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Abstract

This paper presents a Hybrid methodology that combines Bayesian Optimization (BO) with a

constrained version of the GA-PARSIMONY method to obtain parsimony models. The proposal

is designed to reduce the big computational efforts associated to the use of GA-PARSIMONY

alone. The method is initialized with BO to obtain favorable initial model parameters. With

these parameters, a constrained GA-PARSIMONY is implemented to generate accurate par-

simony models using feature reduction, data transformation and parsimonious model selec-

tion. Experiments with Extreme Gradient Boosting Machines (XGBoost) and ten UCI databases

demonstrate that the Hybrid methodology obtains models analogous to those of GA-PARSIMONY

while achieving significant reductions on the elapsed time in seven of the ten datasets.

Keywords: GA-PARSIMONY, bayesian optimization, hyperparameter optimization,

parsimony models, genetic algorithms

1. Introduction1

Hyperparameter optimization (HO) is extremely important for finding accurate models.2

Also, feature selection (FS) is useful for seeking the less complex models among solutions with3

similar accuracy. These parsimonious models are more robust against perturbations or noise,4

easier to maintain, and besides, they mitigate the effects of the curse of dimensionality.5

In the last years, there is an increasing interest in reducing the human efforts in HO and6

FS because these tasks are time-consuming and quite tedious. Newest learning methods such7

as deep learning or gradient boosting machines have up to a dozen of tuning parameters, also8

known as hyper-parameters, which hinders the use of traditional optimization methods such as9
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grid or random search. Therefore, companies are demanding new methodologies to automatize10

these processes, because they prefer to invest their efforts in other critical KDD tasks such as11

data transformation or feature engineering that are harder to automatize [13].12

Among the different existing methods to tackle this issue, soft computing (SC) seems to be an13

effective approach to reduce the computational costs [23, 35, 4, 7]. There is an increasing number14

of studies reporting SC strategies that combine FS and HO applied to multiple fields [15, 9,15

33, 14, 8, 34, 5, 25]. New libraries are emerging to perform HO with Bayesian Optimization16

(BO) like Hyperopt [2] in Python, or mlr [3] and rBayesianOptimization in R. In addition, there17

are other tools that are focused on the optimization of more KDD stages such as algorithm18

selection (AS), data transformation (DT), dimensional reduction (DR), model selection (MS) or19

feature construction (FC). For example, the SUMO-Toolbox [12] from MATLAB adopts different20

plugins for each of the different KDD stages. They can be optimized with other ’meta’ plugins21

available in the toolbox. The Auto-WEKA [30] from Weka suite also combines MS and HO. TPOT22

[18] is another library in Python that automatically optimizes machine learning pipelines using23

genetic programming. These pipelines consist on several KDD tasks as FS, DT, FC or MS, among24

others.25

In this context, we proposed GA-PARSIMONY [31, 24], a Genetic Algorithm (GA) methodol-26

ogy whose main objective is to obtain accurate parsimonious models. It optimizes HO, DT, and27

FS with a new model selection process based on a double criteria that considers accuracy and28

complexity in two steps. Despite the fact that the methodology has been successfuly applied in29

several practical fields [1, 10, 32], it might be too computationally expensive when implemented30

with large and high dimensional databases. Our main objective here is to obtain models as ac-31

curate as those obtained with GA-PARSIMONY but reducing the reduced computational effort.32

For that, we develop a new Hybrid methodolody that combines BO and GA-PARSIMONY, and33

we test this new approach in ten UCI datasets.34

The rest of the paper is organized as follows: Section 2 presents a brief description of BO,35

GA-PARSIMONY and the Hybrid method. Section 3 describes the experiments performed with36

the three methods to obtain parsimonious XGBoost models in ten UCI datasets. In Section 437

analysis of the experiment results are shown. Finally, Section 5 presents the conclusions and38

suggestions for further research.39
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2. Materials and Methods40

2.1. Extreme Gradient Boosting Machines41

eXtreme Gradient Boosting (XGBoost) [6] is one of the most popular machine learning meth-42

ods. This powerful method is based on gradient boosting machines (GBM) [11]. GBM use a43

gradient-descent based algorithm that optimizes a differentiable loss function to create a boost-44

ing ensemble of weak prediction models. The main idea is to construct each new additive45

base-learner to be maximally correlated with the negative gradient of the loss function of the46

ensemble. However, XGBoost with tree-based learners is computationally more efficient and47

scalable than GBM. It incorporates more regularization strategies to reduce over-fitting and48

control model complexity, such us the limitation of the minimum loss reduction at each tree49

partition, the sum of instances weight per leaf or the depth of each tree. It also incorporates50

Lasso (L1) and Ridge (L2) penalties, similar to other machine learning methods. Moreover, it51

integrates "random subspaces" and "random subsampling" parameters to shrink the variance.52

The high number of model parameters increases the computational efforts of the tuning pro-53

cess. Besides, despite the fact that tree-based ensemble methods have good performance with54

high-dimensional data, the inclusion of irrelevant or noisy features can degrade the accuracy of55

these models [19]. Therefore, there is an increasing interest in developing new SC methods to56

efficiently optimize HO and FS and obtain models with good generalization capabilities.57

2.2. Bayesian optimization58

Since mid of 2000s, Bayesian optimization (BO) has become one interesting alternative among59

other HO classical alternatives like random search or grid search [22]. BO uses Bayesian models60

based on Gaussian processes (GP) to formalize the relationship between model error/accuracy61

(yn) with its parameters by means of a sequential design strategy. According to GP, any finite set62

of N points, where {xn ∈Ø}N
n=1, induces a multivariate Gaussian distribution on <n. Then, GP63

defines a powerful prior distribution on functions f : Ø→< where the nth model performance64

is obtained from f (xn) and the marginals and conditionals are calculated by the marginalization65

properties of the Gaussian distribution. These properties are determined by a predefined mean66

function m : χ→< and a positive-definitive kernel or covariance function k : χ× χ→<.67

From a practical point of view [28], BO starts with the evaluation of a small number of N68

models with a random set of parameters xn where yn ∼ N ( f (xn,v)) is the nth measured model69

performance and v is the variance of functions’ noise. Thus, considering that f (x) is obtained70

from a Gaussian process prior and with the precomputed experiments, a posterior over function71
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a(x) is induced. This function, denoted acquisition function, depends on the model through72

its predictive mean function µ(x;{xn,yn},θ) and predictive variance function σ2(x;{xn,yn},θ).73

Therefore, next point is evaluated by xnext = argmaxx a(x) balancing the search of places with74

high variance (exploration) and places with low mean (exploitation).75

Among the available acquisition functions [27], GP Upper Confidence Bound (GP-UCB) has76

shown a good performance in hyperparameter tuning [29]. This acquisition function can be ex-77

pressed as:78

aLCB = µ(x)− κσ(x) , (1)

where κ balances exploration and exploitation. Also, squared exponential kernel (Eq. 2) is often a79

default choice as covariance function for Gaussian process regression.80

KSE(x,x′) = θ0 exp{1
2

r2(x,x′)} r2(x,x′) =
D

∑
d=1

(xd − x′d)
2/θ2

d , (2)

2.3. GA-PARSIMONY methodology81

GA-PARSIMONY is a SC methodology based on Genetic Algorithms (GA) and designed for82

obtaining precise overall parsimonious models automatically [31, 24]. It includes HO, FS, and83

DT in the GA optimization process and it has a flowchart similar to other classical GA methods.84

The main novelty is the design of a parsimonious model selection process (PMS) arranged in two85

stages. First, the best models are sorted by their fitness function (J), which is an error or accuracy86

metric, and next, individuals with similar Js are rearranged based on their complexities. Models87

with less complexity are therefore promoted to the top positions of each generation. This choice88

of less complex solutions among those with similar accuracy fosters the generation of robust89

solutions with better generalization capabilities.90

GA-PARSIMONY has successfully been applied to obtain accurate parsimonious models91

with the most popular machine learning techniques such as Support Vector Regression (SVR),92

Random Forest (RF) or Artificial Neural Networks (ANNs) in different fields: mechanical de-93

sign [10], solar radiation forecasting [1], industrial processes [26], and hotel room demand es-94

timation [32]. Additionaly, a preliminary evaluation of the methodolgy was perfomed with95

XGboost using several high dimensional databases and different complexity metrics [20]. GA-96

PARSIMONY performed well only with HO, but previous experiments have demonstrated that,97

choosing the number of features as measure of the model complexity is a good metric to obtain98

better parsimonious solutions when HO, FS and PMS are used with this method.99
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2.4. Hybrid method based on Bayesian Optimization and GA-PARSIMONY100

Although GA-PARSIMONY is able to generate accurate and parsimonious models, the im-101

plementation of this methodology with large and/or high dimensional database can be too102

computationally expensive even using parallel computing techniques. A Hybrid method that103

combines BO and GA-PARSIMONY is presented here to reduce the computational costs (Fig. 1)104

associated to the GA-PARSIMONY. The main idea is to use BO in a first stage with all features to105

obtain the best model parameters. Next, GA-PARSIMONY with FS and PMS is used for seeking106

the best features of the parsimonious model with the fixed parameters obtained in the first step.107

3. Experiments108

3.1. Datasets and validation process109

The Hybrid methodology with XGBoost was evaluated against the use of either BO or GA-110

PARSIMONY alone. The experiments were conducted with ten UCI datasets (Table 1), which111

were split into a validation set (80% of samples) and a testing set (20% of samples), in or-112

der to check the generalization capability of each model. The validation was made in terms113

of the mean of the Root Mean Squared Error (RMSE) calculated with a 5 repeated 4-fold CV114

(RMSEmean
val ).115

3.2. GA-PARSIMONY settings116

The fitness function selected was J = RMSEmean
val while the maximum difference of J to con-117

sider similar individuals and promote parsimonious solutions into the re-ranking process was118

set to 0.01%. The elitism percentage was set to 25%, the selection method, random uniform, and119

crossing was perfomed with heuristic blending [17]. A mutation percentage of 10% was used ex-120

cept for the best two elitists of each generation that were not mutated. The population size was121

set to P = 64 and the maximum number of generations to G = 100. However, an early stopping122

strategy was implemented when the J of the best individual did not decrease more than 0.01%123

in 10 generations, Gearly = 10.124

XGBoost parameters were defined within the following ranges: number of trees, nrounds =125

[10, 2000], maximum depth of a tree, max_depth = [2, 20], minimum sum of instance weight126

needed in a child, min_child_weight = [1, 20], lasso regularization term on weights, alpha =127

[0.0, 1.00], ridge regularization term on weights, lambda = [0.0, 1.00], subsample ratio of the128

training instances, subsample = [0.60, 1.00], and subsample ratio of columns when constructing129
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each tree, colsample_bytree = [0.80, 1.00]. Random seed was fixed to 1234 and learning rate, eta,130

to 0.01.131

Also, k exponent to transform the dependent variable was used in the following way y∗ = yk.132

In this case, the range set for this parameter was k = [0.20, 1.79].133

The representation of each individual (i) and generation (g) was a chromosome (Eq. 3).134

λi
g = [nrounds, max_depth, min_child_weight, alpha,

lambda, subsample, colsample_bytree, k, Q]
(3)

where the first seven values are the XGBoost parameters, k is the exponent to transform the135

dependent variable and Q is a binary-coded array that included the selected features.136

3.3. Bayesian optimization settings137

BO parameter bounds were identical to GA-PARSIMONY settings. The acquisition function138

selected was the GP-UCB while the covariance function was the squared exponential kernel139

with κ = 2.576. The number of initial points was set to 10, and the number of iterations for the140

optimization process to 50.141

3.4. Hybrid method settings142

The first stage of the Hybrid method was based on the same BO settings as those described143

in Section 3.3. In the second stage, GA-PARSIMONY performed FS and PMS with the best144

model parameters obtained during the first stage. Chromosomes at each generation were only145

defined by the binary-coded array λi
g = Q because HO was disabled. Except λi

g, the rest of GA146

settings were similar to those described in Section 3.2.147

3.5. Computational resources148

All the experiments were implemented in 28-core servers of the Beronia cluster at the Univer-149

sidad de La Rioja, using the statistical software R [21] and the following contributing packages:150

XGBoost [6] and GAparsimony [16].151

4. Results and Discussion152

Table 1 summarizes the results obtained with the ten UCI high-dimensional datasets. Among153

the three methods, GA-PARSIMONY obtains parsimonious models with the best RMSEmean
tst in154

six of the ten datasets, while having similar errors to those of the Hybrid method in the other155
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four datasets. However, the elapsed time required by the Hybrid method was considerably156

reduced for large datasets.157

Comparing GA-PARSIMONY with BO, an improvement of RMSEmean
tst is observed for all158

datasets in general and for Housing, Pol and Puma in particular. Also, #FT is reduced in five159

datasets: Ailerons, Bank, Blog, Elevators, and Puma. Otherwise, the Hybrid methodology gen-160

erates analogous RMSEmean
tst to the GA-PARSIMONY in nine datasets but with a significant161

reduction on the elapsed time for the largest ones.162

Figure 2 depicts the evolution of the RMSEval and RMSEtst for the elitist individuals using163

the GA-PARSIMONY and Bank database, without using early stopping to observe the optimiza-164

tion convergence errors. Figure 3 shows the same evolution for the second stage of the Hybrid165

method where GA-PARSIMONY is used without HO. In this second optimization, XGBoost pa-166

rameters were obtained from the previous BO process (stage 1) computed with all the database167

features. Comparing both figures, it can be observed than the optimization process converge168

faster in the Hybrid methodology than in GA-PARSIMONY. With this database and using an169

early stopping criteria of 10 generations (Gearly = 10), the Hybrid solution stops at the 20th gen-170

eration while the GA-PARSIMONY does at the 35th, leading to the observed reduction of the171

elapsed time.172

Table 2 shows the p-values obtained with the Wilcoxon test for the three methodologies.173

Despite the fact that the GA-PARSIMONY obtains a smaller RMSEmean
tst than that from BO,174

the differences are only statistically significant in four databases: Blog, Housing, Pol and Puma.175

However, there is an important reduction of #FT for all databases, leading to parsimonious176

models with similar or better accuracy. With respect to the Hybrid methodology, errors are177

similar to those of GA-PARSIMONY. The only exception appears in Pol dataset, although p-178

value is close to the 95% of confidence level in this case (p-value=0.05).179

The stages of the Hybrid proposal are summarized in Table 3. The last column includes the180

time reduction in the Stage 2 of the Hybrid method compared to the GA-PARSIMONY. Both of181

them were parallelized in 28-Core servers.182

In the first step, BO is applied for extracting the best model parameters with all features183

of the database. In some cases, the execution time is large because BO cannot be parallelized.184

In the second stage and with these parameters, FS is performed with GA-PARSIMONY but185

without HO. Thus, the #Gen is substantially reduced compared to the use of GA-PARSIMONY186

with FS and HO in nine of the ten databases. Therefore, the most important reduction in the187

elapsed time is obtained in this stage, with a relative reduction in the execution time exceeding188
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46% in these databases. Besides, it is important to highlight the big elapsed time contraction for189

large databases such as Elevators or Pol.190

Figure 4 shows the relative reduction of the execution time between the Hybrid methodol-191

ogy and GA-PARSIMONY. A significant reduction was achieved with the Hybrid proposal in192

seven of the ten databases. The exceptions were cpu, in which GA-PARSIMONY stopped ear-193

lier than the Hybrid method, and small databases such as housing, where non-parallelizable BO194

was more computational expensive than stage 2. However, it can be observed that the Hybrid195

methodology clearly reached important time reductions for large databases such as Ailerons,196

Bank, Elevators, Pol or Puma.197

5. Conclusions198

This article presents a new Hybrid methodology that combines Bayesian Optimization and199

GA-PARSIMONY to seek high accuracy and parsimonious models while reducing the execution200

time. Although GA-PARSIMONY obtains better models than BO by combining Hyperparam-201

eter Optimization (HO), parsimonious model selection (PMS), feature selection (FS), and data202

transformation (DT), the computational efforts with large and high dimensional databases are203

still significant. The Hybrid proposal uses BO to obtain good initial model parameters previous204

to the FS, DT and PMS, which are optimized with GA-PARSIMONY without HO.205

Experiments with ten UCI databases demonstrate that the Hybrid methodology generates206

similar parsimonious solutions than the GA-PARSIMONY while reducing the execution time207

in eight of the ten datasets. Further experiments are still required with additional high dimen-208

sional databases to obtain more detailed conclusions.209
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Figures321

Figure 1: Descritpion of the Hybrid methodology that combines BO and GA-PARSIMONY.
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Figure 2: Evolution of elitist individuals in Bank database using GA-PARSIMONY for HO, FS, DT and PMS. White

and gray box-plots represent RMSEval and RMSEtst evolution respectively. Discontinuous lines represent the best

individual. The shaded area delimits the maximum and minimum NFS.
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Results for the last best individual:  Val.RMSE=0.0976, Tst.RMSE=0.0993, Num.Features=24

Figure 3: Evolution of elitist individuals in Bank database of Stage 2 of Hybrid methodology which uses GA-

PARSIMONY with XGBoost parameters fixed to the best ones obtained with BO. White and gray box-plots represent

RMSEval and RMSEtst evolution respectively. The shaded area delimits the maximum and minimum NFS.

15



−46.9 %

−62 %
−22.9 %

−11.7 %

+1.8 %

−39.6 %

−85.1 %

+14.4 %

−75.5 %

−45.9 %

0

5000

10000

15000

ailerons bank blog concrete cpu crime elevators housing pol puma

E
xe

cu
tio

n 
tim

e 
[m

in
]

GA−PARSIMONY

Hybrid method

Figure 4: Execution times of the GA-PARSIMONY and the Hybrid methodology.
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Tables322

Table 1: Results obtained with the BO, GA-PARSIMONY and the Hybrid proposal. FT stands for the number of features

of the best model, RMSEmean
tst is the mean testing error and Time the elapsed time in minutes. Best results for each

database are depicted in bold.

Database Bayesian Optim. GA-PARSIMONY Hybrid Method

Name # Inst #FT Time RMSEmean
tst #Gen #FT Time RMSEmean

tst #FT Time RMSEmean
tst

Ailerons 13750 40 295 0.0428 23 13 7949 0.0425 14 4221 0.0425

Bank 8192 32 104 0.0995 35 18 4036 0.0980 20 1533 0.0991

Blog 52397 276 1186 0.0155 13 100 5097 0.0148 108 3930 0.0147

Concrete 1030 8 152 0.0532 100 7 308 0.0521 8 272 0.0519

Cpu 8192 21 189 0.0232 20 16 4121 0.0220 16 4194 0.0231

Crime 2215 127 206 0.0612 100 38 1037 0.0576 40 626 0.0576

Elevators 16599 18 343 0.0322 39 9 16554 0.0314 12 2466 0.0319

Housing 506 13 136 0.0737 100 10 167 0.0586 55 191 0.0589

Pol 15000 26 176 0.0476 66 16 13203 0.0400 20 3231 0.0465

Puma 8192 32 209 0.0433 25 4 6168 0.0337 4 3337 0.0336
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Table 2: Testing RMSE obtained with the three methodologies. Last column in Bayesian Optimization and the Hybrid

method shows the p-value obtained with the Wilcoxon test when comparing each method against GA-PARISMONY.

Database GA-PARSIMONY Bayesian Optim. Hybrid Methodology

Name RMSEmean
tst RMSEsd

tst RMSEmean
tst RMSEsd

tst p-value RMSEmean
tst RMSEsd

tst p-value

Ailerons 0.0425 0.042429 0.0428 0.000947 =(0.700) 0.0425 0.000784 =(1.000)

Bank 0.0980 0.097594 0.0995 0.001253 =(0.100) 0.0991 0.001149 =(0.200)

Blog 0.0148 0.014595 0.0155 0.010170 +(0.039) 0.0147 0.000994 =(1.000)

Concrete 0.0521 0.052261 0.0532 0.013800 =(0.100) 0.0519 0.013542 =(0.750)

Cpu 0.0220 0.021727 0.0232 0.002806 =(0.100) 0.0231 0.002863 =(0.100)

Crime 0.0576 0.058036 0.0612 0.004623 =(0.300) 0.0576 0.003234 =(0.834)

Elevators 0.0314 0.031355 0.0322 0.000641 =(0.100) 0.0319 0.000679 =(0.400)

Housing 0.0586 0.057918 0.0737 0.005727 +(0.000) 0.0589 0.005402 =(0.757)

Pol 0.0400 0.040358 0.0476 0.002647 +(0.008) 0.0465 0.001483 +(0.030)

Puma 0.0337 0.000420 0.0433 0.001411 +(0.008) 0.0336 0.000648 =(0.200)
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Table 3: Summary of the stages of Hybrid method

Database Stage 1 Stage 2 Stage 2 vs GA-PARSIMONY

Name #FT Time RMSEmean
tst #Gen #FT Time RMSEmean

tst Diff. Time (%)

Ailerons 40 295 0.0428 14 14 3926 0.0420 3568 min. (50.61%)

Bank 32 104 0.0995 13 20 1429 0.0991 2607 min. (64.59%)

Blog 276 1186 0.0155 7 108 2744 0.0147 2353 min. (46.16%)

Concrete 8 152 0.0532 20 8 120 0.0519 188 min. (61.03%)

Cpu 21 189 0.0232 26 16 4005 0.0231 116 min. (02.81%)

Crime 127 206 0.0612 22 40 420 0.0576 617 min. (59.50%)

Elevators 18 343 0.0322 5 12 2123 0.0319 14431 min. (87.18%)

Housing 13 136 0.0737 16 9 55 0.0589 112 min. (67.07%)

Pol 26 176 0.0476 17 20 3055 0.0465 9972 min. (75.53%)

Puma 32 209 0.0433 13 4 3128 0.0336 3040 min. (49.29%)
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