed] annotations so

that Formula reduces the size of the search space when finally exploring the

design–space. In the case of the UML Class metamodel element, the Formula

[Unique] attribute is applied, ensuring that there are not two identical instances345

of the Class type. For the UML Association element, the [Closed] attribute

is applied to the Association data type to instruct Formula to use only the

instances of that type, given in the model (see Table 1). A [Closed] annotation

is also applied to the HasProperty and Generalization types. We note that these

constraints refer to Formula restrictions, not to CDs’ constraints.350

Finally, the Formula expressions defined at this metamodel level (M2) are

included in an FD called MetaLevelFD. As an example, see the definition of

the Class data type in level M2 of Figure 4, enclosed in the MetaLevelFD do-

main. Since the representation of the meta–level M2 is the same whatever CD

is considered, this FD is defined once and used for each CD. An excerpt of the355

MetaLevelFD domain has been presented in Figure 3.

4.2. Level M1.

At this level we define two groups of expressions denoted by M1a and M1b,

respectively. These expressions will be enclosed, as we will explain later and

depict in Figure 4 for the particular case of classes, in the following Formula360

units: CDModelFM model and InstanceLevelFD domain, respectively.

[M1a.] Each specific class, association, property, and generalization relationship

in the CD, is represented by a Formula instance of the corresponding construc-

tor (Class, Association, Property, or Generalization defined at level M2). With

these Formula instances, we are explicitly representing specific elements in a365

CD. For example, the elements ClassPerson, family, and genPersonEmployee de-

fined in Table 2 correspond to three Formula instances of the constructors

Class, Association, and Generalization, respectively, defined at M2. At this

16

Table 2: Excerpt of the proposal regarding M1 level, group M1a.

Class Association

Property Generalization

Translation pattern:

a.name is Association(“a.name”,
Class("a.memberEnd.at (1).type.name",

a.memberEnd.at (1).type.isAbstract),
a.memberEnd.at (1).lowerValue, a.memberEnd.at (1).upperValue,

Class("a.memberEnd.at (2).type.name",
a.memberEnd.at (2).type.isAbstract),
a.memberEnd.at (2).lowerValue, a.memberEnd.at (2).upperValue)

Example:

family is Association(“family”,Class(“Person”,false), 0, star,
Class(“Person”,false), 0, 2)

Translation pattern:
Classc.name is Class(“c.name”,

c.isAbstract)

Example:

ClassPerson is Class(“Person”, false)

Translation pattern:

p.name+p.owner.name is p.typeProperty(“p.name”,p.default,
p.lowerValue,p.upperValue)

HasProperty(owner,p.name+p.owner.nameP)

Example:

namePerson is StringProperty (“name”,“”,1,1)
HasProperty(Class(“Person”,false),

StringProperty (“name”,“”,1,1))

Translation pattern:

geng.general.name+g.specific.name is
Generalization(Classg.general.name ,

Classg.specific.name)

Example:

genPersonEmployee is
Generalization(ClassPerson,

ClassEmployee)

M1 level- Group M1a

point we want to note that each specific association is required to have a

unique name so that the corresponding defined Formula instance could be370

uniquely identified. Specific properties in the CD are represented by a For-

mula instance of the corresponding Property constructor (e.g., namePerson is

String Property(‘‘name’’,‘‘’’,1,1) in Table 2, where the pair 1,1 represents

that a person can have one and only one name), and by an instance of the data

type HasProperty, representing the property’s ownership (see Table 2).375

As advanced previously, the Formula expressions defined in M1a consti-

tute the Formula model called CDModelFM . This model conforms with the

MetaLevelFD domain, defined at level M2 (see Figure 4), in the same way as

the element ClassPerson defined in the left hand rhomboid in level M1 of Fig-

ure 4 constitutes a Formula instance of the constructor Class, defined at M2.380

[M1b.] So that Formula is able to generate instances of the specific classes,

associations, properties, and generalization relationships in the CD to explore

the concrete design–space, we need to create specific Formula data types repre-

senting each type of instance. For the definition of these types, we have based

on the description of the Instances package [2], in particular, on the Instance-385

Specification element for classes, associations, and generalization relationships,

and on the Slot element for properties. On one hand, the definition of the UML

17

InstanceSpecification element includes the classifier of the represented instance

and the associated InstanceValue [2]. Taking this into account, for each class c

in the CD, we define a primitive Formula data type called Instancec.name/2 ,390

with two fields, representing the associated classifier (type), and representing the

instance value (id), respectively (see Table 3). As an example, see the primitive

data type InstancePerson in Table 3. When the classifier is an association, the

UML InstanceSpecification element describes a link [2], so in these situations

we name the created data types with the Link prefix. Since links connect class395

instances [2], for each association a in the CD, we define a primitive Formula

data type called Linka.name/4, which also includes references to the associated

classes (see for example LinkFamily in Table 3). For each generalization relation-

ship parent-child g in the CD, we define a specific Link data type in order to dis-

tinguish generalizations from association relationships. In particular, we create400

a primitive Formula data type called LinkGeng.general.name+g.specific.name/4,

which particularly includes references to the associated classes, in this case, the

super and sub classes (see for example LinkGenPersonEmployee in Table 3). We

note that the definition of this particular link data type is needed by Formula in

order to represent hierarchies at the instance level. Finally, so that Formula can405

generate property’s specific values, we define specific data types representing the

property’s slots, based on the UML specification of the Slot element [2]. Taking

this into account, for each property p in the CD, we define a primitive type

called p.name+p.owner.nameSlot/3, which registers the owner, the property

type, and its value (e.g., namePersonSlot).410

Formula requires establishing specific constraints to the defined data types.

For example, in the case of each Instancec.name/2 data type, we define a specific

query to ensure that the instances of the data type have, as type value, an

instance of the corresponding class c in the CD. That is, instances of a person,

such as InstancePerson(1, ClassCompany) are not admissible but, for example,415

instances of InstancePerson(1, ClassPerson) are admissible. This constraint is

imposed by the definition of the className query (see Table 3) and the inclusion

of its negation in the final conforms query. Similar queries are defined in the

18

Table 3: Excerpt of the proposal regarding M1 level, group M1b.

Class Association

Property Generalization

M1 level- Group M1b

Translation pattern:

[Closed(type,a.memberEnd.at(1).name ->
a.memberEnd.at(2).name)]

If it is not a many–to–many relationship
[Unique(a.memberEnd.at(1).name -> a.memberEnd.at(2).name)]

primitive Linka.name ::=(id: Integer, type: Association,
a.memberEnd.at(1).name: Instancea.memberEnd.at(1).type.name,
a.memberEnd.at(2).name: Instancea.memberEnd.at(2).type.name).

associationName:= Linka.name(_,aso,_,_),aso.name!= “a.name”.

Example:

[Closed(type, children -> parents)]
primitive LinkFamily::=(id:Integer,type:Association,

children:InstancePerson, parents:InstancePerson).
associationName:= LinkFamily(_,aso,_,_), aso.name!=“family”.

Translation pattern:

[Closed(type)][Unique(id ->type)]
primitive Instancec.name ::= (id: Integer, type: Class).
className := Instancec.name(_ ,y), y.name!=“c.name”.

Example:

[Closed(type)][Unique(id ->type)]
primitive InstancePerson::=(id: Integer, type: Class).
className:= InstancePerson(_,y), y.name!=“Person”.

Translation pattern:

[Closed(owner,prop)][Unique(owner, prop ->value)]
primitive p.name+p.owner.nameSlot ::= (owner:Element,

prop:p.typeProperty, value: valueType)
slotName :=p.name+p.owner.nameSlot(_,prop,_),

prop.name!= “p.name”.
slotOwner :=p.name+p.owner.nameSlot(owner,_,_),

owner.type.name!= “p.owner.name”.

Example:

[Closed(owner, prop)]
[Unique(owner, prop->value)]
primitive namePersonSlot::= (owner: Element,

prop:StringProperty, value:String).
slotName:= namePersonSlot(_,prop,_), prop.name!=“name”.
slotOwner:= n is namePersonSlot(owner,_,_),

owner.type.name!=“Person”.

Translation pattern:

[Closed(type, g.specific.name, g.general.name)]
[Unique(g.specific.name->g.general.name)]
[Unique(g.general.name ->g.specific.name)]
primitive LinkGeng.general.name+g.specific.name ::=

(id: Integer, type:Generalization,
g.general.name : Instanceg.general.name
g.specific.name : Instanceg.specific.name).

genType:= LinkGeng.general.name+g.specific.name(_,gen,_,_),
gen.sup.name!= "g.general.name".

genType:= LinkGeng.general.name+g.specific.name(_,gen,_,_),
gen.sub.name!="g.specific.name".

error_GenOneAndOnlyOne:= c is Instanceg.specific.name,
count(LinkGeng.general.name+g.specific.name(_,_,p,c))!=1.

If the generalization set constraint iscomplete and/or disjoint

include the corresponding queries

Example:

[Closed(type, Employee, Person)]
[Unique(Employee->Person)][Unique(Person ->Employee)]
primitive LinkGenPersonEmployee::=

(id: Integer, type:Generalization, Person:InstancePerson
Employee:InstanceEmployee).

genType:= LinkGenPersonEmployee(_,gen,_,_),
gen.sup.name!= "Person".

genType:= LinkGenPersonEmployee(_,gen,_,_),
gen.sub.name!="Employee".

error_GenOneAndOnlyOne:= c is InstanceEmployee,
count(LinkGenPersonEmployee(_,_,p,c))!=1.

case of associations (associationName), properties (slotName and slotOwner), and

generalizations (genType). Additionally, [Closed] and [Unique] constraints are420

included. More specifically, in the case of associations, the [Unique] constraint

is imposed only in associations which are not many to many, since in this type

of associations there can be more than one association instance between a pair

of classes a-b (see translation pattern in Table 3). Regarding generalizations,

we define a [Closed] constraint to reduce the size of the search space and two425

[Unique] to ensure that there are not two identical instances of the LinkGen type.

Again, these constraints refer to Formula restrictions, not to CDs’ constraints.

In the particular case of generalizations, we have to include a specific For-

mula constraint in order to make sure that, in each generalization relationship,

each instance of the child is associated with one and only one instance of the430

parent (see the definition of the query error GenOneAndOnlyOne in Table 3

representing the opposite semantics). Again, its negation is included in the

19

conforms query for the verification of the original constraint.

A specific remark has to be made regarding generalization sets. As stated

in [2], each Generalization Set defines a particular set of Generalization rela-435

tionships that describe the way in which a general Classifier (or superclass) may

be divided using specific subtypes. For example, in our case study a general-

ization set defines a partitioning of the class Employee into the two subclasses:

PartTimeEmployee and FullTimeEmployee. Employee could also have been di-

vided into MaleEmployee and FemaleEmployee which would define a different440

generalization set. In particular, UML defines four constraints that may be ap-

plied to generalization sets: complete/incomplete and disjoint/overlapping [2,

19]. Regarding complete/incomplete constraints:

� complete specifies that all children (subclasses) in the generalization set

have been specified in the model and no additional children are permitted.445

� incomplete represents the fact that not all children (subclasses) in the

generalization set have been specified and additional subclasses are permitted.

As for as the overlapping/disjoint constraints is concerned:

� overlapping indicates that instances of the parent (superclass) in a gen-

eralization set may have more than one of the children (subclasses) as a type;450

that is, their intersection is not empty.

� disjoint represents the fact that instances of the parent (superclass) in a

generalization set may have no more than one of the children (subclasses) as a

type; that is, their intersection is empty.

455 Based on these different constraints, the four different types of generalization

sets constraints are: {complete, disjoint}, {incomplete, disjoint} (which cor-

responds to the default option in UML), {complete, overlapping}, and {incomplete,

overlapping}. We have represented these constraints in Formula, taking into ac-

count their specific semantics [2, 19]. Since the complete and disjoint partitions460

are more restrictive, we directly represent them in Formula through the defini-

tion of specific queries. More specifically, for each generalization set with the

complete constraint, we define the Formula query queryComplete (see Table 4),

20

Table 4: Generalization sets constraints and example of use.

Translation of a complete partition in a generalization set (GS)

- Define a queryComplete query as:

queryComplete:= p is InstanceParent, fail LinkGenParentChild 1(, ,p,),

fail LinkGenParentChild 2(, ,p,), ...

fail LinkGenParentChild n(, ,p,).

- Include its negation (!) in the conforms query.

Translation of a disjoint partition in a generalization set (GS)

- Per each disjoint pair of subclasses (Childi,Childj) in each generalization set (GS) define:

queryDisjointGSName k:= LinkGenParentChild i(, ,p,), LinkGenParentChild j(, ,p,).

- Define a new query queryDisjoint with the disjunctions of the queryDisjointGSName k

queries previously defined for such a GS:

queryDisjoint:= queryDisjointGSName 1 | queryDisjointGSName 2 |...| queryDisjointGSName n.

If there are only two subclasses, a single queryDisjointGSNamek is defined which is

directly assigned to queryDisjoint.

- Include the negation (!) of queryDisjoint in the conforms query.

Example of use

queryComplete:= p is InstanceEmployee, fail LinkGenEmployeeFullTimeEmployee(, ,p,),

fail LinkGenEmployeePartialTimeEmployee(, ,p,).

queryDisjointGS1:= LinkGenFullTimeEmployee(, ,p,), LinkGenPartialTimeEmployee(, ,p,).

queryDisjoint := queryDisjointGS1.

conforms := !queryComplete & !queryDisjoint.

representing the opposite of the semantics given by the complete partition, that

is, that every instance of a general classifier (Parent) is not an instance of any465

of its specific classifiers (Child1, Child2, ..., Childn). Finally, for all generaliza-

tion sets with complete constraints, the negation of the queryComplete query is

included once in the final conforms query for verifying the complete semantics.

Similarly, for each generalization set with the disjoint constraint we need to

make sure that the specific classifiers (Child1, Child2, ..., Childn) cannot share470

common instances, that is, they cannot correspond to the same general classi-

fier (Parent). In order to represent this fact, we make sure that there is not

a pair of instances of specific classifiers (Childi, Childj) corresponding to the

same instance of the general classifier (Parent). More specifically, we firstly

define a query queryDisjointGSNamek (being GSName the name of the gen-475

21

eralization set), for each disjoint pair of subclasses, representing the fact that

they can share common instances (see Table 4). Later, we define another query

queryDisjoint with the disjunctions of the queryDisjointGSName k queries

previously defined, in order to represent the opposite of the disjoint constraint,

that is, that there can be instances of different subclasses which share the same480

subclass instance. Finally, we include the negation of the queryDisjoint query

in the conforms query for verifying the disjoint constraint semantics. We

have to note that when there are only two subclasses in the generalization

set a single queryDisjointGSNamek is defined which is directly assigned to

queryDisjoint. Additionally, when the generalization set is disjoint and there485

is only a specific classifier, the verification of the negation of the queryDisjoint query

would represent the fact that there are no instances of the corresponding LinkGenParentChild data

type, which would make no sense. For this reason, this query is not defined when

the generalization set has only a specific classifier.

Since the incomplete and overlapping partitions represent the opposite, less490

restrictive constraints to the complete and disjoint partitions, respectively, to

represent such partitions, we only have to omit the definition of the queryComplete

and queryDisjoint queries, respectively. As an example, in Table 4 we show the

two queries defined for the {complete, disjoint} generalization set defined in

the case study for the specialization of the “Employee” class.495

Finally, the Formula expressions defined in M1b constitute an FD called

InstanceLevelFD. This domain extends the MetaLevelFD domain, defined at

level M2 (see Figure 4), since it creates new Formula data types on the ones

defined in MetaLevelFD.

4.3. Level M0.500

Finally, to allow Formula to reason and search for valid instances of the

specific classes, associations, properties, and generalizations of the source CD,

we include the Introduce(f,n) command, with the corresponding Instance,

Link, LinkGen, or Slot data types, as f, and a specific number as n, to in-

dicate the number of valid instances of such data types that we desire For-505

22

Table 5: Excerpt of the proposal regarding M0 level.

Class Association

Property Generalization

M0 level

Formula instructions pattern:

[Introduce(Linka.name, number)]

Example:

[Introduce(LinkFamily,2)]

Example of the Formula generated instances:

LinkFamily(5,
Association(“family”,Class(“Person”,false),0,star,

Class(“Person”,false),0,2),
InstancePerson(93, Class(‘‘Person’’,false)),
InstancePerson(96, Class(‘‘Person’’,false)))

Formula instructions pattern:

[Introduce(Instancec.name, number)]

Example:

[Introduce(InstancePerson,2)]

Example of the Formula generated instances:

InstancePerson(93, Class(“Person”,false))
InstancePerson(96, Class(“Person”,false))

Formula instructions pattern:

[Introduce(p.name+p.owner.nameSlot, number)]

Example:

[Introduce(namePersonSlot,2)]

Example of the Formula generated instances:

namePersonSlot(InstancePerson(93,Class(“Person”,false)),
StringProperty(“name”,“”,1,1),202)

namePersonSlot(InstancePerson(96,Class(“Person”,false)),
StringProperty(“name”,“”,1,1),201)

Formula instructions pattern:

[Introduce(LinkGeng.general.name+g.specific.name, number)]

Example:

[Introduce(LinkGenPersonEmployee, 2)]

Example of the Formula generated instances:

LinkGenPersonEmployee(67,
Generalization(Class(“Person”,false),

Class(“Employee”,false)),
InstancePerson(93, Class(‘‘Person’’,false)),
InstanceEmployee(56, Class(‘‘Employee’’,false)))

mula to generate as part of the resulting OD. For example, we define the

[Introduce(InstancePerson, 2)] command so that Formula searches two valid

instances of InstancePerson (see Table 5).

At this point a special remark has to be made regarding the value of the

bound n parameter to provide to each Introduce command. More specifically,510

there is a dependency among the instances in the resulting model (for example,

an instance of the data type InstanceFullTimeEmployee requires an instance of

InstanceEmployee and InstancePerson). In particular, the maximum number

of the property slots would depend on the bound chosen for the corresponding

owner class (normally, both bounds are the same unless the property multiplicity515

is more than one). Special attention is required for generalization relationships,

since there are delicate dependencies among instances of parents and children.

On one hand, if the generalization set is complete and disjoint, the more suitable

value for the bound of the parent would be the sum of the bounds of its chil-

dren. If the generalization set is complete and overlapping, to consider the more520

restrictive option in which specific classifiers do not share common instances,

23

we can choose again the sum of the bounds of the children as the parent bound.

On the other hand, if the generalization set is incomplete, where there could

be some instances of the general classifier that could not be classified as any of

the specific classifiers from the generalization set, the bound of the parent, both525

in overlapping and disjoint cases, could be set to the sum of the bounds of its

children plus the number of specific instances of the parent we want Formula

to generate. Additionally, the bounds of the LinkGenParentChild instances

would have to be chosen according to the previous decisions, coinciding with

the bounds of the instances of the specific child. Finally, extra calculations530

would have to be completed with the bounds of the association links, taking

into account the corresponding multiplicities and the bounds chosen for the

instances of the associated classes.

Finally, the Formula expressions defined at this level are included in a partial

model, we have called CDInstanceFPM .535

We want to note that, although our conceptual proposal requires the user

to provide bounds for classes, properties, associations and generalizations, as

we will explain later, by using the CD2Formula plug-in, the user would have to

manually indicate the number of valid instances per class, property and asso-

ciation. However, the bounds of the LinkGenParentChild instances would be540

directly provided by the plug-in according to the bounds of the instances of the

specific child.

4.4. Some remarks regarding other Class Diagrams’ elements

A special remark has to be made regarding the Classifier metamodel ele-545

ment, association classes, strong composition, and user–defined data types. On

one hand, the Classifier element is defined by a derived data type, as the union

of the Class and Association primitive data types so that we can generally

refer to classes and associations. On the other hand, association classes are

translated in the same way as associations, so that they can register the as-550

sociated classes, but with the particularity of owning properties. The owned

properties are established in the associated slots data types at the M1b level,

24

Table 6: Strong composition translation and example of use.

Translation rule

- Per each Part included in the composite aggregations with

whole1, whole2, ..., wholen respectively, we define the query:

queryComposition:=p is InstancePartName,

count(LinkassocPartWhole1(, ,p,))+

count(LinkassocPartWhole2(, ,p,))+...+

count(LinkassocPartWholen(, ,p,))!=1.

- Include its negation (!) in the conforms query.

Example of use

queryComposition:=p is InstanceDepartment,

count(LinkmakesUpOf(, ,p,))!=1.

conforms:=!queryComposition & other queries.

thanks to the definition of the Element data type. This data type is defined

as the union of Instance and Link data types, and later, established as the

type of the slot’s owner element (see the translation of properties at level555

M1b in Figure 3). For example, for the translation of the “Assigned” asso-

ciation class, we define the element: Assigned is Association(‘‘Assigned’’,

classDepartment,1,1,classEmployee,3,star) included in level M1a and the term

primitive LinkAssigned::= (id:Integer, type:Association, department: InstanceDepartment,

memberOf:InstanceEmployee) included in level M1b. Additionally, its property560

date is translated by defining the elements dateAssigned is DateProperty(‘‘date’’,

‘‘’’,1,1) and HasProperty(Assigned, dateAssigned) included in level M1a and

the term primitive dateAssignedSlot::= (owner:Element, prop:DateProperty,

value: String) included in level M1b.

Regarding composite aggregation (also known as strong composition), we565

have taken into account as a special form of association that it can be refac-

tored as binary associations together with additional OCL constraints (see [20]).

For this reason, we also represent the strong composition element as associa-

tions, defining additional Formula queries imposing such OCL constraints. More

specifically, since a composition represents a strong form of whole/part associ-570

ation and requires a part instance to be included in at most one composite at

25

a time [7, 20], for each part included in strong composition relationships, we

define in the InstanceLevelFD domain an additional Formula query represent-

ing the fact that a part instance is included in more than one composite at a

time (see in Table 6 the definition of the query queryComposition). Finally, to575

verify the dependence of a part with at most one whole each time, we define

the conforms query with the negation of the query previously defined as shown

in Table 6. In this way, we note that we are able to represent both (1) compo-

sitions where there is only one whole (the multiplicity on the whole end of the

composition is exactly 1) and (2) compositions where several whole classes point580

to the same part class but the same part instance cannot be used simultaneously

in different whole classes (the multiplicity on the whole end of the composition

is 0..1). As an example of the first case, in Table 6 we show the query defined to

specify the additional semantics of the strong composition on Figure 1 between

Company and Department, given by the association makesUpOf. Additionally, the585

negation of this query is included in the conforms query.

As for user–defined data types, we create a specific domain called User-

DataTypes, which is extended by the MetaLevelFD domain (see line 1 in Fig-

ure 3), so that it can use the data types defined by the user. For each property

defined by the user, this specific domain creates a primitive Formula type fol-590

lowing the translation rules of properties defined at the M2 level. In the par-

ticular case of enumeration data types, we define a Formula constant with the

list of possible fixed values within curly brackets (for example, in the case of

the Gender enumeration type in the case study, we define the constant Gender::=

{female,male}). In order to be able to define properties of the enumeration data595

type, we also define a primitive data type as described before in the transla-

tion of properties at the M2 level (in the previous example, we would define the

data type GenderProperty as GenderProperty::= (name: String, def: Gender,

lower: Natural, upper: UpperBound).

26

5. Translation of Class Diagram constraints600

Among the different constraints that can be applied to a CD, we can dis-

tinguish those predefined in UML and defined on the metamodel, from those

user-defined that are defined on the specific CD [2]. On one hand, the first are

used in the UML semantics description to define the well–formedness rules for

UML models, which ensure that the UML model is consistent with the UML605

metamodel. The user–defined constraints, on the other hand, are used to impose

the otherwise unrestricted particularities intrinsic to the particular CD. Both

types of constraints can be specified using a natural description and may be

followed by a formal constraint expressed in OCL [3]. Additionally, the user–

defined constraints may be implicit in the model notation (like the multiplicity610

constraints in UML associations) or explicitly established using OCL. Regarding

the OCL representation, the well-formedness rules are defined in terms of a set

of OCL invariants for each UML metaclass [21], where user–defined constraints

can be also defined in terms of OCL preconditions and postconditions. Tak-

ing this into account, we focus on invariants and describe how class invariants,615

specified within the chosen OCL fragment, are translated to Formula.

5.1. Overview of our approach for translating constraints

As presented previously, the OCL integrity constraints are known to be un-

decidable [5, 6]. Such undecidability has been tackled in literature by defining

methods that allow UML/OCL reasoning at some level. Examples of such meth-620

ods are [5, 22]: (1) those that allow only specific kinds of constraints, (2) those

that consider restricted models, (3) methods that do not support automatic

reasoning, or (4) those that ensure only semi–decidable models. Our approach,

which would fit within the first type, identifies a significantly expressive subset

of OCL, which corresponds to the OCL constraints defined using the fragment625

of OCL presented in Figure 5, and provides the translation of this fragment to

the Formula tool for OCL constraints’ decidable reasoning. In this section, we

show that the proposed fragment of OCL can be formally encoded in Formula;

27

OCLExpr LiteralExpr | RelExpr | MulOrAddExpr | not OCLExpr |

OCLExpr1 and OCLExpr2 | OCLExpr1 or OCLExpr2 | Path |

 Path SelectOpe | Path BooleanOpe |

 Path UnionOpe | Path CollectOpe

LiteralExpr Integer | Real | String | true | false

RelExpr OCLExpr relOpe OCLExpr

relOpe < | <= | > | >= | = | !=

MulOrAddExpr OCLExpr ope OCLExpr

ope +| - | / | *

Path PathItem | PathItem.Path

PathItem role | classAttribute | operation | classRoleName.role |

classRoleName.classAttribute | classRoleName.operation |

classRoleName.transClosOperator

SelectOpe -> select(OCLExpr)BooleanOpe| ->select(OCLExpr)SelectOpe

BooleanOpe -> size()| -> forAll(OCLExpr)

UnionOpe -> union(Path)

CollectOpe -> collect(OCLExpr)BooleanOpe| ->collect(OCLExpr)SelectOpe

 -> collect(OCLExpr)UnionOpe

Figure 5: Syntax of the OCL fragment.

thus, we allow finite reasoning for every CD constraint expressed in OCL and

defined with the constructors considered in our OCL fragment.630

Next, we introduce the chosen OCL fragment and explain our approach for

translating it. To provide the reader a better idea of this translating approach,

first we explain the translation of a simple OCL constraint to serve as a reference

explanation for the translation of the remainder elements of our OCL fragment.

5.2. OCL fragment635

We consider the OCL invariant context C inv: expr(self), where C is the

class in the CD to which the invariant is applied and expr(self) is an OCL ex-

pression resulting in a Boolean value for each self ε C. An OCL expression can

be defined as a combination of navigation paths with OCL operations, which

specify restrictions on those paths. A navigation path can be defined as a se-640

quence of role names in associations (such as p.children, p being an instance

of Person in Figure 1), attribute names (such as c.name, c being an instance of

Company), or operations (for example, c.hireEmployee(e) an operation defined in

the Company class). Taking this into account, in Figure 5 we represent the syntax of our

specific fragment. As it can be seen, OCLExpr is defined recursively. For example, an645

OCLExpr can be the result of applying relational operations to other OCLExpr ex-

pressions (e.g. OCLExpr < OCLExpr). Additionally, an OCLExpr can be the result

28

of applying a boolean operation BooleanOpe to a Path or a Path to which a

SelectOpe, a UnionOpe, or a CollectOpe is applied. An OCLExpr can be a Path ex-

pression which represents the structural method of defining navigation paths,650

starting from a PathItem, by combining roles’ names, class attributes’ names, or

operations (including the transitiveClosure), with the dot (‘.’) operator. Also,

primitive literal expressions are considered (identified as LiteralExpr) to allow

including constant values such as true, 1.5 or “text”. For an explanation of the

semantics of OCL, we refer to [3].655

5.3. OCL invariants

Formula does not have a concept similar to that of OCL invariants but

enables the possibility of defining queries, which provide a method to represent

invariant semantics. As an example of our approach, in this section we introduce

the basic rule for translating OCL invariants, where the OCLExpr corresponds to660

a simple relational expression RelExpr.

Example 1. We explain this rule by applying it to the user–defined OCL con-

straint presented in Table 7, which is defined for the CD of Figure 1. This OCL

invariant formalizes the constraint “The people registered in the system must

be older than 18 years old 1.” Next, we will explain each step of our proposal665

by applying it to this particular invariant.

First–step. This step is carried out by an interpretation function FOL(), which

translates each OCL expression expr(self) defined in an instance self ε C, into

a First–Order Logic (FOL) formula defined in the variable self (see label (1) in670

the first step of Table 7). First order logic states that the universal quantifier

corresponds to a negated existential, so the previous expression is equivalent

to the one labeled with (1’), where FOL (not expr(self)) corresponds to the

mapping of not expr(self) into FOL.

1Although OCL defines an invariant to be true for all instances of the classifier and can be

represented using the forAll OCL operation [3], we adopt the reduced version.

29

Table 7: Invariant translation and example of use.

Translation of a RelExpr invariant

OCL Invariant : context C inv: expr(self)

First–step: ∀self ∈ C FOL (expr(self)). (1)

¬(∃self ∈C FOL (not expr(self)). (1’)

Second–step: ¬(FOL∗(C) FOL∗[FOL (not expr(self))]) (2)

Third–step: query:=CLP (FOL∗[FOL (not expr(self))])

conforms := !query. (3)

Example 1

OCL Invariant :context Person inv: self.age>=18

First–step: ∀self ∈ Person age(self)>=18. (1)

¬(∃self ∈ Person age(self)<18). (1’)

Second–step: ¬(∃self ∈ InstancePerson(id,type)

agePersonSlot(self,def,val) val<18).(2)

Third–step: query:=agePersonSlot(self, ,val), val<18.

conforms := !query. (3)

Example 1. The invariant of our example can be represented in FOL as the675

expression labeled by (1) in Table 7 or equivalently, by (1’).

Second–step. Each constraint logic program P can be translated into FOL

according to its Clark Completion P∗ [23]. Roughly speaking, the Clark Com-

pletion of an atom or predicate symbol can be represented as a combination of

term expressions and rules, evaluated in variables, giving a true result. The680

inverse translation, from the FOL representation of P (P∗) to P, can be car-

ried out by applying inverse versions of the Clark Completion algorithm [24],

which compile the specifications into the logic program it directly specifies.

Taking this into account, the second step is devoted to represent the seman-

tics given by the affirmative evaluation of FOL (not expr(self)) in the collec-685

tion of instances self ∈ C, by means of Formula expressions. Since paths in

OCL are defined in terms of instances of the CD, and in our approach such

instances are defined by the data types defined in the CDInstanceFPM partial

model, such Formula expressions are written in terms of the InstanceclassName,

LinkassociationName, LinkGeng.general.name+g.specific.name, and/or proper-690

30

tyName+ownerNameSlot data types. Based on this premise, in this second

step, we rewrite the FOL expression FOL (not expr(self)) in terms of For-

mula expressions by applying a second function called FOL∗(). This function

FOL∗() basically represents the predicate FOL (not expr(self)) using the corre-

sponding Formula terms and predicate symbols ∈ InstanceLevelFD, and Formula695

constraints, in such a way that the resulting expression is evaluated to true (see

step labeled (2)).

Example 1. The application of this second step to our example consists of rep-

resenting, in terms of Formula expressions, the elements necessary to navigate

from the context class Person to the fact age(self)<18 , as presented in Table 7700

with label (2). In such expressions self ∈ InstancePerson corresponds to the

result of the application of the function FOL∗() to the context class Person, and

the rest of the terms correspond to the application of the function FOL∗() to

age(self) <18, that is, considering type expressions as necessary to reach, from

InstancePerson to the agePersonSlot slot whose value property is less than 18.705

Third–step. Taking into account the semantics of queries in Formula, the FOL

expression given in the second step is represented by the definition of a query and

the verification of its negation in the conforms query (see step labeled (3) in Ta-

ble 7). This step is materialized by the application of the function CLP(), which

basically rewrites the terms resulting from (2), and joins them by ‘,’, omitting710

the translation of the expression self ∈ InstanceC.name since in FOL∗(FOL (not

expr(self))) the field self unequivocally corresponds to InstanceC.name.

Example 1. The application of function CLP() would result in the Formula

expression presented in Table 7. Note that since in agePersonSlot(self, ,val),

the field self corresponds to InstancePerson, it has been omitted from the715

definition of the query.

To sum up, the translation of an invariant is carried out by the composition of

the three defined functions CLP ◦FOL∗◦FOL (). In order to improve the readability

and understandability of the translation expressions, from now on we use the

function Trans () defined as that composition.720

31

Table 8: Translation of Boolean OCL expressions

OCL expression Translation approach

expr1 and expr2 Trans (expr1) & Trans (expr2)

expr1 or expr2 Trans (expr1) | Trans (expr2)

not expr Trans (not expr)

5.4. Boolean OCL expressions

Having presented our approach for the translation of a simple OCL invariant,

next we are going to describe the translation of the rest of the OCL expressions

included in our OCL fragment. More specifically, in Table 8 we present the725

translation of the conjunction, disjunction, and the negation operators of the

OCL fragment, which we consider easily understood taking into account our pre-

vious explanations. As an example, we briefly explain the translation of an OCL

expression with the conjunction operator expr1 and expr2. In particular, if

Trans (expr1) results in the verification of a query !query1 in the conforms one,730

and Trans (expr2) results in the verification of another query !query2, the re-

sult of translating the conjunction is the expression !query1 & !query2 spec-

ified in the conforms query (that is, conforms:= !query1 & !query2). Finally,

we represent this translation rule as Trans (expr1) & Trans (expr2), where each

expression is translated recursively using the translation rules presented in the735

remainder of this paper by applying the function Trans ().

5.5. OCL collections

The translation of OCL expressions, which include operations in collections

(that is CollectOpe, UnionOpe, SelectOpe and BooleanOpe expressions) and the

particular case of operations implementing a transitive closure of a relationship,740

require extra attention. Since these expressions work with collections, a spe-

cial remark must be made. The OCL standard defines a number of collection

constructs, such as Sets (unordered without duplicates), Bags (unordered and

may contain duplicates), OrderedSets and Sequences (ordered that may contain

32

duplicates) [3](Sec. 11.6). We can infer from the Formula documentation [12]745

that the Formula language works with unordered collections (sets and bags).

Among the predefined operations on collections provided by the OCL stan-

dard [3], our OCL fragment considers: forAll, size, select, union, and collect.

In the next subsections, we provide a complete explanation of the translation

of the select operation and describe how operations implementing a transitive750

closure are represented in Formula. We also give a description of the translation

of the remainder operations, not provided in [16].

5.5.1. ForAll, Size, Select, Union, and Collect operations

forAll. On one hand, the general syntax of OCL universal quantifier expres-

sions [3](p. 29, Sec. 7.7.3) is C -> forAll(c|expr(c)), where expr(c) refers to755

a boolean expression, which is evaluated for every item in the collection C. If

the boolean expression expr(c) is true for all possible instantiations c in the

collection C, the whole expression is true, otherwise the expression is false. As

explained before, Formula does not have a universal quantifier but we can rep-

resent it by verifying the negation of a query representing the opposite of the760

constraint in the universal quantifier (see in Table 9 the rule for translating the

forAll operator).

Example 2. As an example of the translation of this operator, we demonstrate

the translation of the OCL invariant labeled (2) in Figure 1, which formalizes the765

constraint “The salary of an employee must be greater than 1000.” Following our

approach, this constraint is represented in Formula by following our three-step

process, which is presented in Table 9. In particular, for the translation of this

constraint, to represent instances of the WorksIn association, we have used the

Formula data type LinkWorksIn(id,assoType,employer,employee), which uses770

the identifier, the type of association, the corresponding InstanceEmployee as

employee, and the InstanceCompany as employer as fields.

size. On the other hand, the size operation is applied on a collection, returning

the collection’s cardinality (i.e., the number of elements in the collection). The

33

Table 9: Translation of the ForAll operation.

Translation of the forAll operation: C -> forAll(c|expr(c))

query:=CLP (FOL∗(FOL (not expr(c)))).

conforms:= !query.

Example 2

context Company inv: self.employee->forAll(e:Employee|e.salary>1000)

First-step: ∀ self ∈ Company em ∈ employee(self) salary(e) >=1000. (1)

¬(∃ self ∈ Company em ∈ employee(self) salary(em)<1000). (1’)

Second-step: ¬(∃ self ∈ InstanceCompany(id,type)

wi ∈ LinkWorksIn(id,type,self,em)

em ∈ InstanceEmployee(id,type)

salaryEmployeeSlot(em,def,val) val<1000) (2)

Third-step: query:= LinkWorksIn(, ,c,em),

salaryEmployeeSlot(em, ,value), value<1000.

conforms := !query. (3)

syntax of this operator is C -> size() and can only be applied to countable sets.775

Formula has a count operator, which can be used to count instances of a specific

term given as parameter, so intuitively, we use this operator to translate the

size operation, as presented in Table 10.

select. Regarding the select operation, it is used to select members of a collec-

tion that satisfy a boolean expression and return a new collection that contains780

only those members [3] (27, Sec. 7.1.1). The OCL syntax of this operation is C

-> select(c|expr(c)). This statement selects the elements of the collection C,

which satisfy the boolean expression expr(c) and returns a new collection with

only those elements. Using Table 10, next we describe the translation of this

operator, applying it to a constraint in which the size operation also appears (in785

this way, we also provide an example of an application for the size operation).

Example 3. Let’s consider the translation of the OCL invariant labeled (3)

in Figure 1 also presented in Table 10, which represents the fact that “in a

company, at least two of the employees are female.”790

First–step. In order to obtain a subcollection from a set of elements, based

34

Table 10: Translation of the size and select operations.

Translation of the size operation: C-> size()

count(CLP (FOL∗(FOL (C)))).

Translation of the select operation: C-> select(c|expr(c))

SC,exprType::=(self:Tself,sele:Tsele).

SC,exprType(self,sele):-CLP (FOL
∗(FOL (expr(c))))

Example 3, including the size and select operations

context Company inv: self.employee ->

select(p:Person| p.gender=Gender::female)-> size()>=2

First-step:

- ∀(s ∈ SC,expr ↔ self ∈ Company s ∈ employee(self) &

gender(s) = Gender::female)

- size(SC,expr)>=2, or equivalently, ¬(size(SC,expr)<2) (1)

Second-step: - ∀((s,self) ∈ FemaleEmp(x,y) ↔ LinkWorksIn(, ,self,s)

genderPersonSlot(s, ,val) val= female.

- ¬(size(FemaleEmp(x,y))<2) (2)

Third-step: - FemaleEmp::= (self:InstanceCompany,s:InstanceEmployee).

FemaleEmp(self,s):- LinkWorksIn(, ,self,s),

LinkGenPersonEmployee(, ,p,s),

genderPersonSlot(p, ,val), val= female.

Finally, the translation of the constraint would be:

query:= self is InstanceCompany, count(FemaleEmp(self,))<2.

conforms := !query. (3)

on [25], we propose defining a new symbol SC,expr. The idea is that this symbol

represents the members in the collection we want to select from the source

collection. The symbol SC,expr is defined as:

∀[s ∈ SC,expr ↔ s ∈ FOL (C) & FOL (expr(c))](1)795

Example 3. The application of this first step to the example corresponds to

the definition of the symbol SC,expr as presented in Table 10. Note also the

translation of the first step of the size operation, applied to the new symbol

representing the subcollection of elements we want to count.

Second–step. We rewrite the symbol SC,expr in terms of a new Formula data800

type SC,exprType, by applying the function FOL∗(SC,exprType), as follows:

∀[s ∈ SC,exprType ↔ s ∈ FOL∗(FOL (C)) & FOL∗(FOL (expr(c)))](2)

Example 3. The application of the second step is the redefinition of the type

SC,exprType, to a new Formula data type, which we have called FemaleEmp, as

35

depicted in Table 10. In particular, with the compound term LinkWorksIn(, ,s,805

self) we refer to the instances that correspond to the contracts of the employee s

with the company self. With LinkGenPersonEmployee(, ,p,s) we refer to the

specialization relationship between the instance employee s and the instance

person p, while with the compound term genderPersonSlot(p, ,val), we take

the gender slot of the person p corresponding to the employee s. Finally, with810

val= female, we select the female persons from these employee instances.

Third–step. In this step, we need to define the new data type SC,exprType and

populate it with the elements of the collection we want to select. More specifi-

cally, first, we define a new type SC,exprType as:

SC,exprType ::= (self: Tself, sele: Tsele)815

where Tself is a Formula type expression corresponding to the Formula type

expression of the invariant’s context, that is, to InstanceC.name, and where

Tsele is a Formula type expression corresponding to the Formula type expression

representing expr(c).

Second, we create a production rule that generates new entries in the fact-820

base of Formula, populating the previously defined type with facts representing

just the members in the collection we want to select:

SC,exprType(self,sele):- CLP (FOL∗CT (FOL (C))), CLP (FOL∗CT (FOL (expr(c))))

Example 3. In this step we define the FemaleEmp Formula type as presented in

Table 10 and create the rule FemaleEmp(self,s), which populates the new data

type with pairs company-employee in which the employees are females. Finally,825

the overall constraint is translated as described in Table 10.

union. The union operation is used to join collections [3] (23, Sec. 7.6.11).

The OCL syntax of this operation is collection1 -> union(collection2). Our

proposal for the translation of this operation is similar to the translation of the

select operation in the sense of that it is mainly based on the semantics of the830

Formula production rules. In particular, we create a new Formula data type

36

that represents the elements in each collection (which are elements of the same

nature). Later, as in the case of the select operation, we create a production

rule per each collection (collection1 and collection2), which would populate

the new data type with the elements included in the corresponding collection.835

Finally, it results in a collection of facts representing the union of the initial

collections. An example of the translation of the union operation could be seen

in the next subsection, where we discuss transitive closure.

collect. The collect operation is used to specify a collection that is derived

from some other collection, which contains different objects from the origi-840

nal collection [3] (28, Sec. 7.7.2). The OCL syntax of this operation is C ->

collect(c|expr(c)). This statement returns the collection of the results of all

the evaluations of expr(c). Related with the use of the collect operation is the

consideration of collections of collections in OCL constraints. Based on the OCL

specification, automatic flattening is carried out when using the collect opera-845

tion. Similarly, implicit flattening is considered when used with the shorthand

notation for collect (see subsection 7.7.2 “collect” operation in [3], p. 29). Since

the collectNested operation returns a nested collection, the flatten operator

must be explicitly applied to get the flattened version (see subsection 11.9.1.6

“collect” in [3], p. 170). At this point, we have to note that Formula does not850

support collections of collections [12]. For this reason, we provide a proposal

to be used for the translation of both the collect operation and the flattened

collections represented by using the shorthand notation for collect.

Our approach consists of (1) defining a Formula data type representing the

members in the collection (or flattened collection), (2) creating a production rule855

used to populate the new data type with facts that represent just the members

in the collection (or flattened collection), and (3) using such a data type in the

translation of the remainder constraint. As an example, in Table 11 we present

the translation of two different constraints where the shorthand notation for

collect is used. In particular, the first constraint represents the fact that “for860

each department, all employees earn more than 1000”, while the second one

37

Table 11: Examples of translation of flattened collections.

Example 1. context Department inv: self.project.participant ->

forAll(e: Employee| e.salary>1000)

employeesDepartment ::= (d:InstanceDepartment, e: InstanceEmployee)..

employeesDepartment(d,e):- Linkcontrols(, ,p,d), LinkworksOn(, ,p,e).

queryFlattened := employeesDepartment(d,e),

salaryEmployeeSlot(e, ,value), value<=1000.

conforms := !queryFlattened.

Example 2. context Department inv: self.project.participant -> size()=6

employeesDepartment ::= (d: InstanceDepartment, e:InstanceEmployee).

employeesDepartment(d,e) :- Linkcontrols(, ,p,d), LinkworksOn(, ,p,e).

queryFlattened2 := count(employeesDepartment(d,))!=6

conforms := !queryFlattened2.

states that “the total of employees that participate in the projects controlled by a

department must be 6”. We note that in both constraints, self.project delivers

a Set(Project) and self.project.participant delivers a Set(Set(Employee)),

which would result in a Set(Employee). We would like also to note that, although865

in these examples we consider the shorthand notation for the collect operation,

the same translation idea could be used equivalently for the translation of the

collect operation.

5.5.2. Transitive closure870

Transitive closure is normally needed to represent model properties, which

are defined recursively. Additionally, it is often used in reasoning about par-

tial orders, and thus widely found in modeling applications. The translation

of closures is not straightforward since, on one hand, they are not finitely ax-

iomatizable in FOL and, on the other hand, OCL also does not support them875

natively [26, 27]. Nevertheless, it is possible to define the transitive closure of

relations, which are known to be finite and acyclic.

Let’s consider the OCL operator labeled (4) in Figure 1, defined in the

context Person, where ancestors are recursively defined, in order to repre-

sent the transitive closure of the relation defined by parents. The expression880

38

self.parents denotes the set of all direct supertypes, whereas self.ancestors de-

notes the transitive closure of direct supertypes.

The transitive closure is illustrated in [26], which defines ancestors by:

APar(x) = Par(x) ∪ {y | ∃ z ∈ Par(x) ∧ y ∈ APar(z)}

where Par(x) and APar(x) are the translations of x.parents (note that the OCL885

variable self has been substituted by x, a more common variable in mathemat-

ics) and x.ancestors, respectively.

As stated in [26], this definition can be expressed in FOL by the formula:

r∗(x,y) ↔ r(x,y) ∨ (∃ z r(x,z) ∧ r∗(z,y))

where Par and APar are substituted for by the relation symbols r and r∗ with

r(x,y) denoting y ∈ Par(x), and r*(x,y) denoting y ∈ APar(x).890

This formula is interpreted by the structure (U,R,R∗) where U is the uni-

verse, and R and R∗ are interpretations of the relations r and r∗, respectively.

The author in [26] presents countermodels for this formula whereby R∗ does

not coincide with the transitive closure of R ; however, the author states that

if (U,R,R∗) is a finite model and the axiom ¬r∗(x,x) holds (that is, R∗ is895

enforced to be acyclic), then R∗ is a correct definition of transitive closure.

Moreover, acyclicity constraints are easily captured in CLP since it exposes

fixpoint operators via recursive rules [14, 18]. In particular, we represent tran-

sitive closure in Formula using recursive rules as the following:

r∗(x, y) :− r(x, y).

r∗(x, y) :− r(x, z), r∗(z, y).

where the first expression encodes r∗(x,y) ↔ r(x,y), and the second expression900

encodes ∃ z r(x,z) ∧ r∗(z,y). Based on the translation rules we have defined

previously, next we explain the translation to Formula of an OCL constraint

with an operation referring to a transitive closure relationship.

Example 4. Let’s consider the OCL constraint labeled (4) in Figure 1, which

formalizes the constraint “A person cannot be married with an ancestor.” This905

invariant is represented in OCL as context Person inv: self.ancestors ->

39

forAll(p | p!= self.spouse1), where the operator ancestors is defined as pre-

sented previously. The representation in Formula of the ancestors operator

of our case study would consist of: (1) the definition of a new Formula type

ancestors that represents pairs child-parent, together with (2) two production910

rules that populate such a type (we note that such a translation could be also

easily inferred following the translation rules of the union and the collect op-

erations, presented in the ancestors definition):

ancestors ::= (child:InstancePerson, parent:InstancePerson).

ancestors(x, y) :- LinkFamily(,family,x,y).

ancestors(x, y) :- LinkFamily(,family,x,z), ancestors(z,y).

Since the OCL invariant has a forAll operator, we can use its translation915

rule, resulting in the expression:

query:= ancestors(child,parent),

LinkMarriage(, ,spouse1,spouse2),

spouse1=child, spouse2=parent.

conforms:= !query.

where LinkMarriage(id,assoType,spouse1,spouse2) corresponds to the transla-

tion of the association marriage.

As advanced previously, since the translation of the OCL constraints in

a CD are defined in terms of the data types created in the CDInstanceFPM920

partial model, the Formula expressions resulting from the translation of the

OCL constraints are included in such a partial model.

5.6. Other issues regarding OCL

There are several OCL operations and expressions whose representation in

Formula is straightforward by applying equivalences and using our translation925

proposal of the chosen OCL fragment (see in Table 12 these operations and

expressions and their equivalences considering [28]). This is the case of, for

example: (1) the exclusive disjunction operator (xor) [3] (p. 153, Sec. 11.5.4),

which is easily translated considering the conjunction/disjunction and negation

40

Table 12: Other OCL operators and expressions, and their equivalences

OCL operation and expressions Equivalent expression

expr1 xor expr2 (expr1 or expr2) and not (expr1 and expr2)

C → reject(c| expr(c)) C → select(c| not expr(c))

C → isEmpty() C → size()= 0

C → notEmpty() C → size()> 0

expr1 implies expr2 not expr1 or expr2

operations, (2) the reject operator [3] (p. 27, Sec. 7.7.1), easily translated using930

its equivalence with the select operator, (3) the isEmpty/notEmpty operators [3]

(p. 157, Sec. 11.7.1), whose translation to Formula is easily performed using

the size translation, (4) the exists operator [3] (p. 30, Section 7.7.4), which

is easily inferred from the translation of the forAll operator considering the

existential quantifier character of queries, and (5) the implies operator [3] (p.935

154, Sec. 11.5.4), which is easily translated considering the disjunction and

negation operations.

An additional remark has to be made regarding the predefined OCL prop-

erties that apply to all objects [3], such as oclIsTypeOf, oclIsKindOf, and940

oclAsType (pp. 22, Sec. 7.6.9). In particular, although the mismatch among

instances and types is checked by the Formula tool, to our knowledge, it does

not provide specific operations which allow to represent directly the previous

OCL operations. This similarly happens with the operation oclIsUndefined, or

with OCL operations that are state dependent. On the one hand, we do not give945

support to the oclIsUndefined operation, thus our proposal does not implement

four-valued OCL logic. On the other hand, extra attention must be given to

OCL operations that are state dependent (such as the operation oclIsInState,

which evaluates whether the object is in a specific state, and oclIsNew, which

checks whether the object does not exist in the previous state of the system but950

exists in the current state). More specifically, in OCL operations that are state

dependent, a UML state machine diagram is required and representing UML

state machines in Formula is out of the scope of this work, but we consider that

defining a proposal for reasoning about UML dynamic diagrams constitutes an

interesting issue for further work.955

41

1

2

3

Figure 6: A snapshot of the CD2Formula plug–in.

To sum up, we have shown that the proposed fragment of OCL can be for-

mally encoded in Formula; thus, we can reason about CD constraints expressed

using the constructors of the considered fragment of OCL. In particular, we are

able to represent in Formula both well–formedness rules and user–defined con-

straints (implicit in the model and OCL explicit constraints), specified with the960

constructors considered in our OCL fragment. In particular, well–formedness

rules are represented in Formula and included in the MetaLevelFD domain. Re-

garding user–defined constraints implicit in the model notation (like multiplicity

constraints in associations), they are also represented as shown in this section,

since they can also expressed directly as OCL constraints.965

6. Tool support and reasoning process of the case study

In this section, we describe the development aspects of the CD2Formula

Eclipse plug–in, which allows us to automatically perform the transformation

from class diagrams to Formula. Also, in order to illustrate the usefulness of

42

our approach, we apply it to our case study.970

6.1. Development of the CD2Formula Eclipse plug–in

The first step in our overall process consists of translating the model, which

we want to reason about, into the Formula language. A first attempt to carry

out this step is to perform such a transformation manually, which constitutes

a process in which a professional with both UML and Formula skills may be975

required. It must be noted that such an encoding process may entail a great

effort depending on the source CD. The complexity of some software designed

models together with their possibility of change over time make the manual

transformation of every CD into the input language of a model–finder tool a

cumbersome and costly endeavor. To overcome these challenges, we have used980

a MDA–based tool that particularly allows us to automatically carry out the

transformation from the CD graphical representation to Formula. More specif-

ically, as described previously, user–defined constraints can be implicit in the

model notation or explicitly established by means of OCL constraints. Taking

this into account, our plug–in covers the translation of the CD together with985

the user–defined constraints implicitly represented on it. In Figure 6 we show

a snapshot of the plug–in. The idea is that the defined plug–in together with

the Formula tool, constitute our overall proposed framework for CD graphical

representation to Formula code.

As far as the development of the CD2Formula plug–in is concerned, it uses990

a MDA–based plug–in, which gives support for customizable model–to–text

(M2T) transformations. Among the large amount of MDA-based tools in liter-

ature, we have chosen the MOFScript Eclipse plug-in [29], which provides sup-

port for customizable model–to–text transformations, and which we have used

in previous works [30, 31]. As input models, MOFScript can use any model that995

complies with the EMF [32] metamodel. From these input models, the tool can

generate any arbitrary text using a defined set of MOFScript transformations.

Each MOFScript transformation consists of transformation rules that define the

behavior of the transformation. The transformation rules are defined based on

43

the metamodel and subsequently compiled and executed on the model.1000

In our particular case, as source models of the MOFScript transformations,

we use the UML 2.1 metamodel and the specific CD as the model. This CD

can be defined using any textual or graphical UML 2 compliant tool that can

create models in the XMI format supported by EMF (in particular, we have

used the UML2 Eclipse plug-in [33] version 2.1.0, which is based on the UML1005

2.1.0 specification defined by OMG).

Regarding the generation of the Formula representation of CDs, an impor-

tant remark must be made. Because of the bounded verification approach fol-

lowed by Formula, in our proposal we use the Introduce Formula instructions

in the CDInstanceFPM partial model to tell the Formula solver about the user–1010

defined bounds of valid instances we would like for the final solution. The num-

ber of instances of class, property, and association in the model should be manu-

ally provided by the user as inputs to the plug-in interface by following the guides

given in Subsection 4.3. In contrast, the bounds of the LinkGenParentChild

instances will be directly provided by the plug–in according to the bounds of1015

the instances of the specific child.

Since such bounds have to be provided before carrying out the transforma-

tion from the CD to its Formula representation, we first need to ask the user

for such information, which depends on the specific CD. Taking this into ac-

count, we have defined two sets of MOFScript transformations to be executed1020

subsequently. These sets are used (1) to generate a java graphical user interface

(GUI), which asks the user for the required number of instances, and (2) to

create the Formula representation of the CD (whose CDInstanceFPM partial

model is generated taking into account the values inserted by the user by the

previously generated GUI interface). We want to note that these MOFScript1025

transformations have been defined based on our CD–to–Formula translation

proposal, so such transformations are independent of the specific CD and do

not have to be modified to translate other CD.

Finally, we have integrated the two sets of MOFScript transformations into

the CD2Formula Eclipse plug–in, so that the translation from a CD to its For-1030

44

mula representation can be carried out automatically. More specifically, the

plug–in provides a menu option “Transformations/UML Class diagram to For-

mula” (see step labeled 1 in Figure 6) available for each UML CD (specified

as .uml extension files), which allows the execution of the MOFScript trans-

formations, which (1) dynamically create the GUI interface asking the user for1035

the required information, that is, bounds of instances per class, property and

association (see step labeled 2), (2) retrieve the values inserted by the user in

the interface, and finally (3) generate the Formula representation of the CD,

that is, the FormulaSpecifications.4ml file (see step labeled 3), using such val-

ues. Finally, the resulting .4ml extension file is used by the Formula tool for1040

reasoning about the CD. An Eclipse distribution with the CD2Formula plug–in,

together with relevant documentation and examples are available from [34]. We

encourage the interested reader to try it out.

6.2. Reasoning about the case study

In this section, we briefly present some results and experiences we have1045

obtained from the application of our framework to the case study. Using our

proposal, we have been able to not only find conforming object models for the

original diagram, but we have also validated interesting business constraints,

which have shown the existence of anomalies in the CD, under specific situations.

First, as described previously, we have created the CD model in Figure 11050

using the UML2 Eclipse plug–in (as a .uml extension file).

Second, taking the resulting file as an input model, we have used the menu

option the CD2Formula plug-in provides to automatically generate the For-

mula representation of the CD. In this step, as described previously, we have

manually established the bounds of instances we want Formula to generate.1055

In particular, for the example we have chosen low bounds (we have set all

bounds to 5 excluding, taking into account the generalization set constraints, the

InstancePerson data type, which has been set to 15, and InstanceEmployee data

type, which has been set to 10). The process has resulted in a .4ml extension

file with more than 450 lines. We want to note from the number of lines that1060

45

a manual definition of the Formula file would constitute a tedious and delicate

work. We have also included the Formula representation of the business OCL

constraints labeled from (1) to (4) in Figure 1. Finally, we have begun the rea-

soning process. In particular, we have carried out several experiments, among

which we show, as an example, two of them devoted to: (1) to reason about the1065

CD of Figure 1 to find out if it is satisfiable, that is, if there exists a conforming

object model for the CD, and (2) to verify more complex business constraints.

As far as the first experiment is concerned, we have started from the Formula

file with the chosen bounds, and we have used the Formula finder to reason about

the model, finally getting a positive result. In particular, the tool has returned1070

an instantiation of the model verifying all the established constraints, including

the intermediate facts derived from the given facts in the partial models. More

specifically, the tool has generated a valid set of instances of the corresponding

Instance, Link, and Slot data types, conforming to the Formula model (and thus

the original CD), and verifying the Formula constraints (and thus the CD/OCL1075

constraints). Additionally, the tool returns the new entries Formula generates

in its fact-base from the defined rules at the M2 level (for example, of the

supClass, the inhsProp, and the inhsAsso rules), taking as a starting point

the instances given at level M1. In particular, in Figure 7 we show some of the

generated Formula instances, which have been distributed into two columns.1080

Additionally, we have slightly compacted the resulting instances in order to

make them more legible. More specifically, in lines from 1 to 38 of Figure 7 we

show some of the instances we provide to Formula in the domain CDModelFM

at level M1 (see lines from 1 to 15), and some of the new entries that Formula

generates for the case study by executing such rules (see lines from 16 to 38),1085

representing the hierarchical structure and the inherited associations. In lines

from 40 to 88 of Figure 7, we show some of the instances Formula generates

representing the conforming model. As an example, in this figure we can see

in bold text the relationships of the full time employee with ID ifte2 (see line

46), which corresponds simultaneously to employee ie4 (see line 85), and to1090

person ip2 (see line 83). Such an employee is not married but his(her) parent

46

1 classPerson is Class("Person", false)
2 classEmployee is Class("Employee", false)
3 classFullTimeEmployee is

Class("FullTimeEmployee", false)
4 classPartialTimeEmployee is

Class("PartialTimeEmployee", false)
5 classCompany is Class("Company", false)
6 classDepartment is Class("Department", false)
7 ...
8 family is Association("family",

classPerson, 0, star, classPerson, 0, 2)
9 Assigned is Association("Assigned",

classDepartment,1,1,classEmployee,3,star)
10 worksIn is Association("worksIn",

classCompany,1,star,classEmployee,1,star)
11 makesUpOf is Association("makesUpOf",

classDepartment, 1, star, classCompany,1,1)
12 genPersonEmployee is

Generalization(classEmployee,classFullTimeEmployee)
13 genEmployeeFullTimeEmployee is

Generalization(classEmployee,classPartialTimeEmployee)
14 genEmployeePartialTimeEmployee is

Generalization(classPerson,classEmployee)
15 ...
16 supClass(classPerson,classEmployee)
17 supClass(classEmployee,classFullTimeEmployee)
18 supClass(classEmployee,classPartialTimeEmployee)
19 supClass(classPerson,classFullTimeEmployee)
20 supClass(classPerson,classPartialTimeEmployee)
21 inhsAsso(classPerson,family)
22 inhsAsso(classPerson,marriage)
23 inhsAsso(classEmployee,Assigned)
24 inhsAsso(classEmployee,worksOn)
25 inhsAsso(classEmployee,worksIn)
26 inhsAsso(classEmployee,family)
27 inhsAsso(classEmployee,marriage)
28 inhsAsso(classFullTimeEmployee ,drives)
29 inhsAsso(classFullTimeEmployee ,Assigned)
30 inhsAsso(classFullTimeEmployee ,worksIn)
31 inhsAsso(classFullTimeEmployee ,worksOn)
32 inhsAsso(classFullTimeEmployee ,family)
33 inhsAsso(classFullTimeEmployee ,marriage)
34 inhsAsso(classPartialTimeEmployee ,Assigned)
35 inhsAsso(classPartialTimeEmployee ,worksIn)
36 inhsAsso(classPartialTimeEmployee ,worksOn)
37 inhsAsso(classPartialTimeEmployee ,family)
38 inhsAsso(classPartialTimeEmployee ,marriage)
39 ...
40 ip1 is InstancePerson(5,classPerson)
41 ip2 is InstancePerson(7,classPerson)
42 ip3 is InstancePerson(8,classPerson)
43 ip4 is InstancePerson(66,classPerson)
44 ip5 is InstancePerson(67,classPerson)
45 ifte1 is InstanceFullTimeEmployee (82,

ClassFullTimeEmployee)

ifte2 is InstanceFullTimeEmployee (85,
ClassFullTimeEmployee)

ipte1 is InstancePartialTimeEmployee (110,
ClassPartialTimeEmployee)

ipte2 is InstancePartialTimeEmployee (111,
ClassPartialTimeEmployee)

ipte3 is InstancePartialTimeEmployee (112,
ClassPartialTimeEmployee)

ipte4 is InstancePartialTimeEmployee (113,
ClassPartialTimeEmployee)

ipte5 is InstancePartialTimeEmployee (114,
ClassPartialTimeEmployee)

ie1 is InstanceEmployee(22,classEmployee)
ie2 is InstanceEmployee(36,classEmployee)
ie3 is InstanceEmployee(39,classEmployee)

ie4 is InstanceEmployee(109,classEmployee)
ic1 is InstanceCompany(53,classCompany)
ic2 is InstanceCompany(108,classCompany)
id1 is InstanceDepartment(21,classDepartment)
id2 is InstanceDepartment(52,classDepartment)
ipr1 is InstanceProject(81,classProject)

ipr2 is InstanceProject(84,classProject)
Linkfamily(4,family,ip1,ip5)

Linkfamily(6,family,ip2,ip3)
LinkAssigned (19,Assigned,id2,ie4)
LinkAssigned (20,Assigned,id1,ie1)
LinkAssigned (23,Assigned,id2,ie3)
LinkAssigned (24,Assigned,id1,ie2)
LinkworksOn(35,worksOn,ipr2,ie2)
LinkworksOn(37,worksOn,ipr1,ie1)
LinkworksOn(38,worksOn,ipr2,ie3)

LinkworksOn(40,worksOn,ipr1,ie4)
LinkmakesUpOf(51,makeUpOf,id2,ic2)
LinkmakesUpOf(54,makeUpOf,id1,ic1)
Linkmarriage(65,marriage,ip4,ip5)
Linkmarriage(68,marriage,ip3,ip4)
Linkmarriage(69,marriage,ip5,ip3)
Linkdrives(80,drives,ipr2,ifte1)

Linkdrives(83,drives,ipr1,ifte2)
LinkworksIn(96,worksIn,ic1,ie3)

LinkworksIn(107,worksIn,ic2,ie4)
...
LinkGenPersonEmployee (-68,

genPersonEmployee,ip4,ie2)

LinkGenPersonEmployee (-57,
genPersonEmployee ,ip2,ie4)

LinkGenPersonEmployee (-40,
genPersonEmployee,ip1,ie3)

LinkGenEmployeeFullTimeEmployee (-93,
genEmployeeFullTimeEmployee ,ie4,ifte2)

LinkGenEmployeeFullTimeEmployee (-66,
genEmployeeFullTimeEmployee ,ie2,ifte1)

LinkGenEmployeePartialTimeEmployee (-61,
genEmployeePartialTimeEmployee ,ie3,ipte4)

LinkGenEmployeePartialTimeEmployee (55,
genEmployeePartialTimeEmployee ,ie1,ipte5)

46

47

48

49

50

51

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

83

84

85

86

87

88

Figure 7: Formula instances generated for the case study.

is the person with ID ip3 (see line 63) (inherited association). In particular,

ifte2 drives (see line 78) and works on (see line 71) the project with ID ipr1

(inherited association). Additionally, the employee works in the company with

ID ic2 (see line 80).1095

47

Regarding the second experiment, we have validated different business con-

straints, which one–by–one, have been translated into the Formula language

and included into the Formula representation of the original CD, in order to

be verified. Included in this kind of experiment, we have considered hypotheti-

cal system conditions and later, we have validated specific constraints to know1100

whether such constraints are satisfiable under such system situations.

As an example of such business constraints, let’s suppose that we have a

company with a specific structure of employees, projects, and departments con-

forming with the CD of Figure 1, and we want to prove that the team members

of a project belong to the department that is officially driving the project. Such1105

a constraint can be defined as:

context Project inv: self.participant->

forAll(e:Employee|e.department.name=self.driver.name)

In order to verify such a constraint, we have slightly modified the Formula

file considered in the previous experiment. In particular, we have included on

such a file the translation to Formula of the previous OCL constraint. Secondly,

we have considered specific Formula instances in the CDInstanceFPM partial1110

model at level M0, simulating a specific system composed by one company

made up of two departments (identified by d1 and d2), two projects (identified

by p1 and p2), and six employees, in such a way that: (1) four employees work

on project p1 and the other two work on project p2, and (2) three employees

belong to the department d1 and the other three to the department d2. Consid-1115

ering this company structure and the OCL constraint, as it would be expected,

Formula proves that such an instantiation of the model is not possible due to

the conflict in the multiplicity constraints (in particular, the multiplicities of the

associations Assigned and worksOn) and the defined OCL constraint, caused by

insufficient staff. In particular, Formula has labeled the model as unsatisfiable1120

and, analyzing the failed queries, they have given us the clue of that conclusion.

48

7. Discussion and related work

The formalization and analysis of UML Class Diagrams has motivated a

significant number of proposals. As described previously, most of these proposals

tackle the verification process by the translation of the model to other languages1125

that preserve its semantics, and the resulting translation is used to reason about

the design by checking a predefined set of correctness properties. We evaluate

our proposal by comparing it to relevant related work regarding the following

dimensions: (1) main tool features, (2) support for UML class diagram elements,

(3) support for OCL elements and (4) performance.1130

Our approach follows a bounded verification strategy which guarantees ter-

mination by limiting the search space. This is a popular strategy for the veri-

fication of UML class diagrams and it is used in approaches such the one pro-

posed in [35], the approach given in [36] and the one presented in [7, 37], which

tackle the verification of UML class diagrams without OCL constraints, and1135

the proposal given in [38, 39, 40, 41], the method presented in [42, 43], in [44],

in [45, 46, 47, 48], and in [49], which focus on UML class diagrams with OCL

constraints.

From these works, we select for our comparison the approaches currently sup-

ported by automated tools. These tools are: CD2Alloy [7, 37], UML2Alloy [38,1140

39, 40, 41], UMLtoCSP (and its successor EMFtoCSP) presented by [42, 43],

MaxUSE [44], and USE with the SMT-based ModelFinder plug-in, and the USE

ModelValidator plug-in, respectively [45, 46, 47, 48]. Next, we present the com-

parison of our proposal with such tools, leaning on a set of tables in which we

have used the following general notation: (i) an empty cell represents that the1145

authors do not mention anything about the aspect in question, (ii) the symbol

“N/A” indicates that the aspect or characteristic is not applicable to the spe-

cific tool for some reason, and (iii) “No”/“Yes” means that the work explicitly

claims that the system does not/does support the aspect in question. In other

cases we have included in the corresponding cell the specific aspect.1150

49

Table 13: Tool features

7.1. Tool features

We summarize the main features of each tool in Table 13, which is organized

according to four categories: General aspects, which mainly remarks the under-

lying solver used by each proposal, Problem addressing, which refers to different

levels of problem reasoning, including also the support for partial state comple-1155

tion, Essential characteristics, which refers to a list of characteristics that are

regarded as essential for any method for model satisfiability as stated in [50],

and finally, Usability.

Regarding the General aspects category, when comparing the verification

technology we find that both UML2Alloy and CD2Alloy use the Alloy Ana-1160

lyzer [51] as their underlying verification tool, which in turn uses a SAT solver

internally. Compared to Alloy, Formula has a more expressive language and

employs modern satisfiability modulo theories (SMT) solver, instead of reduc-

tion to SAT [13]. The USE tool supports two different model search tools: the

SMT-based ModelFinder plug-in (which supports Z3 and partially metaSMT),1165

and the USE ModelValidator plug-in (based on relational logic/SAT solver), so

that the USE framework can be used with both plug-ins. More specifically,

SMT-based ModelFinder uses the Eclipse Modeling Framework (EMF) as un-

derlying UML/OCL metamodel (so, the USE model under verification has to be

transformed from the USE format to EMF). The resulted model is transformed1170

50

into an instance of the SMT-LIB metamodel, that is, a precise SMT problem,

which is finally passed to the SMT solver [45, 47]. In the case of USE ModelVal-

idator, it uses relation logic, Kodkod, Alloy, and SAT solvers. The main flow is

thereby similar to SMT-based model finding, i. e., the USE ModelValidator uses

Kodkod to transform the model, which itself uses Alloy to eventually generate an1175

equivalent SAT formulation to be solved [47, 48]. MaxUSE integrates USE with

the Z3 SMT Solver. Finally, both UMLtoCSP and its successor EMFtoCSP,

which extends UMLtoCSP to deal with EMF metamodels, use Constraint Satis-

faction Programming to analyze the models [42, 43], in particular, the ECLiPSe

Constraint Programming System (from now on we refer to these tools simply1180

as EMFtoCSP).

As for the Problem addressing category, most of the presented tools can iden-

tify problems in the given input models and they can also be used to inspect

and validate correct models. The exception is MaxUSE. It is a tool for finding

achievable OCL constraints and conflicts for consistent UML class diagrams,1185

also based on the USE modelling tool [52]. MaxUSE is able to find achiev-

able constraints based on user rankings and constraint conflicts for inconsistent

UML class diagrams. Users can rank individual constraints to distinguish their

importance, and the tool shows what constraints are achievable and which ones

cause the conflicts, finding the different ways of achieving a maximum number1190

of the chosen invariants. However, it is important to note that if the UML

class diagram is consistent no instantiation of the model is given. Such instan-

tiation is useful to validate the model constraints (this aspect is considered in

the Essential characteristics category). Another interesting issue considered in

this category is the possibility of supporting the use of partial knowledge to1195

help generate models. Partial state completion is only given by CD2Formula,

together with EMFtoCSP and USE with both plug-ins [45]. Similar to our

proposal, in all tools (excluding MaxUSE, as we will explain later) the designer

has to provide some problem bounds in order to derive a decision problem with

a finite search space.1200

Among the Essential characteristics desirable for any method for model sat-

51

isfiability [50], we note whether the tool accepts as input a standard model

notation, which constitutes another difference in the tools. Most of the pre-

sented tools accept UML class diagrams as input language, except for the three

USE -based tools (which accept their specific USE notation), and the CD2Alloy1205

(that uses the CDs and ODs sublanguages of UML/P, which is a conceptually

refined and simplified variant of UML designed for low-level design and imple-

mentation [7]). Another characteristic identified in [50], and which is related

with the previous one, is whether the proposal integrates seamlessly into the

software development life cycle (SDLC). While CD2Formula and EMFtoCSP1210

are presented as Eclipse plug-ins, and can use CDs defined using any textual

or graphical UML 2 compliant tool that can create models in the XMI format

supported by EMF, other tools are not so easy to integrate into the SDLC. In

the case of UML2Alloy, the user can not use a UML-based tool other than Ar-

goUML [38]. USE -based tools are considered as not able, because of the use of1215

USE grammar, since the use of this tool implies the conversion of the UML class

diagrams to USE specification (we note that there exists a prototype conversion

tool from XMI to USE grammar [53], but support for the latest USE versions

is not available). In this category, CD2Formula, together with EMFtoCSP are

rated positively in all the considered aspects.1220

Finally, we have devoted the last column in Table 13 to evaluate the tools’

“usability”, aimed at giving an insight about the verification process performed

by each one. To evaluate this aspect, we considered as less usable the tool

requiring extra steps. We have excluded MaxUSE from this evaluation since

its purpose is different than the other tools. In the case of CD2Alloy, as de-1225

scribed previously, starting from a CD (in the not usual UML/P format), the

tool produces, if exists, the corresponding OD (also in UML/P), generating as

intermediate step, an Alloy module. Since the OD UML/P format is difficult to

read and understand, the user can obtain a graphical representation of the re-

sulted OD, but it requires 1) launching the stand alone Alloy Analyzer tool [54],1230

2) loading the Alloy module into it, and finally 3) verifying the model. As for

the UML2Alloy tool, the user has to define the CD in ArgoUML, exporting it

52

in XMI format and giving it as input to the UML2Alloy tool. Finally, the tool

outputs an .als file with the Alloy module and, if possible, the corresponding

Alloy instance as well as a graphical image of the OD. Finally, the Alloy An-1235

alyzer [54] can be used to validate the model, as with CD2Alloy. In the case

of the EMFToCSP tool, Eclipse can be used as the overall base tool since the

source CD in EMF can be created by using the range of Eclipse EMF tools. The

tool generates both a .xmi and a png image of the resulted OD. Regarding the

process followed by the two USE plug-ins, in addition to the previous remarks1240

made about them, we note that in the particular case of the USE ModelValida-

tor tool, previous versions [45] require the specification of the problem bounds

to be provided by means of a configuration file, that is, the modeler has to edit a

text file containing key-value pairs to setup values for certain keys. This process

requires a deep understanding of the keys that exist and the syntax to enter the1245

values. To help with this task, the authors present in [48] a configuration GUI

for the easy specification of problem bounds.

7.2. Support for UML Class Diagrams

Aspects regarding support for UML Class Diagram elements are presented

in Table 14. In particular, UML2Alloy translates CD features by mapping each1250

CD construct to a semantically equivalent Alloy construct. This fact prevented

this proposal from taking full advantage of the expressive power of Alloy, which

would be necessary to cover the rich features of CDs. More specifically, this

approach misses support for several CD features, because they have no direct

counterpart in Alloy (for example, primitive types different from integers, multi-1255

ple inheritance, or strong composition). Another drawback to remark is that, as

we have experienced using this tool, version 0.5.2 does not support multiplicity

ranges other than the ‘trivial’ ones (1, 0..1, 0..*, etc.) and a manual addition

of suitable OCL expressions is needed (more details can be seen in [40]). Thus,

the weakness of this proposal is the lack of support of UML features often used1260

in CDs representing real system models.

As described previously, CD2Alloy uses the CDs and ODs sublanguages

53

Table 14: Support for UML Class Diagrams

of UML/P [7]. The tool uses a deep embedding strategy, which defines new

concepts within Alloy for some CD constructs, instead of using direct, imme-

diate counterpart constructs in Alloy for the translation of CDs features as1265

UML2Alloy [38, 39]. In this way, the authors provide support for the repre-

sentation of more complex CD features when compared to UML2Alloy, such

as strong composition or multiple inheritance. Still, CD2Alloy does not have

support for association classes and user-data types.

We consider that our approach is more efficient when processing CDs using1270

class inheritance. CD2Alloy flattens the inheritance hierarchy creating a list of

attributes and associations for each class and all its super classes. This leads

to a translation that is more difficult to implement and more computationally

complex since the flattening of the inheritance hierarchy requires a global analy-

sis of the CD and, in the worst case, its reconstruction functions may result in a1275

module whose size is quadratic in the size of the input CD. This leads to a larger

formula for the SAT solver used by Alloy [7]. In contrast, our approach does

not need to traverse the class hierarchy structure and produces more compact

specifications than CD2Alloy when class inheritance is used in a CD.

As for the remained approaches considered in the comparison, we would1280

like to note that all of them provide an implementation proposal for the main

54

CD elements (class, attributes, associations) differing from the support they

provide for other not–so–common elements, being the proposal EMFtoCSP [42,

43] one of the most complete ones. In particular, association classes are only

supported by EMFtoCSP and USE-ModelValidator [45], strong composition is1285

somehow supported by EMFtoCSP by refactoring it as an association with

additional OCL constraints, while the translation of generalization sets is only

provided by EMFtoCSP. Regarding n-ary associations, we note that they are

only supported by EMFtoCSP and USE-ModelValidator. As for the proposal

given by MaxUSE, we just deduce the translation of the main CD elements1290

(class, attributes, associations), since no explanation about other elements is

given in the paper [44].

Although not being a proposal included in our comparison, a special remark

must be made regarding the approach given by the authors of Formula in [14, 18].

To our knowledge, our approach together with the one proposed in [14, 18], is1295

the only one that considers a MOF-like metamodeling framework, which turns

out to have several advantages. One of the reasons to choose a metamodeling

approach is mainly because it allows us a theoretical coverage of the UML lan-

guage features. We consider that representing just the model pins the result

with the specific problem domain, while representing the domain using a meta-1300

modeling approach helps to better identify domain-model dependencies and to

assess more generic domain models. We also consider that providing a trans-

lation that captures the level–based structural distribution can contribute to

ease the application and understandability of the representation of a CD/OCL

model into Formula. Additionally, our MDA model–to–text transformation pro-1305

cess takes advantage of the structure of the M2/M1 Formula representation of

CDs, since both the input and the source models used in our MDA process are

dispersed into the various parts proposed by MDA (metamodel/model). Aimed

at comparing our MOF–like metamodeling proposal with [14, 18], it includes

substantial additions. We propose a more faithful representation of the basic1310

UML metamodel and instance domain elements [2]. Furthermore, we also give

55

Table 15: Support for OCL

support for the translation of more metamodel elements (such as full support to

multiple inheritance, strong composition, and property types other than Integer,

String, and Boolean, user–defined data types and enumerations, multiplicities of

properties, etc.), thus providing a richer framework.1315

To sum up, it is worth noting that complete support to UML CD elements,

such as a wide number of data types (including user-defined types), multiple

inheritance, strong composition or association classes, has not been normally

tackled by related works. Regarding the supported CD elements, our proposal

could be considered as the most complete one.1320

7.3. Support for OCL

Regarding the support for OCL (see Table 15), we consider that UML2Alloy [38,

39], USE ModelValidator [47, 48] and our proposal have the most comprehen-

sive support for OCL. Most significantly, CD2Alloy does not have support for

OCL constraints. This is an important drawback that has been overcome by1325

our proposal. EMFtoCSP has other limitations in the supported OCL frag-

ment, including that oclIsTypeOf, oclIsKindOf or oclAsType cannot be applied

to collection expressions, or that transitive closure is not supported.

56

Regarding the three USE -based tools, we have to note that, while the USE

ModelValidator plug-in seems to be more complete than the SMT-based Mod-1330

elFinder, as stated in [45], USE ModelValidator and our proposal have several

similarities as far as number of supported elements is concerned. For example,

while USE ModelValidator gives support to any, oclIsTypeOf, and oclAsType, it

does not implement OCL bags in OCL (in contrast to CD2Formula). As for

MaxUSE, authors in [44] do not mention any aspect regarding the supported1335

OCL fragment. They remark that they plan to exploit multiple SMT solvers

for reasoning over a larger number of OCL constraints.

Although not included in our comparison, another similar and interesting

work related to the support of OCL constraints is the one given in [22]. In [22]

the authors define a fragment of OCL called OCL–lite and prove the encoding1340

of such a fragment in the description logic ACLI, so that description logic

techniques and tools can be used to reason about CD annotated with OCL–lite

constraints. A difference of this approach with ours is the fact that, although

the chosen fragment is quite similar to ours, we have attempted to identify

a simplest fragment so that no element included in it can be inferred from1345

other constructors in the fragment by applying direct OCL equivalences (such

as the isEmpty operator), considering more useful OCL features such as union or

collect. In contrast, OCL–lite supports oclIsTypeOf, and oclAsType applied to

user defined classes.

In conclusion, our approach gives support to operators that are not straight-1350

forward, such as transitive closure, not normally included in related works (in

fact, it is not considered by UML2Alloy). Nevertheless, a number of OCL

elements are not supported by our existing proposal, such as type related oper-

ations (oclIsKindOf, oclIsTypeOf, and oclAsType), some of them not considered

by other proposals either.1355

7.4. Performance

In order to evaluate the performance of our proposal, we have carried out

three computational of experiments. The main goal of the first and second ex-

57

periments is to show the performance and scalability our proposal with different

types of CDs (with and without OCL constraints), while the third experiment1360

aims at comparing the performance of our tool with CD2Alloy.

7.4.1. Experiment I

In the first experiment, we have used a benchmark suite of CDs offering

various experimental CD settings. This benchmark comprises a wide number of

satisfiable CDs, which have been designed considering different sizes and com-1365

plexities. In particular, such CDs have been defined starting from very simple

CD examples, which were subsequently increased by including more elements

and more complex elements, such as (multiple) inheritance, strong composition,

association classes, user data types (including enumerations), reflexive associa-

tion relationships, etc. We want to note that in [34] the reader can find relevant1370

documentation about the graphical representation, the Formula codification,

and the Formula instances generated during the reasoning process of some of

the CDs used in our benchmark. The execution time of the tool could be broken

down into two steps: the automatic generation of the Formula code file from the

CD by the CD2Formula plug-in, and (2) the reasoning process itself, carried1375

out by the Formula solver Z3. As far as the first step is concerned, once the

user inserts the number of valid instances required for the final solution, the

automatic generation of the Formula code file takes an insignificant amount of

time to compute (ranging from few milliseconds to one or two seconds, depend-

ing on the size of the CD). Regarding the second step, as it would be expected,1380

the computation time depends on the size and complexity of the specific CD

about which we want to reason. In particular, for each CD in our benchmark,

we have carried out several experiments using different values for the parameter

n in the Introduce(f,n) terms of the CDInstanceFPM partial model. In this

way, for each CD, we have experimented with several configurations, as many1385

as the different values of n. One of the lessons learned during the course of

our experiments is related to the importance of constraints included in the CD

considering not only user-defined constraints, such as multiplicities of proper-

58

context Class1 inv:

self.at op self.class2.at

context Class2 inv:

self.at op self.class3.at

...

context ClassN-1 inv:

self.at op self.classN.at

context Class1 inv:

self.class2.at op self.at

1 1

context Class1 inv:

self.at op self.class2.at

context Class2 inv:

self.at op self.class3.at

...

context ClassN-1 inv:

self.at op self.classN.at

context ClassN inv:

self.at op self.class1.at

1 x

Strongly satisfiable if x=1

Not strongly satisfiable if x >1

Strongly satisfiable if op is

Not strongly satisfiable if op is >

Example A- without OCL invariants Example B- with OCL invariants: inconsistency in a

model fragment (left) or in the entire model (right).

Class1 Class2 ClassN1 1 1 1Class1 Class2 ClassN1 1 1 1
at: int at: int at: int

1 1 1 1

Figure 8: Examples with and without OCL constraints

ties and associations, but also other business requirements explicitly defined in

the model as OCL constraints. Another lesson learned refers to scalability. In1390

particular, our implementation works considerably fast for small CDs, but it

does not scale to handle CD properties and associations with high multiplicities

and a large number of unknowns.

7.4.2. Experiment II

The second experiment is based on the experiment presented in [42]. The1395

goal is to compare the performance in satisfiable (Sat) and non-satisfiable prob-

lems (Unsat). Briefly speaking, we have considered three scenarios. In the first

one (presented in Figure 8 as Example A), a CD with multiplicities and no

explicit OCL constraints has been considered. We remark that in that figure,

if the value of x were upper than 1, the CD would become unsatisfiable, thus,1400

considering different values of x, we can evaluate the behavior of our tool both

with satisfiable and unsatisfiable versions of the CD. In the second and third

scenarios (depicted in Figure 8 as Example B), we present a model with OCL

constraints. In these two scenarios we consider all association ends to have a

multiplicity of 1..1, making the structural problem satisfiable. Additionally, we1405

define n constraints, each defining a relationship between the value of the at-

tribute at in a class i and the value of the corresponding object in class i+1.

59

Table 16: Execution times for 2, 4, 8, 16 and 32 classes

Depending on the chosen operator op (> or ≥), the CD may be strongly satisfi-

able or not. In the second scenario (Example B left) the consistency arises due to

the incompatibility of two constraints involving Class1 and Class2. The third1410

scenario (Example B right) considers a case where the incompatibility arises

from the interaction of all constraints in the model, which establishes a cyclic

dependency on the values of the attributes of all classes. The experiments have

been tested on an ordinary computer, Intel(R) CoreTM i5 CPU, 3.2 GHz, with

4 GB RAM, running Windows 7 Enterprise, using CDs with different sizes (2,1415

4, 8, 16 and 32 classes). The resulted execution times are presented in Table 16.

We note that the worse-case scenario for our approach would correspond to the

unsatisfiability version of the third scenario. From the results it can be inferred

that in most cases, as it would be expected, the performance in unsatisfiable

situations is worse than the corresponding satisfiable cases, increasing the time1420

as the number of classes become high. It is worth remarking the results obtained

from the experiments performed in the model with OCL constraints (Example

B), where the execution time suffers from a considerable increment compared

with the experiments performed with the version without OCL invariants (Ex-

ample A). Although if we focus on the execution times in the worst-case scenario1425

(Example B right), they tend to significantly increase as the number of classes

gets higher, in average it could be said that the method offers good performance

in small and medium-size models, even considering OCL constraints.

60

7.4.3. Experiment III

In order to compare the performance of our tool with others, and taking into1430

account that the authors of the Formula tool remarked the closeness of both

Formula and Alloy, in our third experiment we have chosen an Alloy-based tool.

More specifically, we have chosen CD2Alloy [7] instead of UML2Alloy [38, 39]

because the former tool lacks support for important UML elements, such as

strong composition or multiple inheritance (among other basic CD features).1435

Several remarks are relevant when comparing the tools.

CD2Alloy analysis is based on an exhaustive search for instances of the mod-

ule, bounded by a user-specified scope, which defines the maximal number of ob-

jects in the resulting instance OD. In CD2Formula, we use the Introduce(f,n) gen-

eration option, which adds, at most, n terms of the form f to the partial model.1440

Taking this into account, in our experiments we have considered n=5 in the case

of CD2Formula, and a scope=(number of classes in the CD)*5, attempting to

match as much as possible the reasoning processes with both tools. We note,

however, that the use of such values for the scope and n may be misleading be-

cause of the difference in meanings. Finally, since CD2Alloy does not display the1445

total time (constructing the formula and solving it) it takes to run the verifica-

tion, we have taken the Alloy module (generated by the tool CD2Alloy) and run

it into the Alloy Analyzer [54] (version Alloy 4.2 platform independent), which

delivers Alloy ’s output for timings. In particular, we have performed our exper-

iments in Alloy Analyzer twice, using two different SAT solvers: SAT4J, which1450

corresponds to the default pure Java solver which runs on every platform and

operating system, and MiniSat, recommended if required faster performance.

Experiments have been done using our CD2Formula plug-in and CD2Alloy

version 1.0.0 available from [37], on the same computer than the previous exper-

iments. We conducted each experimental test three times and report the lower1455

computation time of the three tests in order to avoid possible interferences from

the operating system and background processes.

In particular, we have taken a set of CDs from those in our benchmark of

61

Table 17: Comparison results

CDs and we have carried out the reasoning process using both CD2Alloy and

CD2Formula. In particular, in Table 17 we present the setup and the perfor-1460

mance results from our experiments. More specifically, for each CD, the table

shows its main characteristics regarding the number and complexity of its ele-

ments: (1) the number of classes, attributes, associations, generalizations, and

strong composition elements, (2) the number of instances of classes, attributes,

and relationships (associations, generalizations, and strong compositions) we1465

asked the CD2Formula tool to generate, which is represented by N inst, and

the Scope value for CD2Alloy, (3) the number of classes’ objects included in the

ODs generated by both tools, distinguishing both SAT solvers, and (4) the total

time, in seconds, it took to run the verification in both tools.

We have chosen the set of CDs attending to the following criteria: the set of1470

CDs goes from small CDs with simple CD elements (classes, associations, and

properties) to bigger CDs with more complex CD elements (including elements,

such as strong composition or multiple inheritance). In particular, we have ini-

tially started from two simple CDs (CD1 and CD2), and later we have extended

CD1 with strong composition and inheritance elements (CD1C and CD1In).1475

For each variation of CD (CD1, CD1C, CD1In, and CD2), we have carried out

62

different experiments including 0, 1, 3, and 6 attributes (CD]a, CD]b, CD]c,

and CD]d). All the experiments shown in the table correspond to passed veri-

fications (i.e., whether the CD is satisfiable). The CDs included in the table do

not define specific business constraints. We have to note that association classes1480

were excluded from these experiments since CD2Alloy does not give support for

them.

Regarding the results of the experiments, we want to note that in both tools

the verification ran quite fast in relatively small CDs, yielding similar results

for both tools (being slightly better in CD2Alloy, especially when using the1485

MiniSAT solver), while solving time increased for bigger CDs. In particular, re-

sults shown that although the verification time increased with both tools as the

number of classes and associations were bigger, the time required by CD2Alloy

was greater on average (both with MiniSAT and with SAT4J). Especially remark-

able are the experiments carried out with the CDs including multiple inheritance1490

where, as we have commented previously, since their translation in CD2Alloy

is more difficult to implement, it required more computational time to solve,

in contrast to CD2Formula, which needed less than a third, comparing with

MiniSAT, and a half, comparing with SAT4J, of the average. Although obtaining

in average better results than with CD2Alloy, as presented previously, a weak-1495

ness of our proposal is related to the increase of associations and, especially, of

properties. In this latter case, the Formula solver takes considerably more time

to compute because of the constraints it has to handle in order to ensure that

the slots are instances of the corresponding property, including in the suitable

class/association. In the future, we plan to improve our translation for proper-1500

ties in order to get better scalability of their verification. The reader can find

more relevant documentation regarding the conducted experiments on [34].

When comparing CD2Formula to related research tools, we consider that our

work presents a comprehensive support to class diagrams and OCL constraints

as defined in the UML standards that is not matched by other tools. Still,1505

CD2Formula lacks support for some modeling constructs supported by other

63

approaches that we have not considered in our study. In any case, we consider

that a complete, production-ready model verification tool would be the result

of the combination of several existing research approaches, including the ones

described in this paper.1510

8. Conclusion and future work

In this paper we present a framework to reason about UML/OCL models

based on the Constraint Logic Programming paradigm. The main contribution

of our work is the translation of a UML model into a Constraint Satisfaction

Problem following a multilevel Meta–Object Facility (MOF) like framework.1515

Model reasoning can be automated using the model–finding tool Formula. We

have also identified a fragment of OCL, which can be checked for finite satisfia-

bility, while being considerably expressive. We also show how to translate such

an OCL fragment to Formula by giving, as an intermediate step, a representa-

tion of the OCL constraints as FOL expressions. Regarding tool support, we1520

also provide an implementation of our CD–to–Formula proposal as an Eclipse

plug–in. It can be used to reason about UML models by checking correctness

properties and generating model instances automatically using Formula.

Although our plug–in (1) gives support for the automatic translation to

Formula of a CD, including constraints implicit in the model, and (2) provides1525

an approach for the manual translation of OCL constraints explicitly established

using OCL, the automatization of this latter aspect constitutes a remaining

work. Another interesting issue is related to the selection of suitable verification

bounds. As stated by [55, 56], choosing suitable verification bounds constitutes

a non-trivial process, as there is a trade-off between the verification time and1530

the confidence in the result. In fact, this aspect has proven itself to be a major

limiting factor since existing tools provide little support in this choice. In fact,

tools turn to set inadequate default values or force users to manually define these

boundaries. The reason why tools provide such little support is mainly because

choosing optimal bounds automatically is as complex as the verification problem1535

64

itself, requiring heuristics or approximate methods [55, 56]. In our particular

case, our proposal does not yet tackle the automatic selection of the optimal

bounds, but would constitute an interesting issue to be tackled in near future.

Finally, we can make a remark regarding the automatic visualization of the

resulting instance as an object diagram (OD), characteristic supported by other1540

related tools such as EMFtoCSP [42]. In particular, to ease the generation of

the ODs, we could implement this step, for example, following a MDA-based

approach, so that the corresponding OD could be created automatically in a

format conforming with the UML2 Eclipse plug-in. The resulting OD could be

taken as input for another available UML modeling tool, which would check the1545

conformance with the source CD.

9. Acknowledgements

This work has been partially supported by the Spanish Ministry of Economy

and Competitiveness (project EDU2016-79838-P) and by the Academy of Fin-

land (project VAMOLA). This work has also been partially supported by the1550

Electronic Component Systems for European Leadership Joint Undertaking un-

der grant 520 agreement No 737494. This Joint Undertaking receives support

from the European Unions Horizon 2020 research and innovation programme

and Sweden, France, Spain, Italy, Finland and Czech Republic.

References1555

[1] J. Bézivin, Model driven engineering: an emerging technical space, in: Pro-

ceedings of GTTSE 05, Springer-Verlag, Berlin, 2006, pp. 36–64.

[2] OMG, UML 2.4.1 Superstructure Specification, august, 2012. Available at:

http://www.omg.org/. Last visited on July 2018.

[3] OCL, Version 2.3.1, http://www.omg.org/spec/OCL/2.3.1/PDF. Last vis-1560

ited on July 2018.

65

[4] A. Cal̀ı, D. Calvanese, G. D. Giacomo, M. Lenzerini, A Formal Frame-

work for Reasoning on UML Class Diagrams, in: Proceedings of ISMIS 02,

Springer, 2002, pp. 503–513.

[5] J. Cabot, R. Clarisó, D. Riera, Verification of UML/OCL Class Diagrams1565

using Constraint Programming, in: Proceedings of ICSTW 08, IEEE Com-

puter Society, 2008, pp. 73–80.

[6] B. Beckert, U. Keller, P. H. Schmitt, Translating the Object Constraint

Language into First-order Predicate Logic, in: Proceedings of FLoC 02,

2002, pp. 113–123.1570

[7] S. Maoz, J. O. Ringert, B. Rumpe, CD2Alloy: Class Diagrams Analysis

Using Alloy Revisited., in: Proceedings of MoDELS 11, 2011, pp. 592–607.

[8] J. M. Bruel, R. B. France, Transforming UML Models to Formal Specifi-

cations, in: Proceedings of OOPSLA 98, Springer, 1998, pp. 78–92.

[9] W. E. McUmber, B. H. C. Cheng, A general framework for formalizing1575

UML with formal languages, in: Proceedings of ICSE 01, IEEE Computer

Society, 2001, pp. 433–442.

[10] M. Broy, M. V. Cengarle, H. Grönniger, B. Rumpe, Considerations and

Rationale for a UML System Model, in: K. Lano (Ed.), UML 2 Semantics

and Applications, John Wiley & Sons, Hoboken, 2009, pp. 43–60.1580

[11] J. Osis, U. Donins, Formalization of the UML Class Diagrams, in: Evalua-

tion of Novel Approaches to Software Engineering, Vol. 69 of Communica-

tions in Computer and Information Science, Springer, 2010, pp. 180–192.

[12] FORMULA - Modeling Foundations, http://research.microsoft.com/en-

us/projects/formula. Last visited on July 2018.1585

[13] E. K. Jackson, E. Kang, M. Dahlweid, D. Seifert, T. Santen, Components,

platforms and possibilities: towards generic automation for MDA, in: Pro-

ceedings of EMSOFT 10), ACM, 2010, pp. 39–48.

66

[14] E. K. Jackson, T. Levendovszky, D. Balasubramanian, Reasoning about

Metamodeling with Formal Specifications and Automatic Proofs, in: Pro-1590

ceedings of MODELS 11, Springer, 2011, pp. 653–667.

[15] B. Pérez, I. Porres, Reasoning About UML/OCL Models Using Constraint

Logic Programming and MDA, in: Proc. of ICSEA, 2013, pp. 228–233.

[16] B. Pérez, I. Porres, An Overall Framework for Reasoning About UML/OCL

Models Based on Constraint Logic Programming and MDA., International1595

Journal on Advances in Software 7 (1 & 2) (2014) 370–380.

[17] G. Bezhanishvili, L. Moss, Undecidability of First-Order Logic, educational

module, for the NSF-sponsored project on Learning Discrete Mathematics

and Computer Science via Primary Historical Sources, 26 pp, 2009.

[18] E. K. Jackson, T. Levendovszky, D. Balasubramanian, Automatically1600

reasoning about metamodeling, Software & Systems Modeling -, doi:

10.1007/s10270-013-0315-y.

[19] G. Booch, J. Rumbaugh, I. Jacobson, Unified Modeling Language User

Guide, The (2Nd Edition) (Addison-Wesley Object Technology Series),

Addison-Wesley Professional, 2005.1605

[20] M. Gogolla, M. Richters, Transformation Rules for UML Class Diagrams,

in: Proceedings of UML 98, Springer, 1999, pp. 92–106.

[21] A. Kleppe, J. Warmer, S. Cook, Informal Formality? The Object Con-

straint Language and Its Application in the UML Metamodel., in: Pro-

ceedings of UML 98, Springer, 1998, pp. 148–161.1610

[22] A. Queralt, A. Artale, D. Calvanese, E. Teniente, OCL-Lite: Finite rea-

soning on UML/OCL conceptual schemas, Data Knowl. Eng. 73 (2012)

1–22.

[23] J. Jaffar, M. J. Maher, K. Marriott, P. J. Stuckey, The Semantics of Con-

straint Logic Programs, J. Log. Program. 37 (1998) 1–46.1615

67

[24] A. Bundy, Tutorial Notes: Reasoning about Logic Programs, in: Proceed-

ings of LPSS 92, Springer, 1992, pp. 252–277.

[25] B. Beckert, R. Hähnle, P. H. Schmitt, Verification of Object-Oriented Soft-

ware. The KeY Approach, Springer, Berlin, Heidelberg, 2007.

[26] T. Baar, The Definition of Transitive Closure with OCL - Limitations and1620

Applications, Vol. 2890 of LNCS, 2003, pp. 358–365.

[27] A. G. Garis, A. Cunha, D. Riesco, Translating Alloy Specifications to

UML Class Diagrams Annotated with OCL, in: Proceedings of SEFM 11,

Springer, 2011, pp. 221–236.

[28] J. Cabot, E. Teniente, Transformation techniques for OCL constraints, Sci.1625

Comput. Program. 68 (3) (2007) 179–195.

[29] MOFScript Eclipse plug in, https://marketplace.eclipse.org/content/mofscript-

model-transformation-tool. Last visited on July 2018.

[30] B. Pérez, I. Porres, Authoring and Verification of Clinical Guidelines: a

Model Driven Approach, J. Biomed. Inform. 43 (4) (2010) 520–536.1630

[31] E. Domı́nguez, B. Pérez, M. A. Zapata, Towards a Traceable Clinical

Guidelines Application: A Model Driven Approach, Methods of Informa-

tion in Medicine 46 (6) (2010) 571–580.

[32] EMF Development team, The Eclipse Modeling Framework website:

http://www.eclipse.org/modeling/emf/. Last visited on July 2018.1635

[33] The Eclipse UML2 project, https://www.eclipse.org/modeling/mdt/?project=uml2.

Last visited on July 2018.

[34] CD2Formula Eclipse plug—in, http://www.unirioja.es/cu/beperev/CD2FormulaTool.html.

Last visited on July 2018.

[35] M. Cadoli, D. Calvanese, G. D. Giacomo, T. Mancini, Finite satisfiability1640

of UML class diagrams by Constraint Programming, in: Proc. of the 2004

International Workshop on Description Logics (DL2004), Vol. 104, 2004.

68

[36] H. Malgouyres, G. Motet, A UML Model Consistency Verification Ap-

proach Based on Meta-modeling Formalization, in: Proceedings of the 2006

ACM Symposium on Applied Computing, SAC ’06, ACM, 2006, pp. 1804–1645

1809.

[37] CD2Alloy: Class Diagrams Analysis Using Alloy (1.0.0), http://www.se-

rwth.de/materials/cd2alloy/. Last visited on July 2018.

[38] B. Bordbar, K. Anastasakis, UML2ALLOY: A tool for lightweight mod-

elling of discrete event systems, in: Proc. of IADIS AC, 2005, pp. 209–216.1650

[39] K. Anastasakis, B. Bordbar, G. Georg, I. Ray, UML2Alloy: A Challenging

Model Transformation, in: Proc. of MoDELS 07, Vol. 4735 of LNCS, 2007,

pp. 436–450.

[40] K. Anastasakis, B. Bordbar, G. Georg, I. Ray, On challenges of model

transformation from UML to Alloy, Software & Systems Modeling 9 (1).1655

[41] UML2Alloy Reference Manual (Version: 0.52),

http://www.cs.bham.ac.uk/∼bxb/UML2Alloy/files/uml2alloy manual.pdf.

Last visited on July 2018.

[42] J. Cabot, R. Clarisó, D. Riera, On the verification of UML/OCL class

diagrams using constraint programming, Journal of Systems and Software1660

93 (2014) 1–23.

[43] C. A. González Pérez, F. Buettner, R. Clarisó, J. Cabot, EMFtoCSP: A

Tool for the Lightweight Verification of EMF Models, in: Proceedings of the

First International Workshop on Formal Methods in Software Engineering:

Rigorous and Agile Approaches (FormSERA), 2012, pp. 44–50.1665

[44] H. Wu, MaxUSE: A Tool for Finding Achievable Constraints and Conflicts

for Inconsistent UML Class Diagrams, in: 13th International Conference

of Integrated Formal Methods (IFM 2017), 2017, pp. 348–356.

69

[45] N. Przigoda, F. Hilken, J. Peters, R. Wille, M. Gogolla, R. Drechsler,

Integrating an SMT-Based ModelFinder into USE, in: Proceedings of the1670

MoDeVVa@MoDELS, 2016, pp. 40–45.

[46] N. Przigoda, R. Wille, R. Drechsler, Ground setting properties for an effi-

cient translation of OCL in SMT-based model finding, in: Proceedings of

the ACM/IEEE 19th International Conference on Model Driven Engineer-

ing Languages and Systems, 2016, pp. 261–271.1675

[47] M. Soeken, R. Wille, M. Kuhlmann, M. Gogolla, R. Drechsler, Verifying

UML/OCL Models Using Boolean Satisfiability, in: Proc. of the Conference

on Design, Automation and Test in Europe, 2010, pp. 1341–1344.

[48] F. Hilken, M. Gogolla, User assistance characteristics of the USE model

checking tool, in: Proceedings of the Third Workshop on Formal Integrated1680

Development Environment (F-IDE@FM 2016), 2016, pp. 91–97.

[49] T. Massoni, R. Gheyi, P. Borba, Formal Refactoring for UML Class Di-

agrams, in: Proceedings of the 19th Brazilian Symposium on Software

Engineering (SBES), 2005, pp. 152–167.

[50] J. Cabot, R. Clarisó, UML/OCL Verification in practice, in: First Inter-1685

national Workshop on Challenges in Model-Driven Software Engineering,

2008, pp. 25–31.

[51] D. Jackson, Software Abstractions: Logic, language, and Analysis., MIT

Press, 2006.

[52] M. Gogolla, F. Bttner, M. Richters, USE: A UML-based specification envi-1690

ronment for validating UML and OCL, Science of Computer Programming

69 (1) (2007) 27–34.

[53] W. Sun, E. Song, P. C. Grabow, D. M. Simmonds, XMI2USE: A Tool for

Transforming XMI to USE Specifications, in: ER Workshops, Vol. 5833 of

Lecture Notes in Computer Science, Springer, 2009, pp. 147–156.1695

70

[54] Alloy: a language & tool for relational models. Version 4.2 platform inde-

pendent, http://alloytools.org/. Last visited on July 2018.

[55] R. Clarisó, Bounded Verification of Software Models: Challenges and Op-

portunities, IN3 Working Paper Series (2014).

[56] R. Clarisó, C. A. González, J. Cabot, Towards Domain Refinement for1700

UML/OCL Bounded Verification, Vol. 9276 of Lecture Notes in Computer

Science, Springer, 2015, pp. 108–114.

71

	Introduction
	Motivation and overview
	The need for class diagram verification and validation
	Proposed solution
	First step. From the Class diagram model to the Formula language
	Second step. Reasoning process

	A brief overview of Formula
	Translation of Class Diagram structural elements
	Level M2.
	Level M1.
	Level M0.
	Some remarks regarding other Class Diagrams' elements

	Translation of Class Diagram constraints
	Overview of our approach for translating constraints
	OCL fragment
	OCL invariants
	Boolean OCL expressions
	OCL collections
	ForAll, Size, Select, Union, and Collect operations
	Transitive closure

	Other issues regarding OCL

	Tool support and reasoning process of the case study
	Development of the CD2Formula Eclipse plug–in
	Reasoning about the case study

	Discussion and related work
	Tool features
	Support for UML Class Diagrams
	Support for OCL
	Performance
	Experiment I
	Experiment II
	Experiment III

	Conclusion and future work
	Acknowledgements

