The relevance of hydrological research in small catchmentsa perspective from long-term monitoring sites in Europe

  1. J. Latron 1
  2. N. Lana-Renault 2
  1. 1 Instituto de Diagnóstico Ambiental y Estudios del Agua
    info

    Instituto de Diagnóstico Ambiental y Estudios del Agua

    Barcelona, España

    ROR https://ror.org/056yktd04

  2. 2 Universidad de La Rioja
    info

    Universidad de La Rioja

    Logroño, España

    ROR https://ror.org/0553yr311

Revista:
Cuadernos de investigación geográfica: Geographical Research Letters
  1. Latron, J. (ed. lit.)
  2. Lana-Renault Monreal, Noemí (ed. lit.)

ISSN: 0211-6820 1697-9540

Año de publicación: 2018

Volumen: 44

Número: 2

Páginas: 387-395

Tipo: Artículo

DOI: 10.18172/CIG.3499 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: Cuadernos de investigación geográfica: Geographical Research Letters

Repositorio institucional: lock_openAcceso abierto Editor

Resumen

La utilidad de los estudios en pequeñas (< 10 km2) cuencas ha sido reiteradamente reconocida a lo largo de la historia de la investigación hidrológica. Este prólogo al número especial de Cuadernos de Investigación Geográfica – Geographical Research Letters sobre investigaciones hidrológicas a largo plazo en pequeñas cuencas en Europa destaca las principales razones para fomentar los estudios en pequeñas cuencas y revisa su creciente uso, empezando por los estudios de cuenca llevados a cabo en Suiza con fines de gestión del territorio, seguidos por el desarrollo de programas de investigación más interdisciplinares que utilizaron las cuencas como laboratorios de campo, observatorios a largo plazo, lugares para validar métodos y modelos, y para formar a jóvenes investigadores. Este volumen incluye nueve contribuciones sobre estudios llevados a cabo en sitios instrumentados a largo plazo en varios países europeos y pretende mostrar la relevancia del uso de pequeñas cuencas en la investigación hidrológica en Europa.

Referencias bibliográficas

  • Ambroise, B. 1994. Du BVRE, bassin versant représentatif et expérimental, au BVR, bassin versant de recherche. In: D. Houi., J.L. Verrel (Eds.), Du Concept de BVRE à celui de Zone Atelier dans les Recherches menées en Eaux Continentales, Actes du Séminaire National Hydrosystèmes, Paris, pp. 11-24.
  • Ambroise, B. 1999. La Dynamique du Cycle de l’Eau dans un Bassin Versant. -Processus, Facteurs, Modèles. *H*G*A, 200 pp.
  • Bates, C.G., Henry, A.J. 1928. Forest and streamflow experiment at Wagon wheel Gap, Colorado. Monthly Weather Review Supplement 30.
  • Becker, A., Günter, A., Katzenmaier, D. 1999. Required integrated approach to understand runoff generation and flow-path dynamics in catchments. In: C. Leibundgut, J. McDonnell, G. Schultz, (Eds.), Integrated Methods in Catchment Hydrology-Tracer, Remote Sensing and New Hydrometric Techniques. IAHS Publication 258, 3-9.
  • Betson, R.P. 1964. What is watershed runoff? Journal of Geophysical Research 69 (8), 1541-1552. https://doi.org/10.1029/JZ069i008p01541.
  • Beven, K. 2016. Advice to a young hydrologist. Hydrological Processes 30, 3578-3582. https://doi.org/10.1002/hyp.10879.
  • Bonell, M. 1993. Progress in the understanding of runoff generation dynamics in forests. Journal of Hydrology 150, 217-275. https://doi.org/10.1016/0022-1694(93)90112-M.
  • Brechtel, H.M., Führer, H.W. 1991. Water yield control in beech forest. A paired watershed study in the Krofdorf forest research area. In: G. Kienitz, P.C.D. Milly, M.Th. Van Genuchten, D. Rosbjerg, W.J. Shuttleworth (Eds.), Hydrological Interactions Between Atmosphere, Soil and Vegetation. IAHS Publication 204, 477-484.
  • Burt, T.P., McDonnell, J.J. 2015. Whither field hydrology? The need for discovery science and outrageous hydrological hypotheses. Water Resources Research 51, 5919-5928. https://doi.org/10.1002/2014WR016839.
  • Cappus, P. 1960. Bassin expérimental d’Alrance. Étude des lois de l’écoulement. Application au calcul et à la prévision des débits. La Houille Blanche A, 493-520. https://doi.org/10.1051/lhb/1960007.
  • Christophersen, N., Neal, C. 1990. Linking hydrological, geochemical, and soil chemical processes on the catchment scale: An interplay between modeling and field work. Water Resources Research 26 (12), 3077-3086. https://doi.org/ 10.1029/WR026i012p03077.
  • Collins, S.L., Childers, D.L. 2014. Long-Term Ecological Research and Network-Level Science. EOS Transactions American Geophysical Union 95 (33), 293-294. https://doi.org/10.1002/2014EO330001.
  • DeCoursey D.G. 1991. Mathematical models: Research tools for experimental watersheds. In: D.S. Bowles and P.E. O’Connell (Eds.), Recent Advances in the Modelling of Hydrologic Systems. NATO ASI Series C, Vol. 345, Kluwer Academic Publ, pp. 591-612.
  • Dubreuil, P.L. 1989. Pour un suivi à long terme de l’évolution des ressources en eau grâce à un réseau européen de bassins de référence. Hydrogéologie 2, 111-114.
  • Dunne, T. 1983. Relation of field studies and modeling in the prediction of storm runoff. Journal of Hydrology 65, 25-48. https://doi.org/10.1016/0022-1694(83)90209-3.
  • Forschungszentrum Jülich, Helmholtz Centre for Environmental Research, Karlsruhe Institute of Technology, Helmholtz Zentrum München, German Aerospace Center, German Research Centre for Geosciences. 2016. TERENO: German network of terrestrial environmental observatories, Journal of Large-Scale Research Facilities 2, A52. http://doi.org/10.17815/jlsrf-2-98.
  • Gascuel-Odoux, C.Fovet, O., Gruau, G., Ruiz, L., Merot, P. 2018. Evolution of scientific questions over 50 years in the Kervidy-Naizin catchment: from catchment hydrology to integrated studies of biogeochemical cycles and agroecosystems in a rural landscape. Cuadernos de Investigación Geográfica - Geographical Research Letters 44 (2). . https://doi.org/10.18172/cig.3383.
  • Grant, G.E., Dietrich, W.E. 2017. The frontier beneath our feet, Water Resources Research 53. https://doi.org/10.1002/2017WR020835.
  • Grayson, R.B., Moore, I.D., McMahon, T.A. 1992. Physically based hydrological modelling 2. Is the concept realistic? Water Resources Research 28 (10), 2659-2666. https://doi.org/10.1029/92WR01259.
  • Hewlett, J.D. 1961. Watershed management. In: USDA Forest Service Annual Report, Southeast Forest Experimental Station, Ashville, NC, pp.61-66.
  • Hewlett, J.D. 1982. Principles of forest hydrology. University of Georgia Press, 183 pp.
  • Hewlett, J.D., Lull, H.W., Reinhart, K.G. 1969. In defense of experimental watersheds. Water Resources Research 5 (1), 306-316. https://doi.org/10.1029/WR005i001p00306.
  • Holko, L., Bičárová, S., Hlavčo, J., Danko, M., Kostka, Z. 2018. Isotopic hydrograph separation in two small mountain catchments during multiple events. Cuadernos de Investigación Geográfica - Geographical Research Letters 44 (2). https://doi.org/10.18172/cig.3344.
  • Holzmann, H. 2018. Status and perspectives of hydrological research in small basins in Europe. Cuadernos de Investigación Geográfica - Geographical Research Letters 44 (2). https://doi.org/10.18172/cig.3406.
  • Hoover, M. 1944. Effect of removal forest vegetation upon water-yields. EOS Transactions American Geophysical Union 25, 969-977. https://doi.org/10.1029/TR025i006p00969.
  • Hursh, C.R., Brater, E.F. 1941. Separating storm-hydrographs from small drainage-areas into surface- and subsurface-flow. EOS Transactions American Geophysical Union 22, 863-871. https://doi.org/10.1029/TR022i003p00863.
  • Keller, H.M. 1988. European experiences in long-term forest hydrology research. In: W.T. Swank, D.A. Crossley Jr. (Eds.), Forest Hydrology and Ecology at Coweeta. Ecological Studies. Vol. 66, Springer-Verlag, pp. 407-414.
  • Kirkby, M.J. (Ed.) 1978. Hillslope Hydrology. Wiley-Interscience Publ., 389 pp.
  • Knapp, A.K., Smith, M.D, Hobbie, S.E., Collins, S.L., Fahey, T.J., Hansen, G.J.A., Landis, D.A., La Pierre, K.J., Melillo, J.M., Seastedt, T.R., Shaver, G.R., Webster, J.R. 2012, Past, present, and future roles of long-term experiments in the LTER Network, BioScience 62, 377-389. https://doi.org/10.1525/bio.2012.62.4.9.
  • Krause, S., Lewandowski, J., Grimm, N.B., Hannah, D.M., Pinay, G., McDonald, K., Martí, E., Argerich, A., Pfister, L., Klaus, J., Battin, T., Larned, S.T., Schelker, J., Fleckenstein, J., Schmidt, Ch., Rivett, M.O., Watts, G., Sabater, F., Sorolla, A., Turk, V. 2017. Ecohydrological interfaces as hot spots of ecosystem processes, Water Resources Research 53, 6359-6376. https://doi.org/10.1002/2016WR019516.
  • Lana-Renault, N., López-Vicente, M., Nadal-Romero, E., Ojanguren, R., Llorente, J.A., Errea, P., Regüés, D., Ruiz-Flaño, P., Khorchani, M., Arnaez, J., Pascual, N. 2018. Catchment based hydrology under post farmland abandonment scenarios. Cuadernos de Investigación Geográfica - Geographical Research Letters 44 (2). https://doi.org/10.18172/cig.3475.
  • Leclerc, L.-A. 1992. Recherche et développement sur la gestion des eaux: La politique des bassins versants représentatifs expérimentaux (BVRE). Hydrogéologie 4, 133-137.
  • Likens, G.E., Bormann, F.H., Pierce, R.S., Eaton, J.S., Johnson, N.M. 1977. Biogeochemistry of a Forested Ecosystem. Springer-Verlag, 146 pp.
  • Llorens, P., Gallart, F., Cayuela, C., Roig-Planasdemunt, M., Casellas, E., Molina, A.J., Moreno De Las Heras, M., Bertran, G., Sánchez-Costa, E., Latron, J. 2018. What have we learnt about Mediterranean catchment hydrology? 30 years observing hydrological processes in the Vallcebre research catchments. Cuadernos de Investigación Geográfica - Geographical Research Letters 44 (2). https://doi.org/10.18172/cig.3432.
  • Masselink, R.J.H., Temme, A.J.A.M., Giménez, R., Casalí, J., Keesstra, S.D. 2017. Assessing hillslope-channel connectivity in an agricultural catchment using rare-earth oxide tracers and random forests models. Cuadernos de Investigación Geográfica - Geographical Research Letters 43 (1), 19-39. https://doi.org/10.18172/cig.3169.
  • McDonnell, J.J., Beven, K. 2014. Debates-The future of hydrological sciences: A (common) path forward? A call to action aimed at understanding velocities, celerities, and residence time distributions of the headwater hydrograph. Water Resources Research 50, 5342-5350. https://doi.org/10.1002/2013WR015141.
  • Mirtl, M. 2010. Introducing the Next Generation of Ecosystem Research in Europe: LTER-Europe’s Multi-Functional and Multi-Scale Approach. In: F. Müller, C. Baessler, H. Schubert, S. Klotz (Eds.), Long-Term Ecological Research. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8782-9_6.
  • Mosley, M.P. 1979. Streamflow generation in a forested watershed, New Zealand, Water Resources Research 15 (4), 795-806. https://doi.org/10.1029/ WR015i004p00795.
  • Pearce, A.J., Stewart, M.K., Sklash, M.G. 1986. Storm runoff generation in humid headwater catchments: 1. Where does the water come from? Water Resources Research 22 (8), 1263-1272. https://doi.org/10.1029/WR022i008p01263.
  • Pfister, L. Wetzel, C.E., Klaus, J., Martínez-Carreras, J., Antonelli, M., Teuling, A.J., McDonnell, J.J. 2017. Terrestrial diatoms as tracers in catchment hydrology: a review. WIREs Water 4, e1241. https://doi.org/10.1002/wat2.1241.
  • Philip, J.R. 1991. Soils, natural science and models. Soil Science 151, 91-98.
  • Preti, F, Guastini, E., Penna, D., Dani, A., Cassiani, G., Boaga, J., Deiana, R., Romano, N., Nasta, P., Palladino, M., Errico, A., Giambastiani, Y., Trucchi, P., Tarolli, P. 2017. Conceptualization of water flow pathways in agricultural terraced landscapes. Land Degradation & Development. https://doi.org/10.1002/ldr.2764.
  • Rodríguez-Caballero, E., Lázaro, R., Cantón, Y., Puigdefábregas, J., Solé-Benet, A. 2018. Long-term hydrological monitoring in arid-semiarid Almería, SE Spain. What have we learned? Cuadernos de Investigación Geográfica - Geographical Research Letters 44(2). https://doi.org/10.18172/cig.3462.
  • Schnabel, S., Lozano Parra, J., Gómez-Gutiérrez, A., Alfonso-Torreño, A. 2018. Hydrological dynamics in a small catchment with silvopastoral land use in SW Spain. Cuadernos de Investigación Geográfica - Geographical Research Letters 44 (2). https://doi.org/10.18172/cig.3378.
  • Schumann, S., Schmalz, B., Meesenburg, H., Schröder, U. (Eds.) 2010. Status and Perspectives of Hydrology in Small Basins. Results of the International Workshop in Goslar-Hahnenklee, 2009 and Inventory of Small Hydrological Research Basins. IHP/HWRP-Berichte 10, Koblenz, Germany. http://www.euro-friend.de.
  • Seibert, J., McDonnell, J.J. 2002. On the dialog between experimentalist and modeler in catchment hydrology: Use of soft data for multicriteria model calibration, Water Resources Research 38 (11), 1241. https://doi.org/10.1029/2001WR000978.
  • Sklash, M.G., Stewart, M.K. Pearce, A.J. 1986. Storm runoff generation in humid headwater catchments: 2. A case study of hillslope and low-order stream response, Water Resources Research 22 (8), 1273-1282. https://doi.org/10.1029/WR022i008p01273.
  • Stähli, M., Badoux, A., Ludwig, A., Steiner, K., Zappa, M., Hegg, Ch. 2011. One century of hydrological monitoring in two small catchments with different forest coverage. Environmental Monitoring and Assessment 174, 91-106. https://doi.org/10.1007/s10661-010-1757-0.
  • Swank W.T., Crossley Jr, D.A. (Eds.) 1988. Forest Hydrology and Ecology at Coweeta. Ecological Studies, Vol. 66, Springer-Verlag, 512 pp.
  • Swank, W.T., Swift Jr, L.W., Douglass, J.E. 1988. Streamflow changes associated with forest cutting, species conversions, and natural disturbances. In: W.T. Swank, D.A. Crossley Jr (Eds.), Forest Hydrology and Ecology at Coweeta. Ecological Studies, Vol. 66, Springer-Verlag, pp. 297-312.
  • Tetzlaff, D., Carey, S.K., McNamara, J.P., Laudon, H., Soulsby, C. 2017. The essential value of long-term experimental data for hydrology and water management. Water Resources Research 53 (4), 2598-2604. https://doi.org/10.1002/2017WR020838.
  • Tiwari, T., Lundström, J., Kuglerova, L., Laudon, L., Öhman, K., Ågren, A.M. 2016. Cost of riparian buffer zones: A comparison of hydrologically adapted site-specific riparian buffers with traditional fixed widths. Water Resources Research 52, 1056-1069. https://doi.org/10.1002/2015WR018014.
  • Tsukamoto, Y. 1963. Storm Discharge from an Experimental Watershed. Journal of the Japanese Forestry Society 45 (6), 186-190. https://doi.org/10.11519/jjfs1953.45.6_186.
  • van Meerveld, I.H.J., Fischer, B.M.C, Rinderer, M., Stähli, M., Seibert, J. 2018. Runoff generation in a pre-alpine catchment: a discussion between a tracer and a shallow groundwater hydrologist. Cuadernos de Investigación Geográfica - Geographical Research Letters 44 (2). https://doi.org/10.18172/cig.3349.
  • Ward, R.C. 1971. Small Watershed Experiments – An appraisal of concepts and research developments. University of Lull Printers Ltd, U.K., 254pp.
  • White, T., Brantley, S., Banwart, S., Chorover, J., Dietrich, W., Derry, L., Lohse, K., Anderson, S., Aufdendkampe, A., Bales, R., Kumar, P., Richter, D., McDowell, B. 2015. Chapter 2 - The role of critical zone observatories in critical zone science, in Developments in Earth Surface Processes, vol. 19, pp. 15-78, Elsevier, https://doi.org/10.1016/B978-0-444-63369-9.00002-1.
  • Zuecco, G., Penna, D., Borga. M. 2018. Runoff generation in mountain catchments: long-term hydrological monitoring in the Rio Vauz catchment, Italy. Cuadernos de Investigación Geográfica - Geographical Research Letters 44 (2). https://doi.org/10.18172/cig.3327.