
Contents lists available at ScienceDirect

Journal of Biomedical Informatics

journal homepage: www.elsevier.com/locate/yjbin

Reasoning about clinical guidelines based on algebraic data types and
constraint logic programming
Beatriz Pérez
Department of Mathematics and Computer Science, University of La Rioja, C/ Madre de Dios 53 (Edificio Científico Tecnológico), E-26006 La Rioja, Spain

A R T I C L E I N F O

Keywords:
Clinical guidelines
Formal verification
Constraint logic programming
Model driven development
Model transformation

A B S T R A C T

Previously, the authors presented an overall framework aimed at improving the representation, quality and
application of clinical guidelines in daily clinical practice. Regarding the quality improvement of guidelines, we
developed a proposal to verify specific requirements in guidelines, using the SPIN model checker as verification
tool. Additionally, we established a pattern-based approach for defining commonly occurring types of require-
ments in guidelines, in order to help non experts in their formal specification. In particular, among such patterns,
we identified several which could not be verified by using such a proposal, thus leaving their verification as
future work.

In this paper, we provide a revised and extended version of that work by providing an overall proposal which
mainly addresses previous shortcomings, while providing additional verification functionalities. More specifi-
cally, we have defined a complementary proposal to the previous one regarding the verification of guidelines.
This proposal uses Formula, a model finding and design space exploration tool that is based on Algebraic Data
Types (ADT) and Constraint Logic Programming (CLP). The main contributions of this paper are twofold: (1)
providing a more complete set of patterns for defining commonly occurring types of requirements in guidelines,
and (2) supporting the verification of a wider range of patterns by combining the use of our previous proposal,
based on the SPIN model checker, with our Formula-based method. More specifically, our Formula-based pro-
posal provides us with a solution to the verification of those patterns we were not able to verify previously.
Additionally, our proposal has been implemented as an Eclipse plug-in developed based on Model Driven
Development (MDD) techniques, which enables us to automatically generate the Formula specification of a
guideline, making the process faster and less error-prone than a manual translation. This Formula specification,
together with the requirements to be checked in the guideline, are finally taken as input of the Formula tool to
check whether the guideline verifies the requirements. We show the feasibility of our overall approach by
verifying properties in different clinical guidelines with encouraging results.

1. Introduction

As defined by the Institute of Medicine, clinical guidelines are sys-
tematically developed statements to assist practitioner and patient decisions
about appropriate health care for specific clinical circumstances [1]. They
describe the decision points and suitable actions to be carried out de-
pending on a specific patient’s state or situation. There are many po-
tential advantages of documenting and using clinical guidelines, among
which it is worth noting the assessment and improvement of the quality
of care, support for medical decision-making, control of health care
costs and reduction of practice variability and the inappropriate use of
resources [1,2].

There is a large number of published guidelines since each guideline
is focused on a specific condition and on a desired health outcome.

Additionally, the adaptations performed in guidelines to be used in
concrete hospitals may vary from hospital to hospital since they reflect
variations in resources, as well as in the working philosophy of the
hospital in question. This fact has motivated to undertake great efforts
over the years not only to publish guidelines to make them more ac-
cessible, but also to develop computer-interpretable models and tools
for the management of guidelines in order to provide guided support to
the physician during the application of the guideline. However, the
work done on developing, disseminating and computerizing guidelines
far exceeds the efforts in improving their quality [3,4]. The fact is that
although they are developed by collaboration and consensus among
experts taking into account evidence-based medicine and daily medical
practice, this process has limitations and can lead to flawed conclusions
[5]. In addition, guidelines are commonly represented in natural

https://doi.org/10.1016/j.jbi.2019.103134
Received 17 August 2018; Received in revised form 17 February 2019; Accepted 18 February 2019

E-mail address: beatriz.perez@unirioja.es.

Journal of Biomedical Informatics 92 (2019) 103134

Available online 01 March 2019
1532-0464/ © 2019 Elsevier Inc. All rights reserved.

T

http://www.sciencedirect.com/science/journal/15320464
https://www.elsevier.com/locate/yjbin
https://doi.org/10.1016/j.jbi.2019.103134
https://doi.org/10.1016/j.jbi.2019.103134
mailto:beatriz.perez@unirioja.es
https://doi.org/10.1016/j.jbi.2019.103134
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jbi.2019.103134&domain=pdf


language, which makes them accessible to practitioners, but they can
also contain ambiguities possibly leading to their inappropriate use. As
a consequence, most clinical guidelines are lacking in quality because of
the inconsistency and poverty of the methodological rigor used to de-
fine them.

Previously, the author of this paper together with I. Porres [6]
presented an overall framework aimed at improving the representation,
quality and application of clinical guidelines in daily clinical practice.
More specifically, the result presented in [6] was threefold. Firstly, we
proposed an approach to represent clinical guidelines using UML State
Machines [7] as visual computer language. Secondly, we developed a
framework to verify specific requirements in guidelines, using the SPIN
model checker [8] as verification tool, in order to check guidelines
against semantic errors and inconsistencies in their definition. Ad-
ditionally, as part of this second contribution, we established a pattern-
based approach for defining commonly occurring types of requirements
in guidelines in order to help non experts in their formal specification.
In particular, among the set of patterns we provided in [6], we iden-
tified several which could not be represented in the SPIN specification
language, thus leaving the verification of such types of properties as
future work. Finally, we presented a framework to develop computer-
assisted tools for the application of guidelines previously checked
against error or inconsistencies in their definition.

In this paper, we provide a revised and extended version of the work
presented in [6], focusing on the quality improvement of clinical
guidelines. More specifically, we complete our previous work by pro-
viding an overall proposal which aims at verifying clinical guidelines by
using a complementary formal method. This formal method mainly
addresses the shortcomings of our previous approach, while providing
additional verification functionalities. Briefly speaking, first, starting
from the set of patterns we established previously for representing
commonly occurring types of requirements, we revise and extend them,
providing a more complete set of patterns. Second, we develop a
complementary proposal for the verification of guidelines using a
formal method different than the SPIN model checker. In particular, we
propose to use a model finder based on Algebraic Data Types (ADT) and
Constraint Logic Programming (CLP) [9] called Formula [10]. Formula
provides us with a solution to the verification of the patterns we were
not able to verify with our proposal based on the SPIN model checker.
Overall, the work presented in this paper constitutes a revised and
extended version of the proposal we gave in [6] with the main con-
tribution being twofold: (1) providing a more complete set of patterns

for defining commonly occurring types of requirements in guidelines in
order to help non experts in their formal specification, and (2) sup-
porting the verification of a wider range of patterns by combining the
use of our previous proposal based on the SPIN model checker together
with our Formula-based method.

The paper is structured as follows. Next section outlines the back-
ground and the motivation of this work, based on the representation
and quality improvement of clinical guidelines we proposed in [6]. In
Section 3, we present the extension of the pattern-based approach we
gave for defining commonly occurring types of requirements. In Section
4 we give a brief overview of our proposal based on the model finder
Formula, while in Section 5 we briefly describe the Formula language. A
detailed explanation of the steps involved in our current proposal is
presented in Sections 6 and 7. Our experience with applying our ap-
proach to a specific guideline used as case study is presented in Section
8. Section 9 discusses the strengths and weaknesses of our approach,
while Section 10 presents related work. Finally, conclusions are set out
in Section 11.

2. Background and case study

To establish the basis on which our proposal is made, in this section
we outline general background information of the framework we pre-
sented in [6], focusing on aspects related to the representation and
quality improvement of guidelines. In Fig. 1 we depict an overview of
our overall framework, which includes both the previous framework
presented in [6] (see bottom of Fig. 1), and its extension presented in
this paper (see top of Fig. 1). To facilitate the understandability of our
proposal, we will use a specific clinical guideline as case study
throughout the paper.

Case study. We have chosen a laboratory guideline used to carry
out the aliquoting process which can be used in the daily laboratory
routine (from now on we refer to this guideline as AP Guideline). In
particular, this guideline was set within the “Aragon Workers Health
Study” (AWHS) project, which has been carried out within a framework
of longitudinal management of the data related to the storage of bio-
logical samples in a biobank [11,12]. We have chosen this example to
illustrate our proposal for its simplicity in respect to other more com-
plex guidelines.

Fig. 1. Overall proposed workflow.

B. Pérez Journal of Biomedical Informatics 92 (2019) 103134

2



2.1. Our previous work on improving the representation of clinical
guidelines

Aimed at improving the representation of clinical guidelines, pre-
viously we have proposed together with Porres [6] and Domínguez
et al. [13] the use of UML State Machines [7] as a method for re-
presenting the dynamics of guidelines. We also provided several pat-
terns to assist in the modeling process to have a better and more un-
derstandable representation of every guideline (see center left side of
Fig. 1). These patterns took into account the specific elements and se-
mantics of UML State Machines and provided representation rules of
guidelines by using UML in the medical context. To facilitate the un-
derstanding of our overall proposal, next we rely on Fig. 2 to give a
brief overview of both UML State Machines background within the
Meta-Object Facility (MOF) framework, and our patterns for re-
presenting guidelines as state machines. In particular, MOF is a meta-
data management framework which enables development and inter-
operability of model and metadata driven systems. It originates from
the context of model-driven engineering [14,15] and was originally
built in response to a need for providing a metamodeling architecture to
define UML [16]. Among the four levels identified by MOF, we note the
first three which are denoted by convention as M0, M1 and M2 (from a
minor to major abstraction). Fig. 2 presents such three levels con-
cerning UML State Machines, applied to our case study: the Metamodel
level (M2), with an excerpt of the UML State Machine metamodel (see
top side), the Model level (M1), with the concrete state machine for our
case study (see center side), and the Instance level (M0), with three
different sequences of states an aliquot object can go through during its

lifetime (see bottom side).
Metamodel level. A state machine consists essentially of states, tran-

sitions and various other types of vertexes named pseudostates [7].
Firstly, states denote a situation of objects during which some condition
holds. There are three kinds of states distinguishing among simple,
composite or submachine states. Simple states are characterized by not
having nested states (substates), while composite states are divided into
orthogonal composite states, used to model concurrent behaviors where
several states are active simultaneously, and simple composite states,
used to specify that only one of their substates must be active at a same
time. A submachine state is a special kind of a state that refers to another
defined state machine diagram so that it can be reused. Composite states
can have one or more regions which are considered as simple containers
of a connected set of substates, pseudostates and transitions. Conse-
quently, a particular “state” an object may be in at a given time can be
represented by one or more hierarchies of states, starting with the
topmost regions and down through the composition hierarchy to the
simple states. This complex hierarchy of states is referred to as a state
configuration [7]. A transition is the mechanism by means of which an
object leaves a state configuration and changes to a new state config-
uration. Such a change can be triggered by some event. Particularly, a
transition is a directed relationship between a source vertex and a target
vertex, where these vertexes can be either states or pseudostates. A
pseudostate is an abstraction used to connect multiple transitions into
more complex state transitions paths. There are several kinds of pseu-
dostates, such as initial or choice (see top side of Fig. 2). It is worth
noting the subtle difference between terminate pseudostate (shown as a
cross) and final state (shown as a circle surrounding a small solid filled

Fig. 2. MOF model levels concerning UML State Machines applied to our case study.

B. Pérez Journal of Biomedical Informatics 92 (2019) 103134

3



circle). On one hand, a final state is a special kind of state that represents
the completion of the enclosing region. Thus, if the enclosing region is
directly contained in a state machine (it is a topmost region) and all
other regions in the state machine also are completed, then it means
that the entire state machine is completed. On the other hand, entering
a terminate pseudostate implies that the execution of the state machine
is terminated immediately (it is equivalent to invoking a destroy object
action).

Model level. Taken this general background information into ac-
count, in [6,13] we defined our representation patterns so that we can
specify a clinical guideline by means of a UML state machine con-
forming to the UML State Machine Metamodel. So that the reader can
get an intuitive understanding of our patterns, on the center side of
Fig. 2 we present the state machine resulting from the application of
such patterns to the AP guideline. More specifically, this state machine
represents the fact that over the course of the life of an aliquot, it can
mainly take up four states: ReadyToBeAliquotedS1, BeingAliquoted, Ali-
quotedS5 and CancelledS6. The initial pseudostate, depicted as a filled
circle, represents the creation of the aliquot. The starting point itself of
the guideline corresponds to the simple state in which the aliquot is
ready to be aliquoted (simple state ReadyToBeAliquotedS1). If the results
of the concentration of the sample and the purity tests are ready (event
testResultsArrive), two options are distinguished depending on whether
such results are failed or passed (represented by a choice pseudostate). If
failed, the process leads to a final state which means that the guideline
application finishes. Otherwise, the aliquoting process starts and the
aliquot changes its state from ReadyToBeAliquotedS1 to that of
BeingAliquoted (which corresponds to a simple composite state). In this
state, the aliquot is filled (simple state InFillingProcessS2) and when it
finishes, the aliquot is put into the corresponding rack, changing its
state to InRackAndNotRegisteredS3. When the process of registration
starts (event startProcess(“Registration”)), the aliquot’s state changes to
InRackAndBeingRegisteredS4. When such a process finishes and no in-
cidence has taken place, the aliquot process is completed (state Ali-
quotedS5), which finally leads to a final state as previously. If during the
application of the guideline an incidence takes place (event in-
cidenceHappens()), the aliquoting process of such an aliquot is cancelled
(state CancelledS6), and the process leads to the final state, as in the
previous case.

Instance level. At this level, the sequence of state configurations an
object can go through during its lifetime is represented, which is known
as execution traces. We note that an object can only be in exactly one
state configuration at a time, which is referred to as its active state
configuration [7]. On the bottom side of Fig. 2 we show three of the
possible execution traces of an aliquot.

2.2. Our previous work on improving the quality of clinical guidelines

Before developing the computer-assisted tool for the application of a
guideline, we carried out a preceding step [6], which consisted of
performing a formal verification of the guideline so that the corre-
sponding computer-assisted tool was generated from the guideline with
lack of errors or inconsistencies in its definition. Such a verification
process aimed at checking whether a given guideline satisfied or not a
number of desired requirements. At this point, two issues came into
play. On one hand, such requirements had to be established and for-
mally defined. On the other hand, we had to use a formal verification
technique which provided us with an effective and efficient way to
verify required properties in a guideline. Next, we tackle these two
aspects in more detail.

2.2.1. Specification of the requirements to be verified in clinical guidelines
We took into account two main aspects. First, formal verification

processes require properties to be specified using a mathematical
formalism (such as temporal logics). Since practitioners usually do not
have solid mathematical backgrounds [17–19], this step constitutes a

big challenge since it requires bridging the gap between the natural
language in which the properties are elicited from domain experts and
the rigorous, but usually not trivial to specify correctly, mathematical
formalism. Second, the accurate representation of properties can also
constitute a surprisingly difficult task because of all the details that
must be taken into account [17]. For this reason, in [6] we established a
hierarchy of property specification patterns for defining commonly
occurring types of requirements in guidelines (whenever in the fol-
lowing text the term “pattern” without any qualifier appears, it refers to
a property specification pattern). These patterns, which were drawn
from a thoroughly literature survey in different domains (not limited
just to the medical domain), aimed at enabling non-experts in the
specification language of the tool, to easily write formal specifications,
thus easing the verification process. The idea around such patterns is
that a non-expert formulates in natural language the property she/he
wants to be verified in a guideline. Such a property would conform to
one of the defined patterns which, by providing the mapping of the
property to formal specification languages, enables her/him to easily
formulate the property in the formal language, so that it can be checked
in the guideline. In Appendix A we give several guidelines and re-
commendations to use property specification patterns in general, and
our overall hierarchy of patterns, in particular.

In order to make sure that our set of patterns was complete enough
for representing the widest possible spectrum of guideline properties,
we performed a thorough review of works which dealt with the formal
proving of guidelines. In such review we both (1) collected the prop-
erties these works considered useful to be verified in guidelines, and (2)
identified whether such properties matched or not any of our patterns.
The results obtained from this analysis contributed to establish our final
property specification pattern hierarchy, which is shown in Fig. 3. More
specifically, our hierarchy of patterns was built upon the patterns given
by Dwyer et al.’s [18] and by Ryndina et al.’s [20,21]. On one hand,
Dwyer et al. established the hierarchy of patterns shown as dark grey
squares in Fig. 3, where each property specification pattern consisted of
a pattern and a scope. Patterns are classified into occurrence and order
patterns, and specify what must occur. A scope defines a starting and an
ending state/event for a pattern, distinguishing among Globally, Before,
After, Between…And, and After…Until. For each specification pattern,
Dwyer et al. provided mappings to several formal specification lan-
guages (such as Linear Temporal Logic (LTL) [22] or Computational
Tree Logic (CTL) [23,24]) presented as temporal logic formulas. On the
other hand, Ryndina et al.’s patterns particularly constituted an ex-
tension of Dwyer et al.’s Existence pattern, considering four new cate-
gories of such a pattern (see light grey squares in Fig. 3). We particu-
larly considered this extension of Dwyer et al.’s patterns given the
presence of properties of existential nature1 within the properties we
collected from the literature. The set of properties gathered from the
literature led us also to include another 4 subpatterns within the Ex-
istence pattern (see white squares in Fig. 3), thus obtaining our final
hierarchy of patterns. For a more complete explanation of this hier-
archy of patterns, we refer the reader to [6]. Because of their relevance
to the work presented in this paper, next, we provide a brief in-
troduction to both LTL and CTL (for more detail about LTL and CTL, see
[22–24], respectively).

LTL. An LTL formula is built up from a set of atomic proposition
variables p,q,…, the usual logic connectives: ¬, , , , and the
following temporal modal operators: X for next, G for always
(globally), F for eventually (in the future), U for until, R for release.
In LTL, the truth of a temporal logic formula is defined on a path,
that is, propositions are interpreted not over trees (like CTL does)
but over individual paths [22]. A system satisfies a formula if all

1 Related to the existence of at least one path in the guideline application in
which some condition must hold.

B. Pérez Journal of Biomedical Informatics 92 (2019) 103134

4



execution paths satisfy the formula (LTL assumes implicit universal
quantification over paths). Particularly, a LTL formula p is satisfied
in a path x (depicted as x p) iff p is satisfied for a starting position
on that path x. Table 1 shows basic LTL formulas and examples,
including also FGp and GFp which will be cited later.
CTL. It is a branching-time logic, that is, the computation starting
from a state is viewed as a tree where each branch corresponds to a
path [23,24]. Thus, a state now may have more than one successor
[25]. In contrast to LTL, the truth of a CTL formula is defined on
states (so all CTL formulas are called “state formulas”). A formula in
CTL is built from atomic proposition variables p,q,…, the usual logic
connectives (as in LTL), path quantifiers (A for “for all paths”, and E
for “there exists a path”), and LTL-like temporal operators (X, G, F or
U). Particularly, CTL temporal operators are generated from the
basic temporal operators X, G, F and U, combined with one of the
path quantifiers A or E as a prefix, ending up with eight temporal
operators distinguishing between universal modalities (AX, AG, AF
and AU) and existential modalities (EX, EG, EF, and EU). So, given a
path formula (that is, Xp, Gp, Fp or pUq), A and E will be state
formulas with the following interpretation: A is true on a state iff
is true for all paths originating from that state. E is true on a state
iff there exists a path originating from that state where holds (see

Fig. 4 for a description of basic CTL temporal formulas). Thus, CTL
allows explicit existential and universal quantification over all paths.

2.2.2. Verification process
As for the second issue, a wide number of efforts have been made to

stimulate the improvement of clinical guidelines [25–36] using dif-
ferent verification techniques including, for example, model checking,
theorem proving, or knowledge-based [6]. These techniques basically
follow the same outline of a verification process. First, a guideline is
modeled in some predefined guideline representation language (GLIF,
PROforma, Asbru, GLARE, etc.) obtaining a first model. Second, this
model is translated into the input specification language of the chosen
verification technique (such as PROMELA or PROcess MEta LAnguage
[8]), resulting in a second model. Third, the desired properties are
specified in a formal language (such as LTL, CTL, ACTL (Action Com-
putation Tree Logic), or a variant of ITL (Interval Temporal Logic)
[37]). Finally, the properties are checked in this second model to verify
whether the guideline satisfies them or not.

In [6] we decided to use a model checking technique, in particular,
the SPIN [8] model checker which uses PROMELA, as the input speci-
fication language, and LTL formulas, to specify the properties to be
verified in the model. In general terms, model checking represents a

Fig. 3. Our Property specification pattern hierarchy proposed in [6].

Table 1
Several LTL temporal formulas.

Fig. 4. Several CTL temporal formulas.

B. Pérez Journal of Biomedical Informatics 92 (2019) 103134

5



formal technique for verifying whether a system satisfies a specification
or formula p [38] (as an example, the verification process regarding the
use of the SPIN model checker can be seen on the bottom right side of
Fig. 1). The entries of a model checker are both a model of the system
under verification (in our particular case, the guideline specified in
PROMELA) and a property the model should meet. In case the system
meets the property, a model checker will return a message informing
the user about the fact. However, if any behavior of the system under
verification violates the property, the negative answer to the verifica-
tion is supported with a so called counterexample, that is, a behavior of
the system which witnesses the invalidity of the property. Regarding
LTL [22], as described previously, it assumes implicit universal quanti-
fication over paths. For this reason, properties which assert the ex-
istence of a path cannot be expressed in LTL. However, in these cases in
which the property to verify does not mix universal and existential path
quantifiers, LTL can be used for proving the negation of the property,
interpreting the result accordingly [39]. It suffices to submit the ne-
gation of the property for verification (that is, the formula ¬p). If there
exists a counterexample for ¬p, then such a trace must necessarily sa-
tisfy p, giving by the same occasion a valid deployment sequence.

Based on the SPIN model checking process, in [6] we obtain the
PROMELA model representing the guideline under verification by, first,
applying our guideline to state machine representation patterns to ob-
tain the guideline’s state machine, and second, translating such a state
machine into PROMELA (see SM2P translation patterns on the bottom
center side of Fig. 1). The properties to be verified in the guideline are
manually specified in LTL by using our property specification patterns
[6]. We supported the translation of the guideline’s state machine to
PROMELA by using a MDD-based approach which automatically pro-
cessed the state machine and generated the PROMELA model.

While our previous proposal was proven to provide encouraging
results for guidelines’ verification, we recognized certain limitations
[6]. More specifically, we have considered it necessary to complete and
improve such a work in two different lines. First, we aim at revising our
previous patterns to include new properties recent works consider
useful to be verified in guidelines. The second line is mainly related to
the verification of concrete properties considered in our previous
hierarchy of patterns which we could not verify with our previous
framework, in particular, properties conforming to the Liveness pattern.
This pattern states that “at any time during the execution of the system,
something will eventually become possible”. This pattern is not sup-
ported by LTL [40,41]; neither its formula nor its negation are re-
presented in LTL. As a consequence, as we stated in [6], model checking
techniques could not be used to decide whether this kind of formula is
true or not [38]. This issue made us postpone the verification of such
types of properties as part of future work. So, in this paper we present
an approach based on the Formula model finder which allows us to

verify such properties.

3. Extending our property specification patterns

Aimed at revising our previous work in [6] regarding our Property
specification patterns, we have analyzed different works which have
tackled the formal verification of clinical guidelines and which have
been published in the literature after our proposal in [6]. Additionally,
we have looked at the literature on Property specification patterns in
general, aimed at revising our previous patterns. Such analysis led us to
extending the set of patterns by (1) specializing several of our patterns
by providing a more exhaustive subclassification, and (2) defining new
patterns.

More specifically, stating from the works tackling guidelines’ ver-
ification, we have followed a documentation process similar to the one
we used in [6]. First, we have identified the properties the analyzed
works consider useful to be verified in guidelines, and we have ab-
stracted them from particularities. Based on the collected properties, we
have started from our Property specification patterns in [6] and we
have manually decided whether each Property matches any of our
previously defined patterns. In particular, based on [18] (pp. 416), for
each Property we have recorded, when possible, the following in-
formation: (1) the description of the Property in natural language
(Requirement), (2) the pattern to which the Property belongs (Pattern),
(3) the scope of the pattern (Scope), (4) the parameters provided to the
pattern (Parameters), (5) the formal specification of the Property in the
formal specification language chosen by the authors (CTL, LTL, etc.),
(6) the source of the property, such as the authors and citation of the
paper (Source), (7) the specific clinical guideline for which the Property
is defined (Context) and (8) any additional information needed (Note).
Performing the documentation process has required significant effort
since it has been necessary to thoroughly read each paper, understand
the description in natural language of the clinical guideline used (in
several cases the guideline was not entirely provided), and identify the
formal specification of the properties given in the paper. As a result, we
have collected 45 requirements from the analyzed papers. Due to space
reasons, we do not include the complete documentation of these
properties, but we show in Table 2 the classification of the properties
defined by the most significant analyzed papers. In particular, from this
analysis we have concluded that, while the vast majority of the prop-
erties match one or other of our previously defined patterns, there are
some of them which do not (see Fig. 5). More specifically, the selected
properties which do not match any of our previous patterns, together
with the analysis of the literature on Property specification patterns in
general, have led to inclusion of the new patterns and subpatterns
presented in this paper. Next, we explain in detail the revision we have
made to our previous hierarchy of specification patterns presented in

Table 2
Number of properties matching each pattern.

References

Our patterns in [6] Rutle et al.
[26]

Hommerson et al.
[25]

Rahman and
Bowles [28]

Terenziani, Giordano
et al. [27]

Simalatsa et al.
[29]

Kamsu-Foguem
et al. [30]

Occurrence Universal Global 1 2
After

Absence (basic) Global 2
Before
After 3

Existence Global 2
Possible

Existence
Global 1 4
After 5 1

Possible
absence

Global 2 3
After 1 2

Order Response
(eventual)

Global 2 8 3

B. Pérez Journal of Biomedical Informatics 92 (2019) 103134

6



[6]. We also included in our explanations examples of application of
most of the proposed new patterns (in addition to those presented in
Fig. 5).

3.1. Occurrence patterns

Based on the revised works tackling the formal verification of
guidelines, we have decided to extend our patterns included in this
category in the following way (see Table 3).

Fairness pattern. Among the properties identified in Fig. 5, Property
labeled (a) not only refers to the fact that a specific process is possible
during the application of the guideline, but it also requires that such a
process must be possible consistently throughout the guideline’s ex-
ecution. This type of Property is called Fairness [42], in particular,
Unconditional fairness. Properties describing these requirements cannot
be expressed directly in CTL [43]. Among the several types of fairness
in the literature (for a comprehensive study of the matter see [44]), we
have considered not only the one represented by Property (a) (Un-
conditional fairness) but also another two for being the most used within
a wide number of contexts [44,45] (Weak and Strong fairness). In
Table 3 we present the explanation of these patterns. As example of
application, we note that Weak and Strong fairness properties can be
defined in terms of processes/resources that can be enabled/available
and finally executed/used, respectively. Let’s suppose that a specific
test is performed by a concrete medical equipment, and a concrete
guideline recommends such a test, so it depends on the availability of
such an equipment. If p refers to the positive availability of such a test
(the equipment is available), and q corresponds to finally performing
the test, we could be interested in checking that “if the test is almost
always available, it should be executed infinitely often” (Weak), or “if
the test is infinitely often enabled, then it should be performed almost
always (Strong).

Persistence pattern. Regarding properties labeled (b) and (c) (see
Fig. 5), we note that precisely they correspond to two well-known
“somehow” related formulas in LTL and CTL (see Table 3). As stated in
[46], the satisfaction of AF(AGp) forces all paths to have a state s such

that all paths starting from s always satisfy p. In contrast to that, FGp is
satisfied if on all paths a state s is reached such that all the following
states on the path satisfy p, but there might be other paths starting from
s which reach states satisfying ¬p. Aimed at explaining the subtle dif-
ference between these two formulas, on top of Fig. 6 we show an ex-
ample obtained from [47] of a structure where FGp holds but AF(AGp)
fails. The reason is that the LTL Property is related to the individual
paths, and on any infinite path of the given structure we can reach a
state a from which p will holds forever. On the other hand, the CTL
formula AF(AGp) requires that on all paths from the state a, we can
reach a state satisfying AGp. Note that the only state satisfying AGp is
the state c; however, the structure does not satisfy AF{c}-as shown in
the right hand side of the figure, the left most path of the computation
tree is a counterexample. On this particular path, we can stay in the
state a while reserving the possibility of going to the state b (where p
does not hold) [47]. Taking this into account, although slightly dif-
ferent in semantics, we have considered these two formulas as part of
the persistence pattern (see Table 3). At this point, we would like to note
the difference between AF(AGp) and the Always eventually pattern
presented in [6]. This latter pattern, which corresponds to a subpattern
of the Existence pattern (see Fig. 3), is represented in CTL as AG(AFp),
stating that “from any reachable state, a state where p is asserted must
be reached”.

On the other hand, based on the revised works tackling Property
patterns in general, we have decided to extend our previous proposal by
specializing the subpatterns Absence and Liveness. In particular, while
absence (or safety) properties are normally used to represent that
something bad never happens, liveness properties are commonly used to
verify that something good happens.

Absence pattern. In [6] we adopted the Absence pattern from Dwyer
et al.’s patterns [18] to verify that the system execution is free of certain
events or states. The global scope of this pattern is represented as
AG(¬p), in CTL, and G(¬p), in LTL. This formula is commonly used to
assert that “nothing bad should happen”, that is, that “a bad behavior
should never occur” [48]. We have identified three specializations of
this pattern for being broadly used [48,49]: Basic absence, Mutual

Fig. 5. Properties which do not match with our previous patterns.

B. Pérez Journal of Biomedical Informatics 92 (2019) 103134

7



exclusion, and Partial correctness (see Table 3). In the particular case of
the Basic absence, it corresponds to our previous Absence pattern. We
consider Basic absence properties as safety properties since they imply
that certain undesirable states are unreachable. This is the case of
properties representing deadlock freedom, which aim to prove that the
system never reaches a state where no moves are possible (i.e., the
system does not reach a deadlock state). As examples, we note [28],
where authors illustrate the verification of Basic absence properties in
the context of an algorithm for blood glucose lowering therapy in adults

with type 2 diabetes. In particular, authors define a Property to check
whether the guideline includes potential deadlocks. Also, authors define
the Property AG (¬ diab.SecondIntensification) (the therapy
includes two intensifications), which holds iff second intensification is
never reached (universal quantification). We also want to note that, as
stated in [28], the fact that this formula is not satisfied will result in a
trace that shows a second intensification of the therapy being reached
(existential quantification). Additionally, a natural use of the Mutual
exclusion pattern would be to check whether a guideline suggests

Table 3
New occurrence patterns.

Fairness pattern
Unconditional fairness Also known as impartiality, is used to express that some event or state (p) is infinitely often throughout the execution of the system

[42,43].
CTL: Not supported.
LTL: GFp

Weak fairness Also called justice [45], asserts that if an event or state (p) is true almost everywhere (is continuously true), then another event or
state (q) will occur/be true infinitely often.
CTL: Not supported.
LTL: FGp GFq [44]

Strong fairness Also called compassion [45], asserts that if an event or state (p) is true infinitely often (that is, repeatedly), then another event or
state (q) will occur/be true almost everywhere.
CTL: Not supported.
LTL: GFp FGq [44]

Persistence pattern This pattern follows the semantics and considerations described in the text. More specifically, AF(AGp) is used to express that on all execution of the system,
there is a moment when it is guaranteed that from now on p holds forever. FGp is true if for every execution of the system, there is a moment from which on p
holds forever. The LTL version is referred to as Eventually always [44].
CTL: AF(AGp)
LTL:FGp

Absence pattern
Basic absence Defined to represent the basic representation of the Absence pattern (p is false), used to represent the fact that the system is free of

a certain event or state p.
CTL: AG(¬p)
LTL: G(¬p)

Mutual exclusion The system execution never reaches a situation where two events or states (p and q) are in the critical section at the same time.
CTL: AG(¬(p q))
LTL: G(¬(p q))

Partial correctness It can be interpreted as saying that the system execution does not produce the wrong answer. As stated in [49], partial correctness
may be specified in terms of a precondition p, which must hold initially, a postcondition q, which must hold on termination, and
a condition a, which indicates when termination has been reached.
CTL: p AG(a q)
LTL: p G(a q)

Liveness pattern
Reachability To represent our basic formulation of theLiveness pattern. More specifically, “at any time during the execution of the system,

something (p) will eventually become possible” [6]. This Property is also known as possibility [42], (nested) reachability.
CTL: AG(EFp)
LTL: Not supported

Temporal implication For all states (AG) where some condition p holds, there exists an execution path where a state will eventually be reached (EF) in
which the condition q holds [42]. More specifically, whenever p happens, eventually q will happen.
CTL: AG(p EFq)
LTL: Not supported

Fig. 6. Example of AF(AGp) and FGp formulas.

B. Pérez Journal of Biomedical Informatics 92 (2019) 103134

8



applying to the patient two mutually exclusive treatments at the same
time.

Liveness pattern. The Liveness pattern was included in [6] to verify
that “at any time during the execution of a system, something will
eventually become possible”. This pattern is normally used to assert
that “something good eventually happens”, or more specifically, that a
Property that requires desired events, eventually occurs. We have spe-
cialized this pattern by considering two specializations: Reachability,
which represents our basic formulation of the Liveness pattern, and
Temporal implication, obtained from [42] (see Table 3). As example of
application, in [50], the author describes the use of the Temporal im-
plication pattern to check that “if the user chooses to undergo a concrete
surgery, then the outcomes of this must eventually be presented”. An
example of the Reachability pattern applied to our case study will be
presented in Section 7.

3.2. Order patterns

The new patterns of this category, which have been included based
on the literature tackling specification patterns in general, are pre-
sented in Table 4.

Response pattern. Taking into account the properties extracted from
the papers tackling the formal verification of clinical guidelines, we
have noted that there are a non-negligible number of properties which
match the Response pattern. In [6], we adopted this pattern from Dwyer
et al. to represent causal relations between two states or events and, in
particular, one state/event leading to another. The Response pattern in
Dwyer et al. is represented by AG(p AFq), in CTL, and G(p Fq), in
LTL, to verify that the response does not need to be immediate. Since an
immediate response could be interesting to be verified, based on several
works [42,51], we have specialized the Response pattern into another
two subpatterns: Eventual response and Immediate response, as stated in
Table 4. We note the difference between the Temporal implication pat-
tern (Liveness) and the Response pattern, since while the Temporal im-
plication pattern refers to that p is possibly followed by q, the Response
pattern refers to that p is necessary followed by q [43]. As example, in

the context of a lymphoma treatment guideline, authors in [27] use an
Eventual response Property to verify that “there is a treatment in which
growth factors are administered, when leukopenia appears’, re-
presented in LTL as G(leukopenia_value = present F
(done = growth_factors_administration)). Similarly, we could
define a Property to check whether the administration of such growth
factors is immediate (thus obtaining an Immediate response property). In
[25], another two Eventual response properties are given within the
medical domain.

Constrained chain. Finally, we have decided to consider a new Order
pattern named Constrained chain which was included on Dywer et al.’s
patterns [52] after we presented our work in [6]. This pattern basically
presents a constrained chain of propositions, informally read as “q1, q2
without q3 responds to p”, and whose definition is presented in Table 4
(adapted from [52,53]).

As a result, our final Property specification pattern hierarchy built
upon our previous one can be seen in Fig. 7. In particular, we have both
included new patterns (represented on a square), and specialized sev-
eral patterns from our previous proposal (depicted on a double square).
To sum up, we emphasize that since the proposed hierarchy of patterns
gives support for representing the complete list of 45 requirements
collected from the analyzed papers, we think that this approach is
sufficiently complete for representing a wide spectrum of guideline
properties.

4. Verification process based on constraint logic programming

As described previously, in [6] we chose SPIN to check clinical
guidelines against properties specified in LTL. However, while most of
the patterns included in our proposal can be specified in LTL (both the
set of patterns given in [6] and its extension presented in the previous
section), properties of existential nature can not be directly represented
in the LTL language [6]. Among such properties, those conforming to
Possible existence, Chain Possible Existence with and without order and
Possible Absence can be verified with model checkers such as SPIN by
means of the verification of the negation of the Property [6]. However,

Table 4
New order patterns.

Response pattern
Eventual response To express that some event or state p will always lead, at some point in the future, to another event or

state q.
CTL: AG (p AF q)
LTL: G (p F q)

Immediate response To express that some event or state p will always immediately lead to another event or state q.
CTL: AG (p AX q)
LTL: G (p X q)

Constrained chain If a state/event p occurs in a path, then states/events q1 and q2 occur in that order, and the state/event q3 shall not occur.
CTL: AG(p AF(q1 ¬q3 AX(A(¬q3 U q2))
))
LTL: G(p F(q1 ¬q3 X(¬q3 U q2 )))

Fig. 7. Our extended Property specification pattern hierarchy.

B. Pérez Journal of Biomedical Informatics 92 (2019) 103134

9



as we stated in [6], commonly used properties such as the ones included
in the Liveness pattern are not supported by LTL. This is the case of, for
example, the Reachability pattern, whose associated formula in CTL is
AG(EFp) and neither this formula nor its negation are represented in
LTL. Other examples are properties conforming to the Temporal im-
plication, Everywhere eventually and the Always eventually patterns.
Aimed at providing support for the verification of properties which
could not be verified with our previous approach based on SPIN, we
have looked for other alternative formal methods.

Recently, we have performed an extensive research work on the
verification of system models using model finders. More specifically, we
have used a model finder to reason about UML modeling foundations.
Such a work has been performed through two lines considering both
static UML models (in particular, UML Class diagrams) [54–56], and
dynamic UML models (UML State Machine diagrams) [57]. Taking into
account that our proposal for the representation of guidelines is based
on UML State Machines, together with our experience in using model
finders to reason about UML models (both static and dynamic), we have
decided to apply this paradigm to the verification of guidelines as a
complementary technique to the one we proposed in [6], yielding po-
sitive results. In particular, we use the model finding and design space
exploration tool Formula, which is based on Algebraic Data Types (ADT)
and Constraint Logic Programming (CLP) [10,58,59]. As we will see
later, and stated in [60], CLP provides us with an excellent framework
for specifying and verifying properties of reactive systems (in our case,
clinical guidelines). Next, we justify our choice of Formula and present
our proposal to verify requirements in guidelines based on model fin-
ders.

4.1. Using a CLP-based model finder as a complementary technique for
guidelines’ verification

The different types of formal reasoning, such as model checking and
model finding, can be understood, as stated in [61], by the models rela-
tion h (also known as “entailment”). The models relation ph
pairs a structure with a formula p whenever the structure gives a
valid interpretation to the formula under the theory h. In the case of
model checkers is to decide if ph , given and p. On the con-
trary, in the case of model finders is to generate a model given a
formula p such that ph . More specifically, whereas model
checkers take a structure and a specification p, usually in the form of
a temporal logic formula, and check whether is a model of p, model
finders take a logic formula p and attempt to find a model of it [62].
Not only do model finders help find instances of the model specification
and check it for contradictions, but they also enable to check user
specified assertions against the specification [63].

Taking into account our previous proposal for verifying clinical
guidelines using model checkers (SPIN), in this paper we complete it by
giving the possibility of using a model finder. In particular, we advocate
for using the Formula tool [10], as model finding and design space
exploration tool, and the Formula language, for the semantics preser-
ving translation of the models to be verified. Starting from a system
specified in the Formula language (from now on, the system’s model
design or simply design), Formula allows us to explore the system design
space. More specifically, a system design space refers to the number of
potential design variants for the system. Thus, design space exploration
refers to the act of considering possible options for any decision that
contributes to the construction of a system. Based on our concrete
context, and as we will explain later, Formula will allow us to reason
about clinical guidelines by exploring different decisions regarding
their design. As mentioned previously, Formula is based on ADT and
CLP. CLP or Constraint Logic programming provides a powerful approach
to writing formal specifications. CLP began as a merger of two de-
clarative paradigms: constraint solving and logic programming. This
combination helps make CLP programs more expressive and flexible,
while in some cases being more efficient than other kinds of programs.

More specifically, a CLP model is described via a set of variables, a set of
clauses with constraints over them, and a goal to be satisfied. The
clauses in the model are just restrictions imposed over the combination
of values of some variables of the model. Solving a CLP model means
finding a way to assign values to all its variables such that the goal
given by all constraints is satisfied [9,58]. In particular, as stated in
[61], in Formula, models are finite sets of well-typed terms and the
theory h is a subclass of fixed point logic (FPL) [64]. More specifically,
Formula is a constraint logic programming language based on fixed
point logic over Algebraic Data Types. Based on an initial set of facts
specified using Algebraic Data Types and a set of inference rules (For-
mula rules as we will explain later), Formula can deduce a set of final
facts that is the least fixed point solution for the specifications.

Regarding Formula’s characteristics, this tool has been proven to
present distinctive strengths compared to other similar tools, including
better expressiveness [58,65]. More specifically, Formula has two main
characteristics that would help us to achieve our expectations:

• World search. Based on ADT and CLP, this tool relies on the Formula
solver Z3 as underlying engine to reason about models where proof
goals are encoded as a CLP satisfiability problem. Formula utilizes a
bounded verification approach by means of which the reasoning
process is carried out by establishing finite bounds for the number of
instances of the model to be considered during the verification
process. In the case that Z3 finds a solution that satisfies all encoded
constraints (represented by Formula queries), Formula will re-
construct a complete model from this information derived from
known facts (see next point partial models).
• Partial models. Sometimes the user could have partial knowledge
about the model he/she wants to obtain. Such a knowledge can
come from sources such as requirements, existing inputs, known
faults, or concrete execution traces. Formula gives support for par-
tial state completion, that is, using partial model knowledge to help
generate the desired model. In this way, users can specify a small
partial portion of the model directly representing their verification
intent.

Taking into account these two Formula characteristics, using
Formula for reasoning about clinical guidelines represented as state
machines results in supporting several scenarios that enrich our pre-
vious proposal in [6]. Next we describe such scenarios, which have
been adapted from [36] to be applied to the particular case of guide-
lines’ application. In our explanations, we use the term verification
concern to refer to either (1) a requirement or correctness property to be
checked in a guideline (which can be specified by following our Prop-
erty specification patterns and which will represented in our proposal
by means of Formula queries) or (2) a partial portion of the guideline’s
execution trace the user wants to be considered in the reasoning process
as part of the solution (that is, the desired overall valid execution trace).
In this latter case, we would like to note that such a partial portion of
the execution trace will be represented in our proposal by means of
customized partial Formula statements. As we will see later, such partial
statements will refer to already executed actions, that at the same time,
represent concrete state configurations in the guideline’s application.
Taking this into account, the scenarios are the following:

• Consistency checking- Does there exist a legal model?: whether there
exists a legal model of the guideline, that is, an execution trace that
starts from the initial state, moves from state to state and reaches a
final state (the guideline exhibits at least a valid execution trace).
Such a legal model is necessary in order to build trust into the de-
fined guideline.
• Synthesis- Does there exist a model that has a certain property?: if there
exists a valid execution trace that satisfies a certain verification
concern. Formula can be used to rigorously reason about the
guideline’s model design, by checking predefined correctness

B. Pérez Journal of Biomedical Informatics 92 (2019) 103134

10



properties about the execution traces (including, not only properties
that could be verified with our previous proposal based on SPIN, but
also not supported types of constraints) or ensuring that there exists
a valid execution trace that includes a set of partial statements.
• Design space exploration- Do there exist many models that have a prop-
erty?: whether there exist many valid execution traces that satisfy a
certain verification concern. The Formula representation of the guide-
line can be used to inspect the clinical guideline model represented by
the state machine, in order to search for conforming execution traces
and to choose those which satisfy the desired verification concern. It is
worth highlighting that our previous proposal based on the SPIN
model checker did not provide us with this possibility.

We would like to note that valid execution traces obtained from
both synthesis and design space exploration scenarios, would have to
correspond to legal guidelines’ models (consistency checking).

As we have mentioned previously, we have already used Formula to
reason about UML diagrams [54–57]. More specifically, while in
[54–56] we presented a framework to reason about UML Class Dia-
grams aiming at finding sets of classes’ instances conforming to a class
diagram, in [57] we completed such a work to give support also to UML
State Machine diagrams, where we focused on reasoning and verifying
state machine designs by generating possible sets of state configura-
tions. As for the reasoning of UML State Machine diagrams, we note
that in [57] we just focused on proving the reachability of states and
consistency requirements in state machines without focusing on a specific
context, covering just several aspects provided by the Formula synthesis
scenario. More specifically, regarding consistency requirements in [57],
we refer to consistency from a structural perspective, referring to
properties that the model is expected to satisfy irrespective of its se-
mantic content. Thus, a consistency requirement could be considered as a
requirement or correctness property that just focuses on structural aspects
of the model. In this paper, we extend and complete such a proposal by
considering the other two scenarios, basing also on concrete semantics
provided by state machines representing guidelines.

4.2. Proposed verification process

The reasoning process of a clinical guideline using Formula follows
the steps described on top of Fig. 1. Next, we describe these steps in
detail.

Step 1. Encoding the Clinical Guideline into Formula. Starting from a
clinical guideline represented as a state machine as specified by the
guideline to State Machine representation patterns described in [6]
(identified as Step 0), we first translate such a state machine model into
a Formula specification model by performing an intermediate step
(identified as Steps 1a and 1b). Our proposal for representing clinical
guidelines as UML state machines [6,13] considers the possibility of
using complex structures like simple composite states, orthogonal com-
posite states, and submachine states to represent guidelines’ states. Later,
the verification of the guideline can be performed directly on the re-
sulting state machine containing such complex structures, but it re-
quires rather complex strategies, because such structures complicate
the traversal and analysis of the state machine. A commonly used al-
ternate approach to tackle state machines is to flatten the state machine
first, by removing hierarchy and concurrency (simple composite, ortho-
gonal composite and submachine states) so that all states are atomic [66],
and then apply the required strategy (such as analysis, verification or
code generation processes) [67].

Although there are many techniques and algorithms reported in the
literature to flatten state machines [68], an extended strategy to elim-
inate hierarchy consists on handling transitions that leave and enter
composite states. In particular, transitions that leave a composite state
are transferred to its subtates, while transitions that enter a composite
state are redirected to the initial substate of the composite state. On the
other hand, the elimination of concurrency would be done with the

cartesian product of all states (and transitions) in each concurrent re-
gion. We note that, if the original state machine model has concurrent
states, it is said that such an operation causes an explosion of the
number of states and transitions in the resulting model [69]. For this
reason, the complexity of flattened models has been studied previously,
especially within the model’s verification community, where different
questions relevant to the verification process have been addressed.
However, conclusions drawn from such studies are many and varied
because of the different nature of the verification tool used in each
study (and thus, the tool’s language semantics). For example, while
some works stated that “it may be beneficial to maintain the state
machine hierarchy in the encoding instead of flattening the state ma-
chine before encoding” [70], others stated that flattening provides a
better separation of concerns and a lesser analysis complexity [67]. In
this context, several proposals have been given to avoid states and
transitions explosion [71,72].

In our particular case, we have considered the possibility of either
providing a proposal that handled hierarchies and concurrency without
flattening them, or adopting a preprocessing step which flattened the
source guideline’s state machine. Based on our previous experience
with Formula [54–57], representing hierarchy and concurrency would
lead to complex Formula constructs, thus entailing an unnecessary
overload of the Formula solver. We also note that previous work on
representing guidelines published by the Formula’s authors [36] only
provided support for simple states. Taking this into account, we have
decided to flatten the state machine representing a guideline so that we
get a better separation of concerns, obtaining a model which can be
more easily tackled by Formula. Thus, our translation proposal from a
clinical guideline represented as a state machine to Formula constitutes
a stepwise process so that the state machine is first flattened by ap-
plying a flattening algorithm (see Step 1a) and, second, the resulting
state machine is translated into Formula by following a set of transla-
tion patterns we have defined (see SM2F translation patterns in Step 1b).
In particular, regarding Step 1a, we can use one of the many techniques
and algorithms reported in the literature to flatten concurrent and
hierarchical states (see [68] for a complete mapping study of flattening
techniques). Step 1b will be described in detail in Section 6.

Step 2. Specification of Verification Concerns. Second, each verification
concern (requirement or partial model statements) desired to be considered
for the verification of the guideline would have to be manually defined
in the Formula language and included in the guideline’s Formula spe-
cification (see Step 2). This step will be explained in detail in Section 7.

Step 3. Verification of the Clinical guideline in Formula. Finally, the
Formula tool takes the model resulting from the previous step to reason
about the guideline (see Step 3). The results of the verification process
can be many and varied. Different examples will be presented in
Sections 7 and 8, where the specification of concrete concerns to be
verified in the AP guideline and the verification process itself are de-
scribed, respectively. It is worth noting that in case the feedback given
by the Formula tool refers to inconsistencies detected in the guideline’s
definition, such information could be considered, for example, for the
redefinition of the guideline as appropriate.

We would like to note that the two verification processes depicted in
Fig. 1 aim to constitute an overall framework for the verification of
guidelines sharing the first common step of representing guidelines by
means of state machines. Before going on to describe in detail the
verification process presented in this paper, next we give a brief over-
view of Formula syntax and semantics. For a more detailed description,
we refer the reader to the Formula Website [10] or to specific papers
[59,64].

5. A brief overview of Formula

5.1. Formula main units

Formula allows representing a system’s design by using three

B. Pérez Journal of Biomedical Informatics 92 (2019) 103134

11



different units: domains, models and partial models. Firstly, a Formula
domain FD is the basic specification unit in Formula and is used to
formalize an abstraction of the problem that can be used by Formula to
reason about the design. This type of units allows specifying algebraic
data types and a logic program describing properties of the abstraction.
The CLP paradigm provides a formal and declarative approach for
specifying such abstractions [10], which in Formula are represented by
rules and queries (which we will explain later). As an example, Fig. 8
shows the definition of a domain called MetaLevel containing an al-
gebraic data type named State in line 8. Additionally, domains can
extend other domains by including the extends keyword. A Formula
model FM is a finite set of data type instances built from constructors of
the associated domain FD which satisfies all its constraints [59].
As an example, the Formula expression State(“Ready-
ToBeAliquotedS1”, simple) would correspond to an instance of
the data type State described previously. Formula allows specifying
individual concrete instances of the design space or parts thereof, in a
specific Formula unit called partial model. A Formula partial model FPM
is a set of instance-specific facts placed along with some explicitly
mentioned unknowns (also known as fresh variables, denoted as ‘_’),
which correspond to the parts of the FM that must be solved [10].
Partial models allow unknowns to be combined with parts of the model
that are already fixed [10,59]. They are essentially lower bounds on the
type of models we want to find. Fixed parts of a model can be included
in the partial model explicitly, specifying the corresponding Formula
statements inside the model. Additionally, it is necessary to specify the
domain(s) the partial model conforms by using the of keyword.

As described previously, a Formula domain FD consists of algebraic
data types, rules and queries. First, algebraic data types constitute the key
syntactic elements of Formula. Based on the defined data types, rules
and queries are specified as logic program expressions ensuring the re-
maining constraints [10]. In general, rules specify implications and
queries allow representing both forbidden and valid states. Next, we
explain the main characteristics of these constructors.

5.2. Formula data types, rules and queries

Algebraic data types. They are defined by the operator :≔, indicating
on the right hand side their properties by fields, which must be of some
concrete type (Formula built-in types or other user data types). A data
type definition can be labeled with the primitive keyword, denoting
that it can be used for the extension of other type definitions (thus,
defining primitive constructors). In addition to the State data type,
previously cited, in line 13 of Fig. 8 we define the Transition data
type, which represents the Transition element of the UML State
Machine metamodel. This type defines several fields together with their
types (such as the fields src and dst of type Vertex, representing the
source and target vertexes of a transition, respectively). If the pri-
mitive keyword is omitted, the data type definition results in a derived
constructor. As an example, see the definition of the type Vertex in line

11, representing the Vertex element of the UML metamodel (which
includes elements such as states and pseudostates). Additionally, con-
stants are defined using the operator :≔, specifying a fixed value or a
list of fixed values within curly brackets. For example, the constant
stateType in line 3, would represent different types of states (i.e., an
enumeration of fixed values.

Around data types, Formula defines different categorizations of the
structural elements as building blocks for defining Formula expressions.
These structural elements are mainly Formula terms, among which we
note simple and compound. A simple term is represented by means of a
type identifier containing variables, constants, or other simple terms as
arguments, within parenthesis. A compound term, on the other hand, is
represented by means of a type identifier with a list of terms within
parenthesis. An example of a simple term is State(x,y), representing a
specific state with name ‘x’ and type ‘y’ (see the definition of the State
data type in line 8). With the compound term Transition(_,_,State
(x,y),_), we represent all the instances of the Transition term
where the third field is set to a fixed Property (State(x,y)). The other
fields are filled with an unknown do not-care symbol (‘_’), so that
Formula can find valid assignments. In this way, this term represents
any transition whose source state is the specific state (State(x,y)).

In particular, Formula terms are, directly or indirectly, the basis for
constructing predicates, which constitute basic units of data, used for
defining queries and rules. For example, predicates can be constructed
from compound terms, described previously, and bindings, that is, gluing
a variable to either a type expression or a compound term. An example of
a binding term is t is Transition(t1,_,State(x,y),State
(z,w)), where the variable t is bound to the compound term
Transition(t1,_,State(x,y),State(z,w)), so that the identi-
fier t stands for such a term.

Additionally, Formula allows using different annotations in the de-
finition of data types to reduce the size of the search space. For example,
the [Closed] annotation, whose syntax is [Closed(DT fields)],
which instructs Formula to apply a closed check to instances of the
corresponding data type (DT) fields that are using only existing in-
stances of types associated with these fields. Otherwise Formula would
be able to invent new instances, which is a desired behavior for general
model-finding problems. An example of the [Closed] annotation is
illustrated on line 12 in Fig. 8 where it ensures that Formula instances
of transitions are created by state instances that exist in the model.
Additionally, [Unique], whose syntax is [Unique(DT fields -> DT
fields)], requires all records with identical fields on the left of the
arrow (->) to have identical fields to the right of the arrow. By adding
the [Unique] attribute to a type constructor definition, Formula in-
troduces new queries to the containing domain, which ensure that an
element of the domain of the relation is mapped to a single element of
the codomain. As an example, the [Unique] annotation on line 7 in
Fig. 8 checks that there are not two state instances with the same field
values.

Rules. A rule behaves like a universally quantified implication, that is,
whenever the relations on the right hand side of a rule hold for some
substitution of the variables, then the left hand side holds for that same
substitution [59], and Formula will generate a new entry in the fact-
base of Formula corresponding to the left hand side (thus, rule’s main
aim is production). Rules are specified by the operator :-, indicating, on
the left hand of the expression, a simple term and, on the right hand, the
list of predicates specifying the rule (an example of a rule is shown in
next section).

Queries. A query correspond to a rule where left hand side are nul-
lary constructors [58] (that is, constructors that take no arguments). In
contrast to a Formula rule, a query does not add new terms into the fact-
base of Formula, but behaves like a proposition variable that is true if
and only if the right hand side of the definition is true for some sub-
stitution [59]. Queries are constructed using the operator ≔, joining
Formula predicates. In particular, Formula defines in every domain the
conforms standard query that combines other queries using logical

Fig. 8. An extract of a Formula domain.

B. Pérez Journal of Biomedical Informatics 92 (2019) 103134

12



operators and is used as the main goal to find a model which conforms
the domain. When a (partial) model is inspected in Formula, the
conforms clause is the starting point of the searching procedure. If it is
not possible to find an instance that satisfies this special query, the
(partial) model is said to be Unsatisfiable. Based on the existential
quantification semantics of queries, we can use them to prove the ex-
istence of specific facts in the model. Additionally, the universal quan-
tification can be achieved by verifying the negation of a query re-
presenting the opposite of the original predicate. For example, let’s
suppose that we want to ensure, by using Formula queries, that there
exists a model in which Transitions are not created as connections
of undeclared States. Then, we first need to define a query q re-
presenting the existence of transitions verifying the opposite (that is, q
≔ Transition(_,_,State(x,y),_), fail State(x,y)). More
specifically, we consider a Transition term defined with an un-
declared source state (see fail State(x,y), where the Formula
keyword fail means negation as failure). With this query we are
considering such incoherent situation as a valid state. Thus, to verify
that such situation is not valid, we need to include the negation (‘!’) of
the query (!q) in the conforms query of the specific domain. If the
verification process results in a model (existence quantification), all its
Transition terms would be defined with declared State terms. If we
were interested in proving the universal quantification, that is, in all
models Transition terms are created as connections of declared
State terms, we would need to verify directly q, so that an unsatisfiable
result would prove that there not exists any model where Transition
terms are created as connections of undeclared State terms. We would
like to note that queries can be used to represent both forbidden and
valid states; it depends on the context, since in some occasions a query
could represent a forbidden state (thus, failing to verify such a query
would be desired), while in other occasions a query could represent a
valid state (and its successful verification would be desired). A more
complete discussion of these aspects is given in Section 7, where we
describe the specification of requirements.

Finally, having defined the domains, models and partial models for
the specific problem, Formula explores the design space by loading such
units, and executes the logic program. It finds all intermediate facts that
can be derived from the given facts in the partial models, and tries to
find valid assignments for the unknowns [10,59].

6. Encoding clinical guidelines in Formula

In this section we first explain our proposal for the representation in

Formula of a UML state machine representing a clinical guideline. At
this point, we would like to note that, while in [57] we considered state
machines representing the dynamics of simple systems without focusing
on a specific context, in this paper we extend our previous proposal by
giving support to more complex state machines’ semantics implicit in
clinical guidelines represented as state machines. We finish this section
by describing our proposal for the automatic translation of a guideline’s
state machine to Formula, by means of which all the units that con-
stitute the Formula specification of the guideline are automatically
generated from the guideline’s state machine.

6.1. Overview of our translation proposal

Our proposal for encoding a clinical guideline into Formula follows
a MOF-like metamodeling approach [57]. More specifically, we propose
the Formula specification of a guideline to be constituted of five dif-
ferent Formula units distributed along the MOF Metamodel (M2),
Model (M1) and Instance (M0) levels [7], described in Section 2: the
MetaLevel and InstanceLevel domains, the StateMachine and the State-
MachineInstance models, and the Execution partial model. In order to
have a better understanding of our proposal, in Fig. 9 we illustrate the
defined units, together with the relations among them. To help the
reader better understand our approach we focus explanation on the
specific translation of states and, in particular, the state Ready-
ToBeAliquotedS1 of our case study. More specifically, in this figure the
five Formula units are represented by rectangles, which include the
transformation patterns defined in each case for representing states,
while the Formula expressions resulting from the application of such
patterns to our concrete guideline are depicted by rhomboids.

Taking into account the semantics of Formula domains, models and
partial models, we have decided to define the following five units. First,
we represent the UML State Machine’s constructs by means of two
domains in order to provide an abstraction of elements at the meta and
the instance levels (see MetaLevel and InstanceLevel domains in Fig. 9,
respectively). Since these domains are the same whatever guideline’s
state machine is being translated, they are guideline-independent. Re-
garding models, we define the StateMachine and the StateMachineIn-
stance models, basically aimed at representing the concrete conceptual
and instance elements of a specific state machine, respectively. That is,
in contrast to the defined domains, these two models are guideline-de-
pendent, as they represent concrete aspects of the guideline at hand (see
Fig. 9). So that Formula can take the previous elements and organize
them into valid execution state configurations, we have defined a

Fig. 9. An excerpt of the Formula units created for the representation of our case study in Formula.

B. Pérez Journal of Biomedical Informatics 92 (2019) 103134

13



partial model FPM called Execution (see Fig. 9).
Next, we explain how to create such Formula units, relying on

Table 5 (to explain the Formula statements that constitute the domains)
and on Table 6 (to present the translation algorithms defined to gen-
erate the Formula models). In this latter table, we represent in bold font
the fixed elements in the translation, that is, parts of the Formula in-
structions that keep the same independently of the concrete state,
transition or pseudostate being translated, respectively (that is, parts
shared by the translation of all states, transitions or pseudostates, re-
spectively). Statements in Table 5 are fixed. We do not provide a table
for the Execution partial model because, as explained later, its definition
is straightforward.

6.2. Formula data types

The defined domains FD MetaLevel and InstanceLevel (see Table 5)
contain (1) specific data types, which allow us to represent facts and
generate reasoning instances of such types, and (2) queries, which re-
strict the valid system states by specifying forbidden states.

MetaLevel domain. For each metamodel element State, Transition,
Pseudostate and Vertex, we mainly define a primitive Formula data type
with the same name and specific fields. An explanation of most of the
defined elements has been provided in the previous section since Fig. 8
presents an excerpt of this domain. The definition of these types will
allow us to create Formula instances representing specific UML States,
Transitions and Pseudostates at the Model level (such as the specific state
ReadyToBeAliquotedS1, identified as S1, shown in the first row of
Table 6).

InstanceLevel domain. To be able to represent the information gen-
erated during the execution of a state machine (that is, the state con-
figurations which constitute the execution traces, together with the
representation of the triggered transitions), we have defined specific
types included in a Formula domain InstanceLevel. In the second row of
Table 5, we show the concrete data types to be defined and which are
associated to state, transition, pseudostate and vertex elements (see the
different columns). For example, this domain defines types such as
StateInstance or TransitionInstance. We would like to note
that we have defined three different Formula queries (see stateName,
transitionName and pseudostateName in Table 5) to ensure that
the name of a state/transition/pseudostate instance is the same as the
name of the state/transition/pseudostate to which such an instance
corresponds, respectively (note that it refers to universal quantification).
For example, in the case of states, firstly we need to define a query
representing the existence of a StateInstance element verifying the
opposite, that is, its name does not match the name of the State type
to which it corresponds (see query stateName in Table 5). With this
query, we are considering such incoherent situation as a valid state.
Thus, to verify that such a situation is invalid, we finally include the
negation (‘!’) of the query in the conforms query (not included in
Table 5).

6.3. Formula data types’ instances

Once we have defined the Formula domains with the abstractions of
the problem, as mentioned previously, Formula gives us the possibility
of creating a model FM as a finite set of data type instances built from
constructors defined in the domains FD which satisfies all the FD con-
straints [59]. In our particular case, we have defined two different
Formula models which, as advanced previously, are guideline’s depen-
dent. For this reason, in Table 6 we present our proposal for the defi-
nition of these models by using translation algorithms.

StateMachine model. This model, which contains the instances of the
data types created in the MetaLevel domain, represents the specific
elements of a particular state machine (see Fig. 9). More specifically, for
each specific state, transition or pseudostate element in the guideline’s
state machine, we define a Formula predicate representing an instanceTa

bl
e
5

Ex
ce
rp
t
of

th
e
pr
op

os
al

re
ga
rd
in
g
th
e
cr
ea
tio

n
of

th
e
Fo

rm
ul
a
do

m
ai
ns
.

D
om

ai
n

Le
ve
l

St
at
e

Tr
an

si
tio

n
Ps
eu
do

st
at
e

Ve
rt
ex

M
et
aL
ev
el
FD

M
2

[U
ni
qu

e(
na

m
e
- >
ty
pe
)]

pr
im

iti
ve

St
at
e
::=

(n
am

e:
St
ri
ng

,
ty
pe
:s
ta
te
Ty

pe
).

[C
lo
se
d(
sr
c,

ds
t)
]

pr
im

iti
ve

Tr
an

si
tio

n
::=

(n
am

e:
St
ri
ng

,
ty
pe
:t
ra
ns
iti
on

Ki
nd

,
sr
c:

Ve
rt
ex
,

tr
g:

Ve
rt
ex
).

[U
ni
qu

e(
na

m
e
- >

ty
pe
)]

pr
im

iti
ve

Ps
eu
do

st
at
e
::=

(n
am

e:
St
ri
ng

,
ty
pe
:p

se
ud

os
ta
te
Ty

pe
).

Ve
rt
ex

::=
St
at
e

+
Ps
eu
do

st
at
e
+
...
.

In
st
an

ce
Le
ve
l F
D

M
1

[C
lo
se
d(
ty
pe
)]
[U

ni
qu

e(
na

m
e
->

ty
pe
)]

pr
im

iti
ve

St
at
eI
ns
ta
nc
e
::=

(n
am

e:
St
ri
ng

,
ty
pe
:S

ta
te
).

st
at
eN

am
e:
=

St
at
eI
ns
ta
nc
e(
na

m
e,

ty
pe
),

ty
pe
.n
am

e!
=
na

m
e.

[C
lo
se
d(
ty
pe
,s
ou

rc
e,
ta
rg
et
)]

[U
ni
qu

e(
na

m
e-

>
ty
pe
)]

pr
im

iti
ve

Tr
an

si
tio

nI
ns
ta
nc
e
::=

(n
am

e:
St
ri
ng

,
ty
pe
:T

ra
ns
iti
on

,
so
ur
ce
:V

er
te
xI
ns
ta
nc
e,

ta
rg
et
:V

er
te
xI
ns
ta
nc
e)
.

tr
an

si
tio

nN
am

e:
=

Tr
an

si
tio

nI
ns
ta
nc
e(
na

m
e,
ty
pe
,_,
_)
,

ty
pe
.n
am

e!
=

na
m
e.

[C
lo
se
d(
ty
pe
)]
[U

ni
qu

e(
na

m
e
->

ty
pe
)]

pr
im

iti
ve

Ps
eu
do

st
at
eI
ns
ta
nc
e
::=

(n
am

e:
St
ri
ng

,
ty
pe
:P

se
ud

os
ta
te
).

ps
eu
do

st
at
eN

am
e:
=

Ps
eu
do

st
at
eI
ns
ta
nc
e(
na

m
e,
ty
pe
),

ty
pe
.n
am

e!
=
na

m
e.

Ve
rt
ex
In
st
an

ce
::=

St
at
eI
ns
ta
nc
e
+

Ps
eu
do

st
at
eI
ns
ta
nc
e.
..

B. Pérez Journal of Biomedical Informatics 92 (2019) 103134

14



of the corresponding constructor (State, Transition, or Pseu-
dostate in the MetaLevel domain), where the name of each predicate’s
variable corresponds to the element’s identifier (see first row in
Table 6). With these Formula instances, we are explicitly representing
specific elements in the guideline’s state machine. For example, in the
first column of Table 6 we show the definition of the predicate S1 is
State(“ReadyToBeAliquotedS1”, simple) representing the state
ReadyToBeAliquotedS1, which corresponds to a Formula instance of the
constructor State defined in the MetaLevel domain.

StateMachineInstances model. This model contains the instances of
the data types defined in the InstanceLevel domain. In particular, such
instances refer to the state, transition and pseudostate instances that
Formula would use as constructors of the state configurations (execu-
tion traces) of the specific clinical guideline. More specifically, for each
specific state, transition or pseudostate in the guideline’s state machine,
we define a Formula predicate representing an instance of the corre-
sponding data type defined in the InstanceLevel domain (see second row
in Table 6). The name of each predicate’s variable corresponds to the
prefix S_, P_ or T_ (depending on whether it refers to an state, transition
of pseudostate element, respectively) plus the element’s identifier id
(see Table 6). For example, in this model we define predicates such as
S_S1 is StateInstance(“ReadyToBeAliquotedS1”,S1), which
would represent the fact that a specific aliquot object has been in the
state ReadyToBeAliquotedS1 (see first column in Table 6). On the top of
Fig. 10 we show graphically the overall instances we would define for
the case study.

We would like to note that an instance of some type in the state
machine is translated into the identifier of this instance and vice versa
and the same identifiers of states, transitions and pseudostates are used
in UML state machines and Formula units (for example, the identifier of
state ReadyToBeAliquotedS1 in the state machine, that is, S1, is used as
identifier of its translation, that is, S1 is State
(“ReadyToBeAliquotedS1”, simple).

Taking this into account, the StateMachine model conforms to the
MetaLevel domain, while the StateMachineInstances model conforms to
the InstanceLevel domain.

6.4. Logic statements to simulate a guideline’s application

Up to now, we have established the bases to represent in Formula
(1) the UML State Machine metamodel, (2) specific state machines (that
is, guidelines) conforming to such a metamodel, as well as (3) the
concrete instances produced during the execution of a state machine
(that is, the guideline’s application) which would constitute each state
machine execution trace (that is, the sequence of state configurations an
object can go through during the guideline’s application). Nevertheless,
the defined Formula data types, instances and queries are not enough to
allow Formula to reason about the state machine execution, that is, to
take such concrete elements and organize them into valid execution
state configurations. More specifically, in addition to such instances
(see the top of Fig. 10) and queries, we provide Formula with specific
data types and rules to instruct the tool in the way to reason about such
data, so that it is able to generate valid execution traces (such as the one
shown on the bottom of Fig. 10, which corresponds to trace labeled (b)
in Fig. 2). For this reason, we have completed our proposal by defining
new Formula statements in the InstanceLevel domain, and introducing
the Execution partial model (we note that the new statements in the
InstanceLevel domain include several improvements related to our

Table 6
Excerpt of the proposal regarding the creation of the Formula models.

Model Level State Transition Pseudostate

StateMachineFM M1 Translation algorithm:
for_each s state in Guideline’s state machine
if s.isSimple then
stateType= ”simple”
else_if s.isComposite then
stateType= ”composite”
else s.isOrthogonal
stateType= ”orthogonal”
end_if

s is State(s.name, stateType)
end_for_each

Example:
S1 is State(”ReadyToBeAliquotedS1”,

simple)
S2 is State(”InFillingProcessS2”, simple)
S5 is State(”AliquotedS5”, simple)
FINAL is State(”final”, simple)

Translation algorithm:
for_each t transition in Guideline’s state machine
t is Transition(t.name, t.type,

t.source, t.target)
end_for_each

Example:
T0 is Transition(”t0”,external,INI,S1)
T1 is Transition(”t1”,external,S1,S2)

Translation algorithm:
for_each p pseudostate in Guideline’s

state machine
p is Pseudostate(p.name, p.type)

end_for_each

Example:
INI is Pseudostate(”ini”,initial)

StateMachineInstanceFM M0 Translation algorithm:
for_each s state in Guideline’s state machine
S_s is StateInstance(s.name, s)

end_for_each

Example:
S_S1 is StateInstance

(”ReadyToBeAliquotedS1”,S1)
S_S2 is StateInstance

(”InFillingProcessS2”,S2)
S_S5 is StateInstance(”AliquotedS5”,S5)
S_FINAL is StateInstance(”final”,FINAL)

Translation algorithm:
for_each t transition in Guideline’s state machine
if t.source.isKindOf(UML.State) then
sourceType=’S_’

else
sourceType=’P_’

end_if
T_t is TransitionInstance(t.name, t,

sourceType+ t.source,
targetType+ t.target)

end_for_each

Example:
T_T0 is TransitionInstance(”t0”,T0,P_INI, S_S1)
T_T1 is TransitionInstance(”t1”,T1, S_S1,S_S2)

Translation algorithm:
for_each p pseudostate in Guideline’s

state machine
P_p is PseudostateInstance

(p.name, p)
end_for_each

Example:
P_INI is PseudostateInstance

(”ini”,INI)

Fig. 10. Instance elements and complete execution trace.

B. Pérez Journal of Biomedical Informatics 92 (2019) 103134

15



previous proposal in [57], as we will remark in this section).
New statements in the InstanceLevel domain. We need to indicate

Formula the way in which it has to generate a valid chain of state
configurations which will constitute the valid execution traces. As de-
scribed in Section 4.1, Formula utilizes a bounded verification approach
by means of which the reasoning process is carried out by establishing
finite bounds for the number of instances in the model to be considered
during the verification process. Thus, we first need to provide Formula
with an upper bound representing a limit in the number of triggered
transitions conforming to such valid execution traces. For this reason,
first, we have included two new data types: Trigger and Bound. On
one hand, the Trigger type has been defined to simulate the triggering
of a transition (see line 3 in Fig. 11). For this reason, its definition in-
cludes a field t, referring to the time in which the triggering of the
transition takes place, and the associated TransitionInstance in-
stance, referring to the transition triggered (for example, Trigger
(3,T_T5) represents that transition T_T5 has been fired at time t=3).
On the other hand, the Bound type (see line 4 in Fig. 11) defines a
natural number field n which would represent an upper bound to limit
the number of transitions triggered during the state machine execution.
Based on the Trigger type, we define the type StateConfiguration
to represent each active state configuration (see line 5), and which has
three fields: (1) t, which keeps track in time of the sequence of state
configurations, (2) v, which refers to the specific active vertex, and (3)
traT, which refers to the name given to the TransitionInstance
instance corresponding to the transition which has been triggered to
change to that state (for example, T_T1, in the binding term T_T1 is
TransitionInstance(t1,T1,S_S1,S_S2)).

Additionally, in order to construct the chain of state configurations
as the transitions are triggered, we have defined four different Formula
rules (see lines from 7 to 10 in Fig. 11), in order to create new entries of
type StateConfiguration in the fact-base of Formula. More specifi-
cally, we make a distinction depending on whether the state config-
uration to be created corresponds to: (1) the initial state configuration
fact (line 7), (2) a state reachable from the initial state (line 8), (3) a
state reachable from previous states (line 9), or (4) a state reachable
from a choice pseudostate (line 10). For the definition of these rules we
have taken into account the production semantics of rules. For example,
with line 9 we state that, given the current state configuration Sta-
teConfiguration(t,src,traT) and the triggering of a transition
Trigger(t, TransitionInstance(tn,_,src,tgt) (that is, the
transition’s source vertex corresponds to the current one), Formula
nondeterministically creates a new fact StateConfiguration
(tnext,tgt,tn), which corresponds to the new state configuration
where the new state tgt is the target vertex of the triggered transition.

The value of the time parameter tnext is also incremented by 1 for the
following state configuration. We also include the expression Bound
(end), t < end (see line 9) to make sure that the number of tran-
sitions triggered during the state machine execution does not exceed
the desired upper bound limit. Such an upper bound value will be es-
tablished later, when defining the Execution partial model. We note that
rules similar to these given in lines from 7 to 9 were already provided in
[57], but in this paper we have enriched our previous proposal by re-
defining them so that Formula can more efficiently generate the
StateConfiguration facts. Additionally, we have defined the rule in
line 10 so that we also give support for generating StateConfigura-
tion entries referring to states reachable from choice pseudostates,
registering also the guard condition value that has triggered the tran-
sition to the new state configuration (see also the definition of the new
type ChoiceGuardValue in line 6).

As another extension of our previous proposal, we include a new
query called done which ensures us that Formula generates valid ex-
ecution traces where the guideline finishes its application (see line 11).
More specifically, in any case, the resulting chain of active state con-
figurations corresponds to a guideline’s execution which reaches a final
state at some point, this ensuring well-formed execution traces. This
query will be checked in the corresponding conforms query (see line
12).

Execution partial model. Following our strategy, each different state
an object can go through during its lifetime is represented by a
StateConfiguration fact, which is created by means of the rules
defined from lines 7 to 10 in Fig. 11. Based on Formula rules’ semantics,
given a current object’s state configuration (right part of any of those
rules) we need suitable both Trigger and Bound facts, so that For-
mula can nondeterministically generate a new object’s state config-
uration (left part of any of those rules). More specifically, first, we need
to instruct Formula to find valid assignments for the Transitio-
nInstance occurrences in the Trigger elements of these rules. As
described previously, for this task Formula defines partial models FPM
where we can specify individual concrete instances of the design space
or unknown parts thereof (these latter corresponding to the parts of the
model FM that must be solved by the Formula tool) [10]. Second, a
Bound(end) term is defined, end being the desired upper bound
value, representing the maximum length of an execution trace (for
example, Bound(12) means that it can be at most 12 Trigger ele-
ments). Finally, we include such a Bound(end) term and as many
Trigger terms as necessary in a partial model FPM called Execution
(see Fig. 9). Each Trigger term defines a do not-care symbol (‘_’) in the
field which corresponds to the TransitionInstance instance, so
that Formula will find valid transition assignments.

At this point we would like to make a remark regarding the ver-
ification of user-defined verification concerns in the model (both re-
quirements and partial model statements). More specifically, each ver-
ification concern has to be introduced to the appropriate Formula unit:
while requirements, represented by means of Formula queries, are
introduced to the InstanceLevel domain, partial Formula statements must
be included in the Execution partial model (in the next two sections we
will show examples of the verification of concrete concerns).

As mentioned previously, starting from the different Formula units
defined for a specific guideline’s state machine, including the desired
user-defined verification concerns, Formula would explore the design
space by loading such units, and execute the logic program. Formula
finds all intermediate facts that can be derived from the given facts in
the partial models, and tries to find valid assignments for the un-
knowns. The resulting solution, if exists, would refer to a well-formed
execution trace satisfying all encoded constraints.

6.5. Automatic translation from a guideline to Formula

Aiming at automatizing the overall verification process as far as
possible, we propose to use a tool chain which assists the user in

Fig. 11. Generation of new state configurations.

B. Pérez Journal of Biomedical Informatics 92 (2019) 103134

16



performing the encoding of a guideline into Formula. More specifically,
since our clinical guideline to State Machine representation patterns
[13] consider concurrency/hierarchy elements for guidelines’ re-
presentation, first, a flattening tool can be used to obtain the guideline
specification as atomic states (such as [73] or [74]).

As for the second step, we have based it on an Eclipse plug-in we
developed in [57] to automatically transform general-purpose state
machines to Formula specification based on the rules described in [57].
More specifically, this plug-in followed a MDD-based approach to im-
plement such a transformation. The working philosophy behind MDD-
based approaches focuses on models (in our case, a guideline’s state
machine model), so that the program code is automatically generated
from them by means of a refinement process [75]. In particular, we
have used the MOFScript Eclipse plug-in [76], which is a MDD-based
tool with support for customizable model-to-text transformations. This
plug-in implements the MOFScript language which was one of the
candidates in the OMG Request For Proposal (RFP) process for MOF
Model-to-Text Transformation [77]. Such a RFP identifies a set of high-
level requirements that provide a framework for defining a language
that fit the OMG way of thinking and align well with already adopted
OMG specifications. Among such requirements, we note the ability of
generating text from models (M1), specifying transformations based on
metamodels (M2). We have implemented our proposed translation of
state machines to Formula into the MOFScript language, resulting in an
only set of MOFScript transformation files. Such transformations are
based on the MOF M2 metamodel of UML State Machines, so that we
are able to generate text (Formula specifications) from MOF M1-based
models (state machines representing guidelines). The Eclipse plug-in
that we defined in [57] includes such a set of transformation files and
uses the MOFScript plug-in to execute them, so that a state machine can
be automatically translated into the corresponding Formula specifica-
tion. More specifically, firstly, the state machine model is created using
any UML 2.0 compliant tool able to create models in the XMI format
supported by EMF (such as UML2 Eclipse plug-in [78], or a graphical
tool such as Borland Together Modeling tool [79]). The transformations
defined in MOFScript traverse this input model and automatically
generate the Formula specification.

As for the MOFScript transformations, in [57] we defined a main
transformation (main.m2t) devoted to generate the final Formula
specification file (FormulaSpecificationsSM.4ml) by invoking
specific rules from the rest of the transformation files. This main
transformation had a main rule which executed another three rules.
First, the createNonContextDependentUnits rule created the
MetaLevel and the InstanceLevel domain units, that is, the Formula units
common to the translation of all guidelines. Second, the get-
StatesTransitionsPseudostates rule constituted the corner-
stone rule of the transformation since it traversed the overall state
machine looking for its content (states, transitions and pseudostates).
Finally, the createContextDependentUnits rule used the in-
formation gathered by the previous rule to create the guideline-de-
pendent Formula units (that is, the StateMachine, the StateMachineIn-
stance and the Execution (partial) models).

Starting from the plug-in presented in [57], we have developed a
second version to adapt it to the improvement suggestions made to the
state machine to Formula transformation patterns described previously.
Briefly speaking, we have mainly modified the definition of the rule
createNonContextDependentUnits to include all the suggested
changes, so that it generates: (1) the Formula rules described in lines
from 7 to 9 in Fig. 11 as established in the new proposal, (2) the new
Formula rule of line 10 in Fig. 11 that allows Formula to generate
StateConfiguration entries referring to states reachable from choice
pseudostates, (3) the new Formula type ChoiceGuardVariable,
which allows us to represent guard condition values, and (4) the new
Formula done query.

Finally, the defined MOFScript transformations have been in-
tegrated into another Eclipse plug-in so that the automatic

transformation from a guideline’s state machine to Formula can be
performed from a menu item the plug-in provides. We have also im-
proved this plug-in so that, by choosing such a menu, a GUI interface is
dynamically created asking the user for the required value n of the
Bound term in the Execution partial model. In particular, the inserted
value is used to automatically generate such partial model with the
Bound term, and as many Trigger terms as stated by such a value.
Thus, once translation has been completed, the plug-in creates a file
with the .4ml extension which includes all the Formula units con-
stituting the Formula specification of the guideline.

7. Specification of requirements

Considering our two proposals for the verification of clinical
guidelines based on model checking (SPIN) and model finding
(Formula), respectively, and taking into account our extended hier-
archy of Property specification patterns, we have analyzed the support
each proposal provides for properties verification. More specifically, we
have analyzed our extended hierarchy of patterns, looking for those
properties which can be verified using one or another proposal. As a
result, we can state that our previous SPIN-based approach is able to
check properties conforming to most of the patterns (considering also
the ones included in our extended patterns hierarchy), with the ex-
ception of properties conforming to the patterns: Everywhere eventually,
Always eventually, Liveness reachability and Temporal implication (which
can only be specified in CTL). Here is where our Formula proposal takes
action, providing us with a way to verify such a type of properties. From
now on, we will refer to properties conforming to such patterns as se-
lected existential properties.

As for the verification of properties using Formula, we would like to
note that, since this language does not provide us with temporal logic
constructors (in particular, CTL constructors), the verification of tem-
poral properties in Formula is not as straightforward as with our pre-
vious SPIN-based proposal where the properties to be verified where
directly represented by LTL formulas (LTL is just the input language of
SPIN for specifying the properties to be verified). Thus, to verify
properties in Formula, in particular, the selected existential properties
listed previously, we need to provide with a proposal to specify such
CTL constructors in Formula. We would like to note that in our proposal
we have considered that each proposition variable in a CTL formula
(such as p, q, etc) refers to states. For example, the formula AFp would
refer to the fact that “the state p will always eventually happen, no
matter what execution path is taken”. For this reason, from now on,
when using the CTL formulas of the chosen patterns, we consider each
proposition variable appearing in such formulas to be a state of the
concrete guideline’s state machine (that is, a state an object can go
through during its lifetime). Next, we provide the main ideas behind the
specification in Formula of the selected existential properties, and go on
to describe our concrete proposal.

7.1. Ideas behind our proposal

Taking into account the Formula structural elements, we use queries
to represent CTL formulas. Thus, the key idea behind our proposal is
based on the semantics of Formula queries, both existential quantifica-
tion and universal quantification. The chosen quantification strategy
would allow us to represent a concrete type of property. More specifi-
cally, based on our proposal for the Formula specification of guidelines,
we would like to make the following remarks leaning on Table 7:

• Existential quantification. It refers to the natural semantics of queries,
that is, a query is true iff the right hand side of the definition is true
for some substitution. We can use it to prove the existence of a
guideline trace where a specific fact is hold. Checking an existential
quantification query can result in two different results: (1) a concrete
trace verifying the existence of a specific fact (that is, the trace

B. Pérez Journal of Biomedical Informatics 92 (2019) 103134

17



includes a concrete state), or (2) unsatisfiable, if it is not possible to
find a trace that satisfies such a specific fact. When using this
quantification type, we say that we follow an optimistic strategy,
since the query represents a valid situation (the desired specific fact),
looking for success (a concrete trace).
• Universal quantification. We can use it to prove that a specific fact is
verified in all traces of a guideline. As advanced previously, the
universal quantification in Formula can be achieved by verifying the
negation of a query representing the opposite of the original fact. In
this case, the results are just the opposite than in the previous case:
(1) unsatisfiable, if all traces in the guideline verify the original fact,
or (2) a concrete trace verifying the negation of the original fact,
which would prove that the original fact (not negated) does not hold
in at least one trace. When using this quantification type, we say
that we follow a pessimistic strategy, since the query represents a
forbidden situation (the negation of the original fact), looking for
failure (unsatisfiable).

Regarding the definition of the Formula queries, since the CTL for-
mulas refer to system executions (that is, guideline’s execution traces
or, in other words, sequences of state configurations), taking into ac-
count our proposal for the Formula specification of guidelines, we re-
present such traces basically in terms of the StateConfiguration
data type (defined in the InstanceLevel domain). Thus, the queries are
defined also in such a model. A generic state configuration that takes
place in a concrete moment t would be represented as
StateConfiguration(t,_,_), where each of the remaining two ele-
ments in the definition of the StateConfiguration data type are fresh
variables (represented by the unknown _ symbol).

Taking this into account, next, we describe the formalization of the
selected existential properties in Formula. In particular, we present in
detail the final Formula specification of such properties. These Formula
specifications use generic predicates in their definition (such as p or q)
which would just need to be substituted by the desired fact (a state as
noted previously). Although the formalization in Formula of these
properties has been obtained after performing a more complex process,
here we do not delve into detail about such a process but we describe
the final Formula statements (from now on Formula Property specifica-
tion patterns). This is mainly because the final user only needs to apply
such Formula patterns to the concrete Property desired to be verified.
We refer to the supplementary material [80] for a complete description
of such a process.

7.2. Translation to Formula of the selected existential properties

Translations of selected existential properties from CTL to Formula
Property specification patterns are presented in Tables 8 and 9. Next,
we describe them in detail, illustrating our explanations by means of
the verification of concrete properties (example properties) defined
within the AP guideline context.

Everywhere eventually. Since this Property refers to a CTL universal
modality (for all paths A, eventually F), we have adopted a universal-
pessimistic strategy, defining a query q1 that represents the negation of
the fact given by p (that is, a forbidden state), aimed at obtaining un-
satisfiable as result (see Table 7). More specifically, as presented in
Table 8, the defined query aims at finding a sequence of state config-
urations where the state represented by p is never reached (note the use
of the Formula term fail). Finally, such a query is directly included in

the conforms query. Given the semantics of Formula queries, the
verification of this query in Formula would result in (1) unsatisfiable,
which means that there is no guideline’s application which does not go
through the state given by p (which would prove the AFp property), or
(2) a sequence of state configurations representing a guideline’s appli-
cation where the object go through the state given by p (which would
prove that the Property is not true). This translation is illustrated by the
following example property.

Example Property 1. This Property formalizes the restriction “no
matter what guideline’s application path is taken, the aliquot is al-
ways eventually placed into racks and registered (state
InRackAndBeingRegisteredS4)”. More specifically, the application of
our pattern in Table 8 basically consists of defining a query re-
presenting the fact that the state InRackAndBeingRegisteredS4 is
never possible. Thus, Formula would try to generate a sequence of
state configurations that does not include the state InRack-
AndBeingRegisteredS4. Finally, the verification of this Property in
Formula would result in the execution trace labeled as (a) in Fig. 2,
showing that the Property is not satisfied by the AP guideline.

Example Property 1

CTL: AF InRackAndBeingRegisteredS4
Formula: q1≔ fail StateConfiguration(t,StateInstance(“InRackAnd-

BeingRegisteredS4”,_),_),
Bound(end),t < end.

conforms≔ …& q1.

At this point, a special remark could be made regarding the use of
the optimistic strategy for the representation in Formula of CTL prop-
erties. As an example, although not being a selected existential property,
we will use the Possible existence pattern that refers to properties di-
rectly related to the existence of at least one path in the system ex-
ecution in which some condition must hold. More specifically, this
pattern (represented in CTL as EFp) refers to that “it is possible for p to
happen, that is, there is a path (E), along which eventually (F) p oc-
curs”. We would like to note that, in contrast to AFp, to prove this
Property we need to represent the existence of a path along which the
state p eventually occurs, but there could be a path where the state p
does not occur. Taking this into account, for the specification in
Formula of this pattern we follow an optimistic strategy and consider the
existential quantification characteristic of queries, trying to find a se-
quence of state configurations where it is possible for the state p to take
place. More specifically, the representation in Formula of this pattern
results in the definition of the following query, included in the con-
forms one: q1≔ StateConfiguration(t,StateInstance

Table 7
Use of Formula queries in our proposal.

Quantification Strategy Queries represent Looking for Desired result

Existence Optimistic Valid states Success A trace
Universal Pessimistic Forbidden states Failure Unsatisfiable

Table 8
Translation of the Everywhere eventually and Always eventually patterns.

Everywhere eventually

Description: The state p will always eventually happen, no matter what
execution path is taken.

CTL: AFp
Formula: q1≔fail StateConfiguration(t,StateInstance(p,_),_),

Bound(end), t < end.
conforms≔ …& q1.

Always eventually
Description: No matter where in the system execution we are, the state p will

always eventually happen.
CTL: AG(AFp)
Formula: q1≔ StateConfiguration(t,_,_),

fail StateConfiguration(tn,StateInstance(p,_),_),
Bound(end), t < tn, tn < end.

conforms≔ …& q1.

B. Pérez Journal of Biomedical Informatics 92 (2019) 103134

18



(p,_),_), Bound(end), t < end. If the verification of this query
results in a concrete trace, it would correspond to a sequence of state
configurations where the object achieves the state p. If the result is
unsatisfiable, the formula will be false. Later, in Section 8, we show the
verification of a Possible existence Property applied to our case study.

Always eventually. This pattern, represented in CTL as AG(AFp),
could also be read as “for all computations (A), and for all states in it
(G), from all paths from that state (A), eventually (F) p is true”. Again,
since this Property follows a CTL universal modality, for its translation
to Formula we have followed similar ideas than with the Everywhere
eventually pattern (see Table 8). In particular, in this case, if the ver-
ification of the defined query q1 results in a specific trace, then the
Property would be false since such a trace would correspond to a se-
quence of state configurations where p never happens (fail State-
Configuration(tn,StateInstance(p,_),_)). If Formula shows
that the model is unsatisfiable, the Property would have been proven.

Liveness reachability. This pattern (represented in CTL as AG(EFp))
states that “for all computations (A), and for all states in it (G), there is a
path (E) along which eventually (F) p occurs”. We will describe the
main ideas of the translation of this pattern by using the following
Property (from now on Example Property 2).

Example Property 2. This Property aims at verifying the fact that “no
matter where in the guideline’s application process we are, the
cancellation of the aliquoting process will eventually become pos-
sible”, that is, “from any state during the application of the guideline
to an aliquot, it is eventually possible for the aliquot to get the state
CancelledS6.”

Example Property 2

CTL: AG(EF CancelledS6)
Formula: q1≔ StateConfiguration(t,_,_),

fail StateConfiguration(tn,StateInstance(“Cancell-
edS6”,_),_),

Bound(end), t < tn, tn < end.
q2≔ StateConfiguration(t,src,_), src.name!= Final,

fail StateConfiguration(tm,PseudostateInstance(_,P-
seudostate(_,choice)),_),

Bound(end), t < tm, tm < end.
conforms≔ …& q1 & q2.

For the representation in Formula of this pattern, we have followed
a universal-pessimistic strategy which consists of trying to find a

sequence of state configurations which verifies the negation of the
Property AG(EFp), that is, a sequence of state configurations where is
not possible for p to take place. Thus, the lack of such a sequence would
show that the Property is true for all sequence of state configurations.
For such a task, we represent in Formula the negation of the property,
and later, we use Formula to check it on the model.

More specifically, first, we define a query q1 ((see Table 8)) which
states that “at any time during the system’s execution (StateConfi-
guration(t,_,_)), the object never achieves the p state (fail
stateConfiguration(tn,StateInstance(p,_),_)). That is, this
query represents a sequence of state configurations (traces) where p
does not take place (note the term fail in the definition of q1). By
verifying such a query in the conforms statement, we aim at obtaining
traces where p does not become possible.

Example Property 2. By verifying query q1 defined for this property,
we could get sequences of configurations such as (1) the one con-
taining state ReadyToBeAliquotedS1 to the final state (execution
trace labeled as (a) in Fig. 2) (from now on sequence seq1), or (2) a
sequence containing the state AliquotedS5, which also ends in a final
state, without entering the state CancelledS6 (for example, the ex-
ecution trace labeled as (c) in Fig. 2) (from now on seq2). It is worth
noting that both sequence of configurations are different since seq1
contains the state ReadyToBeAliquotedS1 from which, if taken tran-
sition t1b, it could be possible to reach the state CancelledS6, because
of the choice pseudostate. However, seq2 contains state AliquotedS5,
but from this state is not possible to achieve the state CancelledS6.

Since the verification of this query could lead to two different types
of traces, it is required to dismiss those which correspond to traces
containing states which, taken other paths in the system’s execution,
could lead to the desired state p (such as sequences of type seq1 in our
example). For such a task, second, we define another query q2 which
aims at resulting in sequences of configurations with states which do
not lead to choice pseudostates. Finally, by verifying both q1 and q2
(see Table 9) we aim at finding any trace which both does not end the
required state p, and which have an state from which it is not possible
to reach the required state by taking any other path. The existence of
such a trace would demonstrate that the Property AG(EFp) is not sa-
tisfied by the model, unlike obtaining an unsatisfiable model which
would show that the Property is true.

Example Property 2. The result of verifying the query q2, defined for
this property, would result in the trace labeled as (c) in Fig. 2.

Table 9
Translation of the Liveness patterns.

Liveness reachability

Description: At any time during the execution of the system, the state p will eventually become possible.
CTL: AG(EFp)
Formula: q1≔ StateConfiguration(t,_,_),

fail StateConfiguration(tn,StateInstance(p,_),_),
Bound(end), t < tn, tn < end.

q2≔ StateConfiguration(t,src,_), src.name!= “Final”,
fail StateConfiguration(tm,PseudostateInstance(_,Pseudostate(_,choice)),_),
Bound(end), t < tm, tm < end.

conforms≔ …& q1 & q2.

Temporal Implication
Description: Whenever the state q holds, there exists an execution path where the state p will eventually be reached.
CTL: AG(q EFp)
Formula: q1≔ StateConfiguration(t,StateInstance(q,_),_),

fail StateConfiguration(tn,StateInstance(p,_),_),
Bound(end), t < tn, tn < end.

q2≔ StateConfiguration(t,StateInstance(q,_),_), q!=“Final”,
fail StateConfiguration(tm,PseudostateInstance(_,Pseudostate(_,choice)),_),
Bound(end), t < tm, tm < end.

conforms≔ …& q1 & q2.

B. Pérez Journal of Biomedical Informatics 92 (2019) 103134

19



Taking into account the verification of q1 and q2 in the conforms
query, we obtain the same trace, which means that there is at least a
state during the guideline’s application where it is not possible for
the aliquot to reach the CancelledS6 state (at any time during the
execution of the guideline, it is not possible for the aliquoting pro-
cess to be cancelled). Thus, proving that the Property is not satisfied.

Temporal implication. Taking into account the translation of the
Liveness reachability pattern, the specification in Formula of the
Temporal implication pattern (AG(q EFp)) results almost straightfor-
ward by substituting, in both queries of the translation of Liveness
reachability (q1 and q2), the undetermined state configuration (that is,
the second parameter in (StateConfiguration(t,_,_) and
StateConfiguration(t,src,_), respectively) by StateInstance
(q,_).

8. Verification of the AP guideline. Example of application

As an example, in this section we illustrate the usefulness and ef-
fectiveness of our Formula-based approach by applying it to our par-
ticular case study (the translation and verification of the two AP
guideline’s requirements shown in the previous section could also be
considered as part of this evaluation). Here, we present the verification
process to be followed when using our proposal, together with the re-
sults obtained from verifying different types of requirements in the AP
guideline. More specifically, during the verification process of the AP
guideline we have proven not only requirements not being able to check
using our previous proposal based on SPIN (i.e., a Liveness property), but
also several types of requirements we considered useful to be verified in
guidelines in general. Next, we describe our experiences and lessons
learned.

Step 1. We have started from the state machine model of the AP
guideline of Fig. 2. We have created it by using the UML2 Eclipse plug-in
[78], obtaining a .uml2 extension file. Having the resulting state ma-
chine model, we have firstly flattened it and then translated it into the
input specification language of the formula tool using our Eclipse plug-
in. Given the size of the state machine, with a small number of possible
transitions to be executed, we have chosen 10 as value of the n para-
meter in the Bound term. As a result, we have obtained a .4ml ex-
tension file with 153 lines.

Steps 2 and 3. The verification concerns we have proven on the
guideline are organized based on the three main scenarios described for
Formula: Consistency checking, Synthesis, and Design space exploration
(the previous two properties would match the Synthesis scenario).

• Consistency checking. Thanks to the verification of the done query
included in our InstanceLevel domain, our proposal method allows us
to make sure that the defined guideline specification is satisfiable,
that is, that exists at least a valid execution trace that reaches a final
state at some point. More specifically, there is a sequence of state
configurations an aliquot can go through during its life as the
guideline is applied ending in a final state. After executing Formula
with the specification file resulting from the previous step, it outputs
a chain of StateConfiguration facts referring to a finished
guideline’s application reaching a final state. More specifically,
Formula returns the execution trace labeled (a) in Fig. 2. We note
that this done query is always included in the conforms query of
the InstanceLevel domain to ensure that Formula returns valid traces.
We also want to note that defining a query similar to done with any
configuration state other than the final one would result, if exists, in
an execution trace reaching such a state just once.
• Synthesis: here we show the verification of several verification con-
cerns that match with this scenario (that is, we have proven the
existence or not of valid execution traces verifying a certain concern

on a guideline). Next, we show three different situations: (1)
checking a requirement that could not be verified with our previous
proposal [6], (2) checking a type of Property we verified in [6] by
using our previous proposal to show that there are situations to be
checked by using both proposals, and (3) proving whether there
exists a guideline application which complies with specific custo-
mized partial Formula statements.
1. One of our main goals was to address the shortcomings of our

previous, in particular, by checking commonly used properties
such as the ones included in the Liveness pattern (in particular,
the Liveness reachability subpattern, since neither this formula nor
its negation are represented in LTL). In the previous section, we
have described the Formula translation of Example Property 2
AG(EF CancelledS6), aimed at verifying the fact that at any
time during the guideline to an aliquot, the cancellation of the
aliquoting process (represented by the state CancelledS6) will
eventually become possible. We have verified this property,
showing that it is not satisfied.

2. In the second case, we show the verification of a Property of type
Possible existence, which aims to verify whether “it is possible for
something to happen, that is, a Property may hold in some paths
but not all the paths of the execution [6].” This type of Property
can not be directly represented in the LTL language, but SPIN can
be used to check them by means of verifying the negation of the
LTL property. In particular, in [6] we showed the verification of a
Possible existence Property which required us to perform several
steps (defining in LTL the negation of the property, generating
the corresponding “never claim” formula [8], using SPIN to prove
such a formula, and interpreting the resulting counterexample
showing the existence of at least one guideline application in
which the positive Property is hold). Here, we show how we can
also verify this type of properties in an easy way by using our
Formula-based proposal. In particular, we have proven whether,
given an aliquot in a specific state (ReadyToBeAliquotedS1) there
exists at least a guideline application which leads to a specific
aliquot’s state (AliquotedS5). We have defined the Formula query
q representing this Property (again, we have included the defined
query in the conforms query of the InstanceLevel domain):

q≔ StateConfiguration(t,S_S1,_),
StateConfiguration(tn,S_S5,_),
Bound(end),t < tn, tn < end.

conforms≔ …& q.

Formula has returned the trace labeled (c) in Fig. 2, representing
a guideline’s execution where, having been the aliquot in the
state ReadyToBeAliquotedS1, the aliquot’s state leads to Aliquo-
tedS5. We note that we can also prove this Property obtaining
similar results, by using the following formula based on the fail
Formula element.

q’≔ StateConfiguration(t,S_S1,_),
fail StateConfiguration(tn,S_S5,_),
Bound(end), t < tn, tn < end.

conforms≔ …&!q’.

3. In the third case, we have simulated the situation in which a
sample is being aliquoted, but the guideline’s application is not
yet finished, and thus, we have a portion of an execution trace
(for example, the trace from the initial state to the
InFillingProcessS2 state). Taking this into account, we have proven
if, considering such a guideline’s application, it is possible to
successfully finish the aliquoting process. More specifically, we

B. Pérez Journal of Biomedical Informatics 92 (2019) 103134

20



have included in the Execution partial model the corresponding
Trigger partial statements, including the transition instances
conforming to the portion of the trace:

Trigger(0, t0)
Trigger(1, t1)
Trigger(2, t1b)

The previous statements mean that, if t0 has taken place, the
aliquot has gone from the initial state to the
ReadyToBeAliquotedS1 state, while if t1 and t1b have taken
place, the aliquot has arrived the InFillingProcessS2 state). We
have also included in the InstanceLevel domain the following
query to force Formula to return a trace where the aliquoting
process is successfully finished (AliquotedS5):

q≔ StateConfiguration(t,S_S5,_),
Bound(end),t < end.

conforms≔ …& q.

After executing Formula, the tool has searched a execution trace
which includes not only the two state configurations corre-
sponding to the stay in both states (that is, ReadyToBeAliquotedS1
and InFillingProcessS2), but also a set of subsequent configuration
states referring to valid states until achieving AliquotedS5. Thus,
the results show that there exists a possible set of states reaching
the final aliquoting of the sample (in particular Formula shows
again the trace labeled as (c) in Fig. 2).

• Design space exploration. The guideline’s Formula specification can
be used to inspect the clinical guideline represented by the state
machine, to search for conforming execution traces and choose
those which satisfy the desired verification concerns. We note that our
previous proposal based on the SPIN model checker did not provide
us with this possibility. As an example of this scenario, we have used
Formula to obtain several execution traces referring to different
guideline’s application achieving the final state (see the Consistency
checking point). More specifically, we have started from the main
Formula file, without including any additional verification concern
(just done), and used Formula to explore the model’s design space,
returning, in particular, the execution traces depicted in the Instance
level of Fig. 2.

9. Discussion

There are several strengths regarding our proposal that we want to
highlight. In this paper, we have presented a formal framework com-
plementary to our previous one in [6] for verifying clinical guidelines,
which mainly addresses the shortcomings of our previous approach. As
a result, both proposals constitute an overall framework where their
complementary use would provide with a more complete verification of
guidelines.

On one hand, the framework presented here shares characteristics
with our previous one in [6]. First, the only two manual steps that must
be performed in both proposals correspond to (1) the representation of
the clinical guideline as a UML state machine (step guided by the re-
presentation patterns presented in [6]), and (2) the specification of the
verification concerns to be checked in the guideline. The remaining steps
are performed automatically in both proposals by using MDD-based
techniques, which makes the process faster and less error-prone.
Second, the extension we provide to our previous Property specification
patterns is, as the hierarchy of patterns provided in [6], general enough
to be used to specify requirements in contexts other than the clinical
one. Finally, we also provide with a tool (implemented in form of an
Eclipse plug-in) by means of which the Formula model is automatically

generated by only selecting the menu item the plug-in provides. Thus, it
allows the verification process to be easily adapted to changes in the
definition of a guideline that was previously verified with our proposal,
since it will only be necessary to manually modify the state machine
which represents the guideline (and therefore the properties defined
from it), being the Formula model automatically generated.

As shown in the previous section, we have demonstrated the feasi-
bility of our proposal by applying it to a guideline chosen for its sim-
plicity, checking on it different types of properties which can provide
useful information regarding everyday guideline applications.
Additionally, our framework has been applied to other real-life guide-
lines aimed at covering other contexts within the medical care system,
and which were used in our previous work in [6], obtaining also en-
couraging results. Such applications include a guideline utilized for the
management of infections related to intravenous catheters (IRC) (used
in a Spanish hospital and developed on the basis of a guideline pub-
lished by the US Agency for Health Care Research (AHCR) and Quality
National Guideline Clearinghouse (NGC)), and a guideline for the
management of obesity in primary care, also published by the NGC.

On the other hand, although we have applied our verification ap-
proach to different guidelines obtaining encouraging results, we have to
recognize that there are certain limitations to the presented work. Here,
we touch upon several of these issues. Firstly, as described previously,
the specification of patterns in Formula is not as straightforward as in
our previous proposal since it requires to translate the CTL-based re-
presentation of the chosen pattern into Formula (while with SPIN we
can use the LTL rule provided by the pattern). However, we think that
this shortcoming is somewhat attenuated by our proposal for the
translation of our Property patterns to Formula (in particular, selected
existential properties, which have mainly motivated this work), which
help non-experts in the specification language of the Formula tool to
easily write the formal specifications of such properties (thus easing the
verification process). Second, our approach for the translation of
guidelines represented by state machines into the Formula language
specification does not currently support several UML State Machine
elements (such as guard variables, or pseudostates other than initial and
choice). More specifically, our proposal allows us to register the guard
condition satisfied when a choice element in the state machine is found,
but does not allow us to represent the logical expressions constituting
such guards and, thus, what variable values make the guard condition
satisfied. For this reason, we can not define requirements based on such
variables. Therefore, in the near future we plan to extend our approach
in order to support such elements. Third, among the guideline cate-
gorization provided by the US Agency for Health Care Research (AHCR)
[81], the guidelines used for showing the feasibility of our proposal
cover a wide range such as management, diagnosis, treatment or pre-
vention, but the application of our proposal the other categories (such
as counselling) constitutes an interesting line of further work.

10. Related work

Since the work we have presented in this paper covers different
though related topics, next we compare our proposal to relevant related
work regarding two criteria related to (1) techniques for the verification
of clinical guidelines, focusing mainly on those based on CLP, and (2)
verification of systems based on model finders.

10.1. Techniques for the verification of clinical guidelines

Validation and verification play a key step in clinical guidelines’
life-cycle since they contribute to decreasing errors and increasing the
quality and safety of both clinical guidelines and their implementation
into useful decision support systems. Although the terms validation and
verification are not clearly differentiated when referring to clinical
guidelines, we adopt the definitions considered by Peleg in [31]. More
specifically, validation refers to a process which aims at establishing that

B. Pérez Journal of Biomedical Informatics 92 (2019) 103134

21



the guideline’s requirements are captured in its specification. In con-
trast, verification concerns mathematical proof that an implementation
meets its formal specification. Additionally, we would like to include
critiquing that, although it is not directly related to validation and
verification, it employs similar methods at the other two approaches
and therefore it is interesting for the presented work. More specifically,
critiquing aims at comparing actual clinical actions performed by a
physician with a predefined “ideal” set of actions suggested by a
guideline in order to identify various types of non-compliance (for ex-
ample, actions unsupported by patient findings, conflicting actions or
missing mandatory actions) [32,35]. Thus, it is used when a guideline is
being applied to a patient.

Validation and verification. In [31] Peleg presents a methodological
review of Computer-interpretable clinical guidelines, providing, in
particular, an overview of different techniques of validation, which in-
clude inspection, testing, and verification, where three categories of
techniques are identified; the first and second categories are related to
the verification of a guideline, while the third one concerns checking
inconsistencies between guidelines. More specifically, the first category
deals with proving that the guideline specification is internally con-
sistent and free of anomalies. The second category aims at proving that
the guideline specification satisfies a set of desired properties. Finally,
the third category focuses on identifying conflicts in pairs of guidelines.

Our proposal could be considered to be within the two first ver-
ification categories since it allows both the detection of anomalies
within the guideline specification and the verification of satisfying
properties. There are several works which have been published in the
literature concerning the verification of guidelines since our previous
proposal. Among those which use CLP as ours, we cite the work by
Mather et al. [36] as the most similar to our proposal. In [36] authors
present a work, still under development, which consists of a clinical
decision support system called ATTENTION for synthesizing and
managing longitudinal treatment plans. More specifically, ATTENTION
aims to combine state-of-the-art formal modeling and constraint solving
with clinical information systems to synthesize complex cancer treat-
ment plans that are also executable. Similarly to our work, they aim to
use Formula, and thus CLP, to represent the guideline’s models so that
Formula facilitates (1) checking the well-formedness of guideline
models, (2) representing their execution semantics, (3) generating ex-
ecutable (patient specific) guideline instances, and execution traces and
(4) verification of invariants. One of the main drawbacks of that work is
that, although it seems promising, several of the components they de-
scribe are presented to be still under development (and it seems that
there have not been current publications of the work). But another
shortcoming that distinguishes this work from ours is the fact that they
represent each state in an over simplified way by means of three ele-
ments: a drug ontology, a set of patient records and pharmacy data.
From our point of view, this way of representation is not suitable to be
applied to any kind of state included in a guideline (for example, those
states that can not be represented by concrete values of such three
elements). Our proposal for personalization and customization of states,
assigning a name per each state (as we established in our patterns to
represent guidelines as state machines [13]), can be used to represent
any kind of guideline’s state. Although, we could also introduce an
associative memory or repository that would provide relevant data for a
given state in our proposal, we have not considered such a richer de-
scription of states as it is not necessary for verification.

Other proposal which uses CLP for guidelines’ verification is the
extensive work presented by Wilk et al. [32–34], which uses CLP to
identify conflicts in pairs of guidelines (thus this work is included in the
third category identified by Peleg [31]). More specifically, CLP is used
to mitigate adverse interactions that could occur when two concurrency
guidelines are applied to a patient with comorbid diseases. Although
having a different goal than ours, both share several similarities. Their
mitigation algorithm starts with each CPG being transformed by per-
forming several steps into a set of the constraints that make up a

constraint programing (CP) model. Subsequently, the individual CP
models are solved in such a way that they define a solution as a set of
variable/value pairs satisfying the constraints. Finally, the solutions are
parsed for potential contradictions looking for a feasible combined
therapy. As CP system they use the open source tool ECLiPSe for solving
the CP models of the guidelines [34].

Critiquing. Several critiquing proposals have been presented in the
literature. An example is [35,82], where the authors use model
checking to check guidelines, represented as state transition systems,
against a set of temporal logic formulas which describe actual actions
derived from real world patient data. The main difference between our
approach an these works is that, since they are based on critiquing, they
focus mainly on comparing clinical actions performed by a physician
(thus, using available patient data as input information) with a pre-
defined set of actions as described by a clinical guideline. Our second
scenario synthesis, and in particular, the use of customized partial For-
mula statements, could be considered similar to this work.

10.2. Systems verification based on model finders

Our work relies on the use of the Formula tool for guidelines’ ver-
ification. Regarding the use of Formula instead of other analyzers, in
particular, the Formula authors presented in [65] a comparison with
other tools, both SAT (Boolean Satisfiability) solvers and alternatives
such as ECLiPSE and UMLtoCSP, focusing mainly on Alloy [83–85],
since it is the closest tool to Formula. Although the Formula authors
provided a careful comparison with Alloy, it is worth highlighting the
strengths of Formula, in contrast to Alloy, which presents distinctive
strengths compared to other similar tools, including better expressive-
ness. We do not delve into more details regarding such a comparison
but a description can be seen in [65].

11. Conclusion

In this paper we present a revision and extension of the proposal we
gave in [6]. The most significant contributions of this research paper
are the following. First, we provide a more complete set of patterns for
defining commonly occurring types of requirements in guidelines.
Second, we give support for the verification of a wider range of pat-
terns, by combining the use of our previous proposal based on the SPIN
model checker, with the Formula model finder. In particular, our pro-
posal based on the use of Formula mainly addresses the shortcomings of
our previous approach, while providing additional verification func-
tionalities. Particularly, we have presented a guideline’s state machine
to Formula transformation proposal and defined an Eclipse plug-in
based on MDD for automatically generating the comprehensive For-
mula specification required by the Formula model finder to carry out
the verification process on the guideline. Our proposal also allows the
verification of properties conforming to the selected existential patterns,
and supports translation of such patterns to Formula, thus helping non
experts in their formal specification. Depending on the requirement to
be verified, the user can chose between using either the SPIN model
checker proposal or the Formula model finder approach. We want also
to note that, although our proposal is presented specifically to be used
with guidelines, it can be applied to other systems in other contexts,
provided that the system is represented as a state machine.

Conflict of interest

The author declared that there is no conflict of interest.

Acknowledgements

This research was funded by the Spanish Ministry of Economy and
Competitiveness, project number EDU2016-79838-P.

B. Pérez Journal of Biomedical Informatics 92 (2019) 103134

22



Appendix A. Main ideas regarding the use of property
specification patterns

Next, we provide an overview of the key ideas regarding the use of
Property specification patterns as stated by the Dwyer et al. in
[18,86,52]. A Property specification pattern is referred to as “a general-
ized description of a commonly occurring requirement on the permis-
sible state/event sequences in a finite-state model of a system” [86].
The idea behind a Property specification pattern is that it “describes the
essential structure of some aspect of a system’s behavior and provides
expressions of this behavior in a range of common formalisms” [52].
Each pattern “should be described in a form that can be understood by
practitioners so that they can identify similar requirements in their
systems, select patterns that address those requirements, and instantiate
solutions that embody those patterns” [86].

In this paper, we start from the hierarchy of patterns we previously
established in [6], and which has been extended by the set of patterns
and subpatterns included in the revision presented in this paper (which
is described in Section 3). On the one hand, the concrete LTL and CTL
formulas of the patterns obtained from Dwyer et al. and from Ryndina
et al. can be consulted in [18,52,20] respectively. On the other hand, in
[6] the reader can find the formulas corresponding to the new patterns
we proposed previously, while the formulas of the patterns and sub-
patterns provided in the presented work can be seen in Section 3. We
would like to note that, independently of the source (Dwyer et al.,
Ryndina et al., or our patterns), to make our patterns easier to use, all
the patterns come with descriptions that aim at illustrating HOW to
map well-understood, but imprecise, conceptions of system behavior
[52] (guidelines’ application in our case) formulated by non-experts in
a specification language, INTO precise statements in common formal
specification languages [52] (such as LTL and CTL, used in our pro-
posal).

How to find the pattern for the Property desired to be verified. To help
the user to apply the patterns, they are organized into a simple hier-
archy in terms of the different kinds of system behaviors they describe
(distinguishing mainly between occurrence and order), and with links
between related patterns (see Fig. 7). As suggested in [52], a non-expert
should be able to locate the suitable pattern (if not the desired pattern,
at least one close to what she/he wants) by following easy steps:

1. The user starts with the formulation, in natural language, of the
desired Property to be verified in the guideline.

2. Second, the user searches down the hierarchy to the kind of Property
she/he needs. In particular, she/he can look for some specific pat-
terns that sound relevant. For such a task, the user can follow the
overall Property specification patterns presented in Fig. 7 (which
includes the overall hierarchy of patterns proposed in this paper).
More specifically, the user can consult the description (showing the
patterns’ intention) of the overall patterns in [52] (where Dwyer
et al. patterns are presented), at [20] (where Ryndina et al. patterns
are described), and finally in [6] and in this paper (where we in-
clude a description of our proposed patterns). The user can follow
links to related patterns, until the desired pattern, that is, the pattern
whose description better matches the desired Property formulation.

3. When the user finds the desired pattern, she/he can base on the
mappings into the concrete formalisms (LTL, CTL) the pattern pro-
vides, so that she/he can formulate an instance of the pattern which
refers to her/his desired property.

4. Finally, depending on the temporal logic, the user can utilize a
concrete verification tool to finally check the Property in the
guideline. For example, if the Property matches a pattern able to be
represented in LTL formula, the user can utilize our SPIN-based
proposal in [6], while if the Property matches any of the selected
existential patterns, she/he can use the Formula-based proposal
presented in this paper.

As a way of example, let’s follow each of the previous steps by
considering a concrete Property within the case study of the AP guide-
line, in particular, Property 1 described in Section 7.

1. First, let’s suppose that the user has the intention to verify that “no
matter what guideline’s application path is taken, the aliquot is al-
ways eventually placed into racks and registered (state
InRackAndBeingRegisteredS4)”. This Property can equivalently be
read as “for all guideline’s application paths, the aliquot is even-
tually in InRackAndBeingRegisteredS4”.

2. Taking into account the hierarchy of patterns, this Property clearly
corresponds to an Occurrence pattern. Thus, we search down the
hierarchy of patterns looking for these which sound relevant (we
can rely on Fig. 7 to identify the source where we can find the de-
scription of each pattern, that is, either Dwyer et al. [52], Ryndina
et al. [20], etc.). More specifically, since the Property refers to the
reachability (or the existence) of certain system states, we focus on
such a pattern. Among its subpatterns, we can dismiss all but the
everywhere existence, chosen as our desired pattern.

3. As shown in Fig. 7, this pattern was proposed by Ryndina et al. [20].
Additionally, it provides a mapping to CTL (it is not supported in
LTL) as AFp. Thus, the formulation of our Property 1 into CTL would
be AF InRackAndBeingRegisteredS4.

4. Finally, as described in Section 7, we can use our proposal to obtain
the Formula expression corresponding to such a property. We just
need to substitute p by InRackAndBeingRegisteredS4 in the
Formula specification pattern of Table 8. Finally, the resulting For-
mula expression can be included in the guideline’s Formula speci-
fication to check whether the guideline verifies it.

References

[1] Institute of Medicine, Guidelines for Clinical Practice: from Development to Use,
National Academy Press, Washington, D.C., 1992.

[2] C. Papadopoulos, The development of Canadian clinical practice guidelines: a lit-
erature review and synthesis of findings, J. Can. Chiropr. Assoc. 47 (1) (2003)
39–57.

[3] L. Giordano, P. Terenziani, A. Bottrighi, S. Montani, L. Donzella, Model checking for
clinical guidelines: an agent-based approach, AMIA Annual Symposium
Proceedings, 2006, pp. 289–293.

[4] A. ten Teije, M. Marcos, M. Balser, J. van Croonenborg, C. Duelli, F. van Harmelen,
P.J.F. Lucas, S. Miksch, W. Reif, K. Rosenbrand, A. Seyfang, Improving medical
protocols by formal methods, Artif. Intell. Med. 36 (3) (2006) 193–209.

[5] National Health and Medical Research Council, A guide to the development, im-
plementation and evaluation of clinical practice guidelines, in: Canberra: NHMRC,
1998. Available at:< https://www.health.qld.gov.au/__data/assets/pdf_file/0029/
143696/nhmrc_clinprgde.pdf> .

[6] B. Pérez, I. Porres, Authoring and verification of clinical guidelines: a model driven
approach, J. Biomed. Inform. 43 (4) (2010) 520–536.

[7] OMG, UML 2.4.1 Superstructure Specification, document formal/2011-08-06,
August, 2012. Available at:< http://www.omg.org/> (last visited on February
2019).

[8] SPIN and PROMELA reference manual, website:< http://spinroot.com/spin/
whatispin.html> (last visited on February 2019).

[9] J. Joxan, M.J. Maher, Constraint logic programming: a survey, J. Logic Program.
19/20 (1994) 503–581.

[10] FORMULA – Modeling Foundations, website:< http://research.microsoft.com/en-
us/projects/formula/> (last visited on February 2019).

[11] J.A. Casasnovas, V. Alcaide, F. Civeira, E. Guallar, B. Ibañez, J.J. Borreguero,
M. Laclaustra, M. León, J.L. Peñalvo, J.M. Ordovás, M. Pocovi, G. Sanz, V. Fuster,
Aragon workers’ health study – design and cohort description, BMC Cardiovasc.
Disord. 12 (1) (2012).

[12] E. Domínguez, B. Pérez, A.L. Rubio, M.A. Zapata, J. Lavilla, A. Allué, Occurrence-
oriented design strategy for developing business process monitoring systems, IEEE
Trans. Knowl. Data Eng. 26 (7) (2014) 1749–1762.

[13] I. Porres, E. Domínguez, B. Pérez, A. Rodríguez, M.A. Zapata, A model driven ap-
proach to automate the implementation of clinical guidelines in decision support
systems, in: Proceedings of the 15th Annual IEEE International Conference and
Workshop on the Engineering of Computer Based Systems (ECBS’08), 2008, pp.
210–218.

[14] S. Sen, B. Baudry, D. Precup, Partial model completion in model driven engineering
using constraint logic programming, in: Proceedings of the International Conference
on Applications of Declarative Programming and Knowledge Management
(INAP’07), 2007.

[15] J. Bézivin, Model driven engineering: an emerging technical space, International
Summer School on the Generative and Transformational Techniques in Software

B. Pérez Journal of Biomedical Informatics 92 (2019) 103134

23

http://refhub.elsevier.com/S1532-0464(19)30052-8/h0005
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0005
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0010
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0010
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0010
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0015
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0015
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0015
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0020
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0020
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0020
https://www.health.qld.gov.au/__data/assets/pdf_file/0029/143696/nhmrc_clinprgde.pdf
https://www.health.qld.gov.au/__data/assets/pdf_file/0029/143696/nhmrc_clinprgde.pdf
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0030
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0030
http://www.omg.org/
http://spinroot.com/spin/whatispin.html
http://spinroot.com/spin/whatispin.html
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0045
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0045
http://research.microsoft.com/en-us/projects/formula/
http://research.microsoft.com/en-us/projects/formula/
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0055
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0055
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0055
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0055
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0060
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0060
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0060
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0075
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0075


Engineering (GTTSE’05), Springer-Verlag, 2006, pp. 36–64.
[16] OMG, Meta Object Facility Specification, VERSION 2.5.1, formal/16-11-01, 2016.

Available at:< http://www.omg.org/> (last visited on February 2019).
[17] R.L. Cobleigh, G.S. Avrunin, L.A. Clarke, User guidance for creating precise and

accessible property specifications, Proceedings of the 14th ACM SIGSOFT
International Symposium on Foundations of Software Engineering (SIGSOFT/
FSE’06), ACM, 2006, pp. 208–218.

[18] M.B. Dwyer, G.S. Avrunin, J.C. Corbett, Patterns in property specifications for fi-
nite-state verification, Proceedings of the 21st International Conference on Software
Engineering (ICSE’99), IEEE, 1999, pp. 411–420.

[19] J. Yu, T. Manh, J. Han, Y. Jin, Y. Han, J. Wang, Pattern based property specification
and verification for service composition, Lecture Notes in Computer Science vol.
4255, Springer, 2006.

[20] K. Ryndina, Improving Requirements Engineering: An Enhanced Requirements
Modelling and Analysis Method (Ph.D. thesis), Department of Computer Science,
University of Cape Town, 2005. Available at:< http://pubs.cs.uct.ac.za/archive/
00000201/01/final_ryndina_thesis.pdf> (last visited on February 2019).

[21] K. Ryndina, P.S. Kritzinger, Analysis of structured use case models through model
checking, South Afr. Comput. J. 35 (2005) 84–96.

[22] A. Pnueli, The temporal logic of programs, Proceedings of the 18th Annual
Symposium on Foundations of Computer Science (FOCS’77), vol. 0, IEEE Computer
Society, Los Alamitos, CA, USA, 1977, pp. 46–57.

[23] E.M. Clarke, E.A. Emerson, Design and synthesis of synchronization skeletons using
branching-time temporal logic, Logic of Programs, Lecture Notes in Computer
Science, vol. 131, Springer, 1981, pp. 52–71.

[24] E.M. Clarke, E.A. Emerson, A.P. Sistla, Automatic verification of finite-state con-
current systems using temporal logic specifications, ACM Trans. Program. Lang.
Syst. 8–2 (1986) 244–263.

[25] A. Hommersom, P. Groot, M. Balser, P.J.F. Lucas, Formal methods for verification of
clinical practice guidelines, Computer-based Medical Guidelines and Protocols: A
Primer and Current Trends, Studies in Health Technology and Informatics, vol. 139,
IOS Press, 2008, pp. 63–80.

[26] A. Rutle, F. Rabbi, W. MacCaull, Y. Lamo, A user-friendly tool for model checking
healthcare workflows, in: Proceedings of the Fourth International Conference on
Emerging Ubiquitous Systems and Pervasive Networks (EUSPN’13), 2013, pp.
317–326.

[27] A. Bottrighi, L. Giordano, G. Molino, S. Montani, P. Terenziani, M. Torchio,
Adopting model checking techniques for clinical guidelines verification, Artif.
Intell. Med. 48 (1) (2010) 1–19.

[28] F. Rahman, J.K.F. Bowles, Formal verification of CNL health recommendations,
Proceedings of the Integrated Formal Methods (IFM’17), Lecture Notes in Computer
Science, vol. 10510, Springer International Publishing, 2017, pp. 357–371.

[29] A. Simalatsar, W. You, V. Gotta, N. Widmer, G.D. Micheli, Representation of
medical guidelines with a computer interpretable model, Int. J. Artif. Intell. Tools
23 (3) (2014).

[30] B. Kamsu-Foguem, G. Diallo, C. Foguem, Conceptual graph-based knowledge re-
presentation for supporting reasoning in African traditional medicine, Eng. Appl.
Artif. Intell. 26 (4) (2013) 1348–1365.

[31] M. Peleg, Computer-interpretable clinical guidelines: a methodological review, J.
Biomed. Inform. 46 (4) (2013) 744–763.

[32] S. Wilk, W. Michalowski, M. Michalowski, K. Farion, M.M. Hing, S. Mohapatra,
Mitigation of adverse interactions in pairs of clinical practice guidelines using
constraint logic programming, J. Biomed. Inform. 46 (2) (2013) 341–353.

[33] M. Michalowski, M.M. Hing, S. Wilk, W. Michalowski, K. Farion, A constraint logic
programming approach to identifying inconsistencies in clinical practice guidelines
for patients with comorbidity, Proceedings of the 13th Conference on Artificial
Intelligence in Medicine (AIME’11), Lecture Notes in Computer Science, vol. 6747,
Springer, 2011, pp. 296–301.

[34] S. Wilk, M. Michalowski, W. Michalowski, M. Hing, K. Farion, Reconciling pairs of
concurrently used clinical practice guidelines using Constraint Logic Programming,
AMIA Annual Symposium Proceedings, 2011, pp. 944–953.

[35] P. Groot, A. Hommersom, P. Lucas, R. Merk, A. ten Teije, F. van Harmelen, et al.,
Using model checking for critiquing based on clinical guidelines, Artif. Intell. Med.
46 (1) (2009) 19–36.

[36] J.L. Mathe, J. Sztipanovits, M. Levy, E.K. Jackson, W. Schulte, Cancer treatment
planning: formal methods to the rescue, Proceedings of the 4rd International
Workshop on Software Engineering in Health Care (SEHC’12), IEEE Computer
Society, 2012, pp. 19–25.

[37] B. Moszkowski, A temporal logic for multilevel reasoning about hardware,
Computer 18 (2) (1985) 10–19.

[38] E.M. Clarke, O. Grumberg, K. Hamaguchi, Another look at LTL model checking,
Formal Methods Syst. Des. 10 (1) (1997) 47–71.

[39] J.I. Perna, C. George, Model checking RAISE specifications, Tech. rep., UNU-IIST,
International Institute for Software Technology, 2006. Available at:< http://sedici.
unlp.edu.ar/bitstream/handle/10915/22134/Documento_completo.pdf?
sequence=1> (last visited on February 2019).

[40] E.M. Clarke, I.A. Draghicescu, Expressibility results for linear-time and branching-
time logics, Proceedings of the Linear Time, Branching Time and Partial Order in
Logics and Models for Concurrency, School/Workshop (REX’88), Springer-Verlag,
London, UK, 1988, pp. 428–437.

[41] O. Kupferman, M.Y. Vardi, Relating linear and branching model checking,
Proceedings of the International Conference on Programming Concepts and
Methods (PROCOMET’98), 1998, pp. 304–326.

[42] J.C. Campos, J. Machado, A specification patterns system for discrete event systems
analysis, Int. J. Adv. Rob. Syst. 10 (8) (2013) 315.

[43] P. Drábik, Modular Verification of Biological Systems (Ph.D. thesis), Università di

Pisa. Dipartimento di Informatica, 2011.
[44] E.A. Emerson, C. Lei, Modalities for model checking: branching time logic strikes

back, Sci. Comput. Program. 8 (3) (1987) 275–306.
[45] D. Lehmann, A. Pnueli, J. Stavi, Impartiality, justice and fairness: the ethics of

concurrent termination, Proceedings of the International Colloquium on Automata,
Languages, and Programming (ICALP’81), 1981, pp. 264–277.

[46] M. Maidl, The common fragment of CTL and LTL, Proceedings of the 41st Annual
Symposium on Foundations of Computer Science (FOCS’00), 2000, pp. 643–652.

[47] C. Wang, G.D. Hachtel, F. Somenzi, Abstraction Refinement for Large Scale Model
Checking, Series on Integrated Circuits and Systems, Springer, 2006.

[48] C. Urban, A. Miné, Proving guarantee and recurrence temporal properties by ab-
stract interpretation, Proceedings of the International Workshop on Verification,
Model Checking, and Abstract Interpretation (VMCAI’15), 2015, pp. 190–208.

[49] F. Wolter, M. Wooldridge, Temporal and dynamic logic, J. Indian Counc. Philos.
Res. XXVII (1) (2011) 249–276.

[50] K.J. Turner, Abstraction and analysis of clinical guidance trees, Biomed. Inform. 42
(2) (2009) 237–250.

[51] J.C. Campos, J. Machado, E. Seabra, Property patterns for the formal verification of
automated production systems, Proceedings of the 17th World Congress The
International Federation of Automatic Control (IFAC’08), 2008, pp. 5107–5112.

[52] M.B. Dwyer, G.S. Avrunin, J.C. Corbett., Specification Patterns Website, 2018.
Available at:< http://patterns.projects.cis.ksu.edu/> (last visited on February
2019).

[53] D. Déharbe, Techniques for temporal logic model checking, First Pernambuco
Summer School on Software Engineering (PSSE’04), Lecture Notes in Computer
Science, vol. 3167, 2004, pp. 315–367.

[54] B. Pérez, I. Porres, Reasoning about UML/OCL models using constraint logic pro-
gramming and MDA, Proceedings of the Eighth International Conference on
Software Engineering Advances (ICSEA’13), 2013, pp. 228–233.

[55] B. Pérez, I. Porres, An overall framework for reasoning about UML/OCL models
based on constraint logic programming and MDA, Int. J. Adv. Softw. 7 (1&2) (2014)
370–380.

[56] B. Pérez, I. Porres, Reasoning about UML/OCL class diagrams using constraint logic
programming and formula, Inform. Syst. (2018) 1–26.

[57] B. Pérez, An MDE approach for reasoning about UML state machines based on
constraint logic programming, Proceedings of the Ninth International Conference
on Software Engineering Advances (ICSEA’14), 2014, pp. 34–39.

[58] E.K. Jackson, T. Levendovszky, D. Balasubramanian, Reasoning about metamo-
deling with formal specifications and automatic proofs, Proceedings of the 14th
International Conference of Model Driven Engineering Languages and Systems
(MODELS’11), 2011, pp. 653–667.

[59] E.K. Jackson, T. Levendovszky, D. Balasubramanian, Automatically reasoning about
metamodeling, Softw. Syst. Model. (2013) 1–15.

[60] L. Fribourg, Constraint logic programming applied to model checking, Proceedings
of the International Workshop on Logic Programming Synthesis and Transformation
(LOPSTR’99), Lecture Notes in Computer Science, vol. 1817, Springer, 1999, pp.
30–41.

[61] E. Jackson, W. Schulte, Understanding specification languages through their model
theory, Proceedings of the 17th Monterey conference on Large-Scale Complex IT
Systems: development, operation and management, Lecture Notes in Business
Information Processing, vol. 7539, 2012, pp. 396–415.

[62] L. Momtahan, A Simple Small Model Theorem for Alloy, Tech. Rep. RR-04-11,
Oxford University Computing Laboratory, June 2004.

[63] K. Lausdahl, Enhancing Formal Modelling Tool Support with Increased Automation
(Ph.D. thesis), Aarhus University, 2012.

[64] E.K. Jackson, N. Bjørner, W. Schulte, Canonical regular types, in: Proceedings of the
27th International Conference on Logic Programming, Technical Communication
(ICLP’11), 2011, pp. 73–83.

[65] E.K. Jackson, E. Kang, M. Dahlweid, D. Seifert, T. Santen, Components, platforms
and possibilities: towards generic automation for MDA, in: Proceedings of the 10th
ACM international conference on Embedded software (EMSOFT’10), 2010, pp.
39–48.

[66] D. Harel, Statecharts: a visual formulation for complex systems, Sci. Comput.
Program. 8 (3) (1987) 231–274.

[67] S. Ali, H. Hemmati, N.E. Holt, E. Arisholm, L. Briand, Model Transformations as a
Strategy to Automate Model-Based Testing – A Tool and Industrial Case, Tech. Rep.
2010-01, Simula Research Laboratory, 2010.

[68] X. Devroey, M. Cordy, P.Y. Schobbens, A. Legay, P. Heymans, State machine flat-
tening, a mapping study and tools assessment, in: Proceedings of the IEEE Eighth
International Conference on Software Testing, Verification and Validation
Workshops (ICSTW’15), 2015, pp. 1–8.

[69] R.M. Gregorut, Synthesising Formal Properties from Statechart Test Cases (Ph.D.
thesis), Institute of Mathematics and Statistics, University of Sao Paulo, 2015.

[70] J. Dubrovin, T. Junttila, Symbolic model checking of hierarchical UML state ma-
chines, in: Proceedings of the Eighth International Conference on Application of
Concurrency to System Design, 2008, pp. 108–117.

[71] A. Wasowski, Flattening statecharts without explosions, Proceedings of the ACM
SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for Embedded
Systems (LCTES’04), vol. 39, ACM, 2004, pp. 257–266.

[72] K. Bogdanov, Automated testing of Harel’s statecharts (Ph.D. thesis), Department of
Computer Science, University of Sheffield, 2000.

[73] N.E. Holt, E. Arisholm, L. Briand, An Eclipse Plug-In for the Flattening of
Concurrency and Hierarchy in UML State Machines, Tech. Rep. 2009-06, Simula
Research Laboratory, 2009.

[74] E. Posse, PapyrusRT: modelling and code generation (invited presentation), in:
Proceedings of the International Workshop on Open Source Software for Model

B. Pérez Journal of Biomedical Informatics 92 (2019) 103134

24

http://refhub.elsevier.com/S1532-0464(19)30052-8/h0075
http://www.omg.org/
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0085
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0085
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0085
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0085
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0090
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0090
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0090
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0095
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0095
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0095
http://pubs.cs.uct.ac.za/archive/00000201/01/final_ryndina_thesis.pdf
http://pubs.cs.uct.ac.za/archive/00000201/01/final_ryndina_thesis.pdf
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0105
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0105
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0110
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0110
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0110
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0115
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0115
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0115
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0120
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0120
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0120
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0125
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0125
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0125
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0125
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0135
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0135
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0135
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0140
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0140
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0140
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0145
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0145
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0145
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0150
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0150
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0150
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0155
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0155
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0160
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0160
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0160
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0165
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0165
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0165
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0165
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0165
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0170
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0170
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0170
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0175
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0175
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0175
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0180
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0180
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0180
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0180
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0185
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0185
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0190
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0190
http://sedici.unlp.edu.ar/bitstream/handle/10915/22134/Documento_completo.pdf?sequence=1
http://sedici.unlp.edu.ar/bitstream/handle/10915/22134/Documento_completo.pdf?sequence=1
http://sedici.unlp.edu.ar/bitstream/handle/10915/22134/Documento_completo.pdf?sequence=1
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0200
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0200
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0200
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0200
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0205
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0205
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0205
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0210
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0210
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0220
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0220
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0225
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0225
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0225
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0230
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0230
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0235
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0235
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0240
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0240
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0240
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0245
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0245
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0250
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0250
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0255
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0255
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0255
http://patterns.projects.cis.ksu.edu/
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0265
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0265
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0265
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0270
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0270
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0270
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0275
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0275
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0275
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0280
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0280
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0285
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0285
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0285
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0290
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0290
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0290
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0290
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0295
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0295
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0300
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0300
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0300
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0300
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0305
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0305
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0305
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0305
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0330
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0330
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0355
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0355
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0355


Driven Engineering (OSS4MDE’15), 2015, pp. 54–63.
[75] B. Selic, The pragmatics of model-driven development, IEEE Softw. 20 (5) (2003)

19–25.
[76] MOFScript User Guide, Version 0.9 (MOFScript v 1.4.0), 2006. Available at:<

https://prototizer.com/userfiles/files/MOFScript-User-Guide-0_9.pdf> (last vis-
ited on February 2019).

[77] OMG, Mofscript Second Revised Submission to the MOF Model to Text
Transformation RFP, OMG document ad/2005-11-03. Available at:< http://www.
omg.org/> (last visited on February 2019).

[78] The Eclipse UML2 project, website:< http://www.eclipse.org/modeling/mdt/?
project=uml2> (last visited on February 2019).

[79] Borland Together 2008 Edition for Eclipse, website:< https://supportline.
microfocus.com/documentation/books/Together/2008R4/readme_together.
html> (last visited on February 2019).

[80] Supplementary material. Specification of Requirements. Available at:< https://
www.unirioja.es/cu/beperev/For-mulaSpecificationOfRequirements.html> (last
visited on February 2019).

[81] Agency for Healthcare Research and Quality. National Guideline Clearinghouse.

Available at:< http://www.guideline.gov> (last visited on February 2019).
[82] P. Groot, A. Hommersom, P. Lucas, R. Serban, A. ten Teije, F. van Harmelen, The

role of model checking in critiquing based on clinical guidelines, Proceedings of the
Eleventh European Conference on Artificial Intelligence in Medicine (AIME’07),
Lecture Notes in Computer Science, vol. 4594, Springer, Amsterdam, The
Netherlands, 2007, pp. 411–420.

[83] B. Bordbar, K. Anastasakis, UML2ALLOY: a tool for lightweight modelling of dis-
crete event systems, Proceedings of the IADIS International Conference on Applied
Computing (AC’05), 2005, pp. 209–216.

[84] K. Anastasakis, B. Bordbar, G. Georg, I. Ray, UML2Alloy: a challenging model
transformation, Proceedings of the 10th International Conference on Model Driven
Engineering Languages and Systems (MoDELS’07), Lecture Notes in Computer
Science, vol. 4735, Springer, 2007, pp. 436–450.

[85] D. Jackson, Software Abstractions: Logic, language, and Analysis, MIT Press, 2006.
[86] M.B. Dwyer, G.S. Avrunin, J.C. Corbett, Property specification patterns for finite-

state verification, Proceedings of the Second Workshop on Formal Methods in
Software Practice (FMSP’98), ACM, 1998, pp. 7–15.

B. Pérez Journal of Biomedical Informatics 92 (2019) 103134

25

http://refhub.elsevier.com/S1532-0464(19)30052-8/h0375
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0375
https://prototizer.com/userfiles/files/MOFScript-User-Guide-0_9.pdf
http://www.omg.org/
http://www.omg.org/
http://www.eclipse.org/modeling/mdt/?project=uml2
http://www.eclipse.org/modeling/mdt/?project=uml2
https://supportline.microfocus.com/documentation/books/Together/2008R4/readme_together.html
https://supportline.microfocus.com/documentation/books/Together/2008R4/readme_together.html
https://supportline.microfocus.com/documentation/books/Together/2008R4/readme_together.html
https://www.unirioja.es/cu/beperev/For-mulaSpecificationOfRequirements.html
https://www.unirioja.es/cu/beperev/For-mulaSpecificationOfRequirements.html
http://www.guideline.gov
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0410
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0410
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0410
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0410
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0410
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0415
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0415
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0415
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0420
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0420
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0420
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0420
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0425
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0430
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0430
http://refhub.elsevier.com/S1532-0464(19)30052-8/h0430

	Reasoning about clinical guidelines based on algebraic data types and constraint logic programming
	Introduction
	Background and case study
	Our previous work on improving the representation of clinical guidelines
	Our previous work on improving the quality of clinical guidelines
	Specification of the requirements to be verified in clinical guidelines
	Verification process


	Extending our property specification patterns
	Occurrence patterns
	Order patterns

	Verification process based on constraint logic programming
	Using a CLP-based model finder as a complementary technique for guidelines’ verification
	Proposed verification process

	A brief overview of Formula
	Formula main units
	Formula data types, rules and queries

	Encoding clinical guidelines in Formula
	Overview of our translation proposal
	Formula data types
	Formula data types’ instances
	Logic statements to simulate a guideline’s application
	Automatic translation from a guideline to Formula

	Specification of requirements
	Ideas behind our proposal
	Translation to Formula of the selected existential properties

	Verification of the AP guideline. Example of application
	Discussion
	Related work
	Techniques for the verification of clinical guidelines
	Systems verification based on model finders

	Conclusion
	Conflict of interest
	Acknowledgements
	Main ideas regarding the use of property specification patterns
	References




