Catchment based hydrology under post farmland abandonment scenarios

  1. Noemí Lana-Renault Monreal 1
  2. López-Vicente, M. 2
  3. María Estela Nadal Romero 34
  4. José Angel Llorente Adán 1
  5. P. Errea 4
  6. David Regües Muñoz 4
  7. Purificación Ruiz Flaño 1
  8. Khorchani, M. 4
  9. José Arnáez Vadillo 1
  10. Nuria Pascual Bellido 1
  11. Ojanguren Sarrión, Rafael Sixto
  1. 1 Universidad de La Rioja
    info

    Universidad de La Rioja

    Logroño, España

    ROR https://ror.org/0553yr311

  2. 2 Estación Experimental de Aula Dei
    info

    Estación Experimental de Aula Dei

    Zaragoza, España

    ROR https://ror.org/056a37x91

  3. 3 Universidad de Zaragoza
    info

    Universidad de Zaragoza

    Zaragoza, España

    ROR https://ror.org/012a91z28

  4. 4 Instituto Pirenaico de Ecología
    info

    Instituto Pirenaico de Ecología

    Zaragoza, España

    ROR https://ror.org/039ssy097

Aldizkaria:
Cuadernos de investigación geográfica: Geographical Research Letters
  1. Latron, J. (ed. lit.)
  2. Lana-Renault Monreal, Noemí (ed. lit.)

ISSN: 0211-6820 1697-9540

Argitalpen urtea: 2018

Alea: 44

Zenbakia: 2

Orrialdeak: 503-534

Mota: Artikulua

DOI: 10.18172/CIG.3475 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Beste argitalpen batzuk: Cuadernos de investigación geográfica: Geographical Research Letters

Gordailu instituzionala: lock_openSarbide irekia Editor

Laburpena

El aumento de la vegetación tras el abandono de tierras es un proceso complejo que depende tanto de factores naturales como antropogénicos. Esto implica que la evolución de la cubierta vegetal no es siempre igual, lo cual conlleva consecuencias ambientales diversas. Con el fin de evaluar la complejidad de las consecuencias hidrogeomorfológicas del abandono de tierras, el Instituto Pirenaico de Ecología (CSIC) y la Universidad de La Rioja monitorizaron tres pequeñas cuencas representativas de diferentes escenarios post abandono en el Pirineo y en el Sistema Ibérico. Asimismo, se monitorizó una pequeña cuenca cubierta por bosque en el Pirineo, representativa de un ambiente que no ha sido alterado. En este estudio se describe la evolución de los usos del suelo en las cuencas abandonadas y se examinan sus implicaciones en la conectividad hidrológica. También se analizan las respuestas del caudal de los tres ambientes abandonados ante eventos pluviométricos similares y se comparan con las de un ambiente forestal. La vegetación aumentó en las tres cuencas pero se observaron diferencias importantes en las características actuales de la cubierta del suelo. Arnás, la cuenca sometida a un proceso de revegetación natural, constituye un mosaico de matorrales (64%) y bosques (27%) que se encuentran en diferentes estadios en la sucesión vegetal en función de la topografía y las características de los suelos. Araguás_Repoblación fue reforestada en los años 1960 y el 75% de su superficie está actualmente cubierto por bosque, la mayoría de repoblación. En Munilla, ocupada por terrazas de cultivo, el crecimiento de la vegetación se ha visto limitado por la introducción de ganado en régimen extensivo y el 80% de su superficie se encuentra ocupado por matorral disperso. El abandono de tierras conllevó una disminución generalizada de la conectividad hidrológica a escala de cuenca, excepto en zonas muy localizadas próximas a los cauces y a nuevas pistas forestales así como aguas arriba de los derrumbamientos en los bancales abandonados, que presentaron un incremento en los valores de conectividad. No obstante, este descenso en la conectividad hidrológica fue mucho menor en Munilla, caracterizada por una ausencia de vegetación densa y dominada todavía por una topografía aterrazada. La respuesta del caudal generada por eventos pluviométricos similares fue muy diferente en cada una de estas cuencas, evidenciando la importancia que tiene tanto la vegetación como unos suelos que todavía poseen características heredadas de un pasado agrícola. La respuesta hidrológica en Arnás fue intensa, incluso en condiciones secas, con picos de caudal elevados y tiempos de respuesta cortos. En condiciones secas, la respuesta del caudal en Araguás_repoblación fue de menor magnitud; no obstante, en condiciones húmedas, la cuenca registró una respuesta notable y caracterizada por un pico de caudal elevado. La respuesta hidrológica del ambiente repoblado fue muy diferente a la de un bosque natural, con hidrogramas de crecida mucho más suaves. Munilla registró la respuesta de caudal más limitada y ésta estuvo caracterizada por tiempos de respuesta lentos y curvas de recesión largas, asociados a la presencia de terrazas de cultivo con suelos profundos. Estos resultados ponen en evidencia la gran variabilidad de escenarios fruto del abandono de tierras y resalta la necesidad de considerar estas diferencias a la hora de reducir la incertidumbre en las predicciones futuras sobre la disponibilidad de los recursos hídricos y la conservación del suelo.

Finantzaketari buruzko informazioa

This study was performed under the framework of the European COST action ES1306 “Connecteur” (Connecting European Connectivity Research) and received financial support from Project ESPAS (CGL2015-65569-R), funded by the Spanish Ministry of Economy and Competitiveness and FEDER. Manuel López-Vicente and Estela Nadal-Romero were beneficiaries of “Proyecto de I+D+i para Jóvenes Investigadores” and “Ramón y Cajal” postdoctoral contracts, respectively, both from the Spanish Ministry of Economy and Competitiveness.

Finantzatzaile

Erreferentzia bibliografikoak

  • Alatorre, L.C., Beguería, B., Lana-Renault, N., Navas, A., García-Ruiz, J.M. 2012. Soil erosion and sediment delivery in a mountain catchment under scenarios of land use change using a spatially distributed numerical model. Hydrological and Earth Sciences Systems 16, 1321-1334. https://doi.org/10.5194/hess-16-1321-2012.
  • Antoine, M., Javaux, M., Bielders, C. 2009. What indicators can capture runoff-relevant connectivity properties of the microtopography at the plot scale? Advances in Water Resources 32 (8), 1297-1310. https://doi.org/10.1016/j.advwatres.2009.05.006.
  • Arnáez, J., Lasanta, T., Errea, M.P., Ortigosa, L. 2011. Land abandonment, landscape evolution, and soil erosion in a Spanish Mediterranean mountain region: the case of Camero Viejo. Land Degradation & Development 22, 537-550. https://doi.org/ 10.1002/ldr.1032.
  • Arnáez, J., Lana-Renault, N., Lasanta, T., Ruiz-Flaño, P. y Castroviejo, J. 2015. Effects of farmimg terraces on hydrological and geomorphological processes. A review. Catena 128, 122-134. https://doi.org/10.1016/j.catena.2015.01.021.
  • Arnáez, J., Lana-Renault, N., Ruiz-Flaño, P., Pascual, N., Lasanta, T. 2017. Mass soil movement on terraced landscapes of the Mediterranean mountain areas: a case study in the Iberian Range, Spain. Cuadernos de Investigación Geográfica 43 (1), 83-100. https://doi.org/10.18172/cig.3211.
  • Bakker, M.M., Govers, G., Van Doorn, A., Quetier, F., Chouvardas, D., Rounsevell, M. 2008. The response of soil erosion and sediment export to land-use change in four areas of Europe: the importance of landscape pattern. Geomorphology 98, 213-226. https://doi.org/10.1016/j.geomorph.2006.12.027.
  • Beguería, S., López Moreno, J.I., Gómez Villar, A., Rubio, V., Lana-Renault, N., García-Ruiz, J.M. 2006. Fluvial adjustment to soil erosion and plant cover changes in the Central Spanish Pyrenees. Geografiska Annaler 88 (3), 177-186. https://doi.org/10.1111/j.1468-0459.2006.00293.x.
  • Borselli, L., Cassi, P., Torri, D. 2008. Prolegomena to sediment and flow connectivity in the landscape: A GIS and field numerical assessment. Catena 75 (3), 268-277. https://doi.org/10.1016/j.catena.2008.07.006.
  • Buendia, C., Bussi, G., Tuset, J., Vericat, D., Sabater, S., Palau, A., Batalla, R.J. 2016. Effects of afforestation on runoff and sediment load in an upland Mediterranean catchment. Science of the Total Environment 540, 144-157. https://doi.org/10.1016/j.scitotenv.2015.07.005.
  • Burch, G.J., Bath, R.K., Moore, I.D., O´Loughlin, E.M. 1987. Comparative hydrological behaviour of forested and cleared catchments in southeastern Australia. Journal of Hydrology 90, 19-42. https://doi.org/10.1016/0022-1694(87)90171-5.
  • Butzen, V., Seeger, M., Casper, M. 2011. Spatial pattern and temporal variability of runoff processes in Mediterranean mountain environments - A case study of the Central Spanish Pyrenees. Zeitschrift fur Geomorphologie 55, 25-48. https://doi.org/10.1127/0372-8854/2011/0055S3-0050
  • Camera, C., Apuani, T., Masetti, M. 2014. Mechanisms of failure on terraced slopes: the Valtellina case (northern Italy). Landslides 11, 43-54. https://doi.org/10.1007/s10346-012-0371-3.
  • Calsamiglia, A., Fortesa, J., García-Comendador, J., Lucas-Borja, M.E., Calvo-Cases, A., Estrany. J. 2017. Spatial patterns of sediment connectivity in terraced lands: anthropogenic controls of catchment sensitivity. Land Degradation & Development. https://doi.org/10.1002/ldr.2840.
  • Cavalli, M., Trevisani, S., Comiti, F., Marchi, L. 2013. Geomorphometric assessment of spatial sediment connectivity in small Alpine catchments. Geomorphology 188, 31-41. https://doi.org/10.1016/j.geomorph.2012.05.007.
  • Cavalli, M., Crema, S., Marchi, L. 2015. Guidelines on the Sediment Connectivity stand-alone application SedInConnect. Release: 2.0 and 2.1 [online] Available from: https://github.com/HydrogeomorphologyTools.
  • Cavalli, M., Tarolli, P., Dalla Fontana, G., Marchi, L. 2016. Multi-temporal analysis of sediment source areas and sediment connectivity in the Rio Cordon catchment (Dolomites). Rendiconti Online Della Società Geologica Italiana 39, 27-30. https://doi.org/10.3301/ROL.2016.39.
  • Chartin, C., Evrard, O., Laceby, J.P., Onda, Y., Ottlé, C., Lefèvre, I., Cerdan, O. 2017. The impact of typhoons on sediment connectivity: lessons learnt from contaminated coastal catchments of the Fukushima Prefecture (Japan). Earth Surface Processes and Landforms 42 (2), 306-317. https://doi.org/10.1002/esp.4056.
  • Chirino, E., Sánchez, J.R., Bonet, A., Bellot, J. 2001. Effect of afforestation and vegetation dynamics on soil erosion in a semi-arid environment (SE Spain). Transactions on Ecology and the Environment 46, 239-248.
  • Combes, F., Hurand, A., Meunier, M. 1994. La forêt de montagne: un remède aux crues. Actes des 23èmes Journées de l’Hydraulique. Crues et inondations, Nîmes, SHF, pp. 475-480
  • Croke, J., Mockler, S., Fogarty, P., Takken, I. 2005. Sediment concentration changes in runoff pathways from a forest road network and the resultant spatial pattern of catchment connectivity. Geomorphology 68 (3-4), 257-268. https://doi.org/10.1016/j.geomorph.2004.11.020.
  • Cuadrat, J.J., Vicente-Serrano, S. 2008. Características espaciales del clima en La Rioja modelizadas a partir de Sistemas de Información Geográfica y técnicas de regresión espacial. Zubía monográfico 20, 119-142.
  • De Tar, W.R., Ross, J.J., Cunningham, R.L. 1980. Estimating the C factor in the Universal Soil Loss Equation for landscape slopes. Journal of Soil and Water Consservation 35 (1), 40-41.
  • D'Haen, K., Dusar, B., Verstraeten, G., Degryse, P., De Brue, H. 2013. A sediment fingerprinting approach to understand the geomorphic coupling in an eastern Mediterranean mountainous river catchment. Geomorphology 197, 64-75. https://doi.org/10.1016/j.geomorph.2013.04.038.
  • Dung, B.X., Hiraoka, M., Gomi, T., Onda, Y., Kato, H. 2015. Peak flow responses to strip thinning in a nested, forested headwater catchment. Hydrological Processes 29 (24), 5098-5108. https://doi.org/10.1002/hyp.10720.
  • Gallart, F., Llorens, P., Latron, J. 1994. Studying the role of old agricultural terraces on runoff generation in a Mediterranean small mountainous basin. Journal of Hydrology 159, 291-303. https://doi.org/10.1016/0022-1694(94)90262-3.
  • García-Ruiz, J.M., Lana-Renault, N. 2011. Hydrological and erosive consequences of farmland abandonment in Europe, with special reference to the Mediterranean region - A review. Agriculture, Ecosystems and Environment 140, 317-338. https://doi.org/10.1016/j.agee.2011.01.003.
  • García-Ruiz, J.M., Martí-Bono, C., Arnáez, J., Beguería, S., Lorente, A., Seeger, M. 2000. Las cuencas experimentales de Arnás y San Salvador en el Pirineo Central: escorrentía y transporte de sedimento. Cuadernos de Investigación Geográfica 26, 23-40. https://doi.org/10.18172/cig.1061.
  • García-Ruiz, J.M., Arnáez, J., Beguería, S., Seeger, M., Martí-Bono, C., Regüés, D., Lana-Renault, N., White, S. 2005. Flood generation in an intensively disturbed, abandoned farmland catchment, Central Spanish Pyrenees. Catena 59, 79-92. https://doi.org/10.1016/j.earscirev.2011.01.006
  • García-Ruiz, J.M., Regüés, D., Alvera, B., Lana-Renault, N., Serrano-Muela, P., Nadal-Romero, E., Navas, A., Latron, J., Martí-Bono, C., Arnáez, J. 2008. Flood generation and sediment transport in experimental catchments affected by land use changes in the central Pyrenees. Journal of Hydrology 356, 245-260. https://doi.org/10.1016/j.jhydrol.2008.04.013.
  • García-Ruiz, J.M., López-Moreno, J.I., Vicente-Serrano, S.M., Lasanta, T., Beguería, S. 2011. Mediterranean water resources in a Global Change scenario. Earth-Science Reviews 105, 121-139. https://doi.org/10.1016/j.earscirev.2011.01.006.
  • Gay, A., Cerdan, O., Mardhel, V., Desmet, M. 2016. Application of an index of sediment connectivity in a lowland area. Journal of Soils and Sediments 16 (1), 280-293. https://doi.org/10.1007/s11368-015-1235-y.
  • González, C., García-Ruiz, J.M., Martí, C., White, S., Errea, M.P., Arnáez, J. 1997. Sediment sources in a small, abandoned farmland catchment, Central Spanish Pyrenees. Physics and Chemistry of the Earth 22 (3-4), 291-293. https://doi.org/10.1016/S0079-1946(97)00146-8.
  • Hewlett, J.D., Hibbert, A.R. 1967. Factors affecting the response of small watersheds to precipitation in humid areas. In: W.E. Sopper, H.W. Lull (Eds.), Forest Hydrology. Pergamon Press, UK, pp. 275-290
  • Holko, L., Holzmann, H., de Lima, M.I.P., de Lima, J.L.M.P. 2015. Hydrological research in small catchments – an approach to improve knowledge on hydrological processes and global change impacts. Journal of Hydrology and Hydromechanics 63 (3), 181-182. https://doi.org/10.1515/johh-2015-0032.
  • Hümann, M., Schüler, G., Müller, C., Schneider, R., Johst, M., Caspari, T. 2011. Identification of runoff processes – The impact of different forest types and soil properties on runoff formation and floods. Journal of Hydrology 409, 637-649. https://doi.org/10.1016/j.jhydrol.2011.08.067
  • Keesstra, S.D. 2007. Impact of natural reforestation on floodplain sedimentation in the Dragonja basin, SW Slovenia. Earth Surface Processes and Landforms 32 (1), 49-65. https://doi.org/10.1002/esp.1360
  • Lana-Renault, N., Regüés, D. 2007. Bedload transport under different flow conditions in a human-disturbed catchment in the Central Spanish Pyrenees. Catena 71, 155-163. https://doi.org/10.1016/j.catena.2006.04.029.
  • Lana-Renault, N., Regüés, D. 2009. Seasonal pattern of suspended sediment transport in an abandoned farmland catchment in the Central Pyrenees. Earth Surface Processes and Landforms 34 (9), 1291-1301. httpss://doi.org/10.1002/esp.1825.
  • Lana-Renault, N., Latron, J., Regüés, D. 2007. Streamflow response and water-table dynamics in a sub-Mediterranean research catchment (Central Pyrenees). Journal of Hydrology 347, 497-507. https://doi.org/10.1016/j.jhydrol.2007.09.037.
  • Lana-Renault, N., Latron, J., Karssenberg, D., Serrano, P., Regüés, D., Bierkens, M.F.P. 2011. Differences in stream flow in relation to changes in land cover: a comparative study in two sub-Mediterranean mountain catchments. Journal of Hydrology 411, 366-378. https://doi.org/10.1016/j.jhydrol.2011.10.020.
  • Lana-Renault, N., Regüés, D., Serrano, P., Latron, J. 2014a. Spatial and temporal variability of groundwater dynamics in a sub-Mediterranean mountain catchment. Hydrological Processes 28, 3288-3299. https://doi.org/10.1002/hyp.9892.
  • Lana-Renault, N., Nadal-Romero, E., Serrano-Muela, M.P., Alvera, B., Sánchez-Navarrete, P., Sanjuán, Y., García-Ruiz, J.M. 2014b. Comparative analysis of the response of various land covers to an exceptional rainfall event in the central Spanish Pyrenees, October 2012. Earth Surface Processes and Landforms 39, 581-592. https://doi.org/10.1002/esp.3465.
  • Lana- Renault, N., Ruiz-Flaño, P., Llorente, J.A., Arnáez, J. 2014c. Respuesta hidrológica de una cuenca de bancales abandonados (Camero Viejo, La Rioja). In: J. Arnáez, P. González-Sampériz, T. Lasanta, B. Valero-Garcés (Eds.), Geoecología, cambio ambiental y paisaje. IPE-CSIC and Universidad de La Rioja, Logroño, pp. 311-320.
  • Lana-Renault, N., Karssenberg, D., Bierkens, M. in review. Changes in catchment hydrology during vegetation recovery: individual effects of vegetation and soils. Journal of Hydrology.
  • Lane, S.N., Reaney, S.M., Heathwaite, A.L. 2009. Representation of landscape hydrological connectivity using a topographically driven surface flow index. Water Resources Research 45 (8), W08423. https://doi.org/10.1029/2008WR007336.
  • Lasanta-Martínez, T., Vicente-Serrano, S.M., Cuadrat-Prats, J.M. 2005. Mountain Mediterranean landscape evolution caused by the abandonment of traditional primary activities: a study of the Spanish Central Pyrenees. Applied Geography 25 (1), 47-65. https://doi.org/10.1016/j.apgeog.2004.11.001.
  • Lasanta, T., Arnáez, J., Pascual, N., Ruiz-Flaño, P., Errea, P., Lana-Renault, N. 2017a. Space-time process and drivers of land abandonment in Europe. Catena 149, 810-823. https://doi.org/10.1016/j.catena.2016.02.024
  • Lasanta, T., Errea, M.P., Nadal-Romero, E. 2017b. Traditional agrarian landscape in the Mediterranean mountains. A regional and local factor analysis in the Central Spainsh Pyrenees. Land Degradation & Development. https://doi.org/10.1002/ldr.2695.
  • Lasanta, T., Nadal-Romero, E., Errea, M.P. 2017c. The footprint of marginal agriculture in the Mediterranean mountain landscape: An analysis of the Central Spanish Pyrenees. Science of the Total Environment 599-600, 1823-2836. https://doi.org/10.1016/j.scitotenv.2017.05.092.
  • Latron, J., Gallart, F. 2007. Seasonal dynamics of runoff-contributing areas in a small mediterranean research catchment (Vallcebre, Eastern Pyrenees). Journal of Hydrology 335, 194-206. https://doi.org/10.1016/j.jhydrol.2006.11.012.
  • Latron, J., Gallart, F. 2008. Runoff generation processes in a small Mediterranean research catchment (Vallcebre, Eastern Pyrenees). Journal of Hydrology 358, 206-220. https://doi.org/10.1016/j.jhydrol.2008.06.014.
  • Latron, J., Soler, M., Llorens, P., Gallart, F. 2008. Spatial and temporal variability of the hydrological response in a small Mediterranean research catchment (Vallcebre, Eastern Pyrenees). Hydrological Processes 22 (6), 775-787. https://doi.org/10.1002/hyp.6648.
  • Lesschen, J.P., Cammeraat, L.H., Nieman, P. 2008. Erosion and terrace failure due to agricultural land abandonment in a semi-aridenvironment. Earth Surface Processes and Landforms 33, 1574-1584. https://doi.org/10.1002/esp.1676.
  • Lizaga, I., Quijano, L., Palazón, L., Gaspar, L., Navas, A. 2016. Enhancing Connectivity index to assess the effects of land use changes in a Mediterranean catchment. Land Degradation & Development. https://doi.org/10.1002/ldr.2676.
  • Llorente-Adán, J.A., Lana-Renault, N., Galilea, I., Ruiz-Flaño, P. 2015. The hydrological response of a small catchment after the abandonment of terrace cultivation. A study case in northwestern Spain. Geophysical Research Abstracts 17, 173-1.
  • López-Moreno, J.I., Beniston, M., García-Ruiz, J.M. 2008. Environmental change and water management in the Pyrenees: Facts and future perspectives for Mediterranean mountains. Global and Planetary Change 66 (3-4), 300-312. https://doi.org/10.1016/j.gloplacha.2007.10.004.
  • López-Moreno, J.I., Vicente-Serrano, S.M., Morán-Tejeda, E., Zabalza, J., Lorenzo-Lacruz, J., García-Ruiz, J.M. 2011. Impact of climate evolution and land use changes on water yield in the Ebro basin. Hydrology and Earth System Sciences 15, 311-322. https://doi.org/10.5194/hess-15-311-2011.
  • López-Vicente, M., Lana-Renault, N., García-Ruiz, J.M., Navas, A. 2011. Assessing the potential effect of different land cover management practices on sediment yield from an abandoned farmland catchment in the Spanish Pyrenees. Journal of Soils and Sediments 11 (8), 1440-1455. https://doi.org/10.1007/s11368-011-0428-2.
  • López-Vicente, M., Poesen, J., Navas, A., Gaspar, L. 2013a. Predicting runoff and sediment connectivity and soil erosion by water for different land use scenarios in the Spanish Pre-Pyrenees. Catena 102, 62-73. https://doi.org/10.1016/j.catena.2011.01.001.
  • López-Vicente, M., Navas, A., Gaspar, L., Machín, J. 2013b. Advanced modelling of runoff and soil redistribution for agricultural systems: the SERT model. Agricultural Water Management 125, 1-12. https://doi.org/10.1016/j.agwat.2013.04.002.
  • López-Vicente, M., Pérez-Bielsa, C., López-Montero, T., Lambán, L.J., Navas, A. 2014. Runoff simulation with eight different flow accumulation algorithms: Recommendations using a spatially distributed and open-source model. Environmental Modelling & Software 62, 11-21. https://doi.org/10.1016/j.envsoft.2014.08.025.
  • López-Vicente, M., Nadal-Romero, E., Cammeraat, E.L.H. 2017a. Hydrological connectivity does change over 70 years of abandonment and afforestation in the Spanish Pyrenees. Land Degradation & Development 28 (4), 1298-1310. https://doi.org/10.1002/ldr.2531.
  • López-Vicente, M., Sun, X., Onda, Y., Kato, H., Gomi, T., Hiraoka, M. 2017b. Effect of tree thinning and skidding trails on hydrological connectivity in two Japanese forest catchments. Geomorphology 292, 104-114. https://doi.org/10.1016/j.geomorph.2017.05.006.
  • Lorente, A., Martí, C., Beguería, S., Arnáez, J., García-Ruiz, J.M. 2000. La exportación de sedimento en suspensión en una cuenca de campos abandonados, Pirineo Central. Cuaternario y Geomorfología 14 (1-2), 21-34.
  • MacDonald, D., Crabtree, J.R., Wiesinger, G., Dax, T., Stamou, N. Fleury, P., Gutérrez Lazpita, J., Gibon, A. 2000. Agricultural abandonment in mountain areas of Europe: environmental consequences and policy response. Journal of Environmental Management 59, 47-69. https://doi.org/10.1006/jema.1999.0335.
  • Marchamalo, M., Hooke, J.M., Sandercock, P.J. 2016. Flow and sediment connectivity in semi-arid landscapes in SE Spain: patterns and controls. Land Degradation & Development 27 (4), 1032-1044. https://doi.org/10.1002/ldr.2352.
  • Martínez-Mena, M., Albaladejo, J., Castillo, V.M. 1998. Factors influencing surface runoff generation in a Mediterranean semi-arid environment: Chimaco watershed, SE Spain. Hydrological Processes 12 (5), 741-754. https://doi.org/10.1002/(SICI)1099-1085(19980430)12:5<741::AID-HYP622>3.0.CO;2-F.
  • Martínez-Murillo, J.F., López-Vicente, M. 2017. Effect of salvage logging and check-dams on simulated hydrological connectivity in a burned area. Land Degradation & Development. https://doi.org/10.1002/ldr.2735.
  • Meerkerk, A.L., van Wesemael, B., Bellin, N. 2009. Application of connectivity theory to model the impact of terrace failure on runoff in semi-arid catchments. Hydrological Processes 23 (19), 2792-2803. https://doi.org/10.1002/hyp.7376.
  • Miller, J.D., Nyhan, J.W., Yool, S.R. 2003. Modeling potential erosion due to the Cerro Grande Fire with a GIS-based implementation of the Revised Universal Soil Loss Equation. International Journal of Wildland Fire 12, 85-100. https://doi.org/10.1071/WF02017.
  • Molinillo, M., Lasanta, T., García-Ruiz, J.M. 1997. Managing mountainous degraded landscape after farmland abandonment in the Central Spanish Pyrenees. Environmental Management 21(4), 587-598. https://doi.org/10.1007/s002679900051.
  • Nadal-Romero, E., Lana-Renault, N., Serrano-Muela, P., Regüés, D., Alvera, B., García-Ruiz, J.M. 2012. Sediment balance in four catchments with different land cover in the Central Spanish Pyrenees. Zeitschrift für Geomorphologie 56 (3), 147-168. https://doi.org/10.1127/0372-8854/2012/S-00109.
  • Nadal-Romero, E., Cammeraat, E., Serrano-Muela, M.P., Lana-Renault, N., Regüés, D. 2016. Hydrological response of an afforested catchment in a Mediterranean humid mountain area: a comparative study with a natural forest. Hydrological Processes 30, 2717-2733. https://doi.org/10.1002/hyp.10820.
  • Navas, A., Machín, J., Soto, J. 2005. Assessing soil erosion in a Pyrenean mountain catchment using GIS and fallout 137Cs. Agriculture, Ecosystems & Environment 105 (3), 493-506. https://doi.org/10.1016/j.agee.2004.07.005.
  • Navas, A., Machín, J., Beguería, S., López-Vicente, M., Gaspar, L. 2008. Soil properties and physiographic factors controlling the natural vegetation re-growth in a disturbed catchment of the Central Spanish Pyrenees. Agroforestry Systems 72, 173-185. https://doi.org/10.1007/s10457-007-9085-2.
  • Nunes, J.P., Bernard-Jannin, L., Rodríguez Blanco, M.L., Santos, J.M., de Oliveira Alves Coelho, C., Keizer, J.J. 2016. Hydrological and Erosion Processes in Terraced Fields: Observations from a Humid Mediterranean Region in Northern Portugal Land Degradation & Development. https://doi.org/10.1002/ldr.2550.
  • Ore, G., Bruins, H.J. 2012. Design features of ancient agriculture terrace walls in the Negev Desert: human-made geodiversity. Land Degradation & Development 23, 409-418. https://doi.org/10.1002/ldr.2152.
  • Ortigosa, L., García-Ruiz, J.M., Gil, E. 1990. Land reclamation by reforestation in the Central Pyrenees. Mountain Research and Development 10 (3), 281-288. https://doi.org/10.2307/3673607.
  • Ortíz-Rodríguez, A.J., Borselli, L., Sarocchi, D. 2017. Flow connectivity in active volcanic areas: Use of index of connectivity in the assessment of lateral flow contribution to main streams. Catena 157, 90-111. https://doi.org/10.1016/j.catena.2017.05.009.
  • Oserín, M. 2006. Cambios en la gestión del territorio de una montaña media mediterránea y sus impactos medioambientales. Unpublished PhD, University of La Rioja, Logroño, 368 pp.
  • Palleiro, L., Rodríguez-Blanco, M.L., Taboada-Castro, M.M., Taboada-Castro, M.T. 2014. Hydrological response of a humid agroforestry catchment at different time scales. Hydrological Processes 28 (4), 1677-1688. https://doi.org/10.1002/hyp.9714.
  • Panagos, P., Borrelli, P., Meusburger, K., Alewell, C., Lugato, E., Montanarella, L. 2015. Estimating the soil erosion cover-management factor at the European scale. Land Use Policy 48, 38-50. https://doi.org/10.1016/j.landusepol.2015.05.021.
  • Piégay, H., Walling, D., Landon, N., He, Q., Liébault, F., Petiot, R. 2004. Contemporary changes in sediment yield in an alpine mountain basin due to afforestation (the upper Drôme in France). Catena 55 (2), 183-212. https://doi.org/10.1016/S0341-8162(03)00118-8.
  • Planchon, O., Darboux, F. 2001. A fast, simple and versatile algorithm to fill the depressions of digital elevation models. Catena 46 (2-3), 159-176. https://doi.org/10.1016/S0341-8162(01)00164-3.
  • Poyatos, R., Latron, J., Llorens, P. 2003. Land use and land cover change after agricultural abandonment: the case of a Mediterranean Mountain area (Catalan Pre-Pyrenees). Mountain Research and Development 23 (4), 362-368.
  • Preti, F., Guastini, E., Penna, D., Dani, A., Cassiani, G., Boaga, J., Deiana, R., Romano, N., Nasta, P., Palladino, M., Errico, A., Giambastiani, Y., Trucchi, P., Tarolli, P. 2017. Conceptualization of water flow pathways in agricultural terraced landscapes. Land Degradation & Development. https://doi.org/10.1002/ldr.2764.
  • Prosdocimi, M., Burguet, M., Di Prima, S., Sofia, G., Terol, E., Rodrigo-Comino, J., Cerdà, A., Tarolli, P. 2017. Rainfall simulation and Structure-from-Motion photogrammetry for the analysis of soil water erosion in Mediterranean vineyards. Science of the Total Environment 574, 204-215. https://doi.org/10.1016/j.scitotenv.2016.09.036.
  • Puigdefábregas, J. 2005. The role of vegetation patterns in structuring runoff and sediment fluxes in drylands. Earth Surface Processes and Landforms 30, 133-147. https://doi.org/10.1002/esp.1181.
  • Quiñonero-Rubio, J.M., Boix-Fayos, C., de Vente, J. 2013. Development and application of a multi-factorial sediment connectivity index at the catchment scale. Cuadernos de Investigación Geográfica 39, 203-223. https://doi.org/10.18172/cig.1988.
  • Quiñonero-Rubio, J.M., Nadeu, E., Boix-Fayos, C., de Vente, J. 2016. Evaluation of the effectiveness of forest restoration and check-dams to reduce catchment sediment yield. Land Degradation & Development 27, 1018-1031. https://doi.org/ 10.1002/ldr.2331.
  • Reaney, S.M., Bracken, L.J., Kirkby, M.J. 2014. The importance of surface controls on overland flow connectivity in semi-arid environments: Results from a numerical experimental approach. Hydrological Processes 28 (4), 2116-2128. https://doi.org/10.1002/hyp.9769.
  • Regüés, D., Serrano-Muela, P., Nadal-Romero, E., Lana-Renault, N. 2012. Análisis de la variabilidad de la infiltración en un gradiente de degradación de usos del suelo en el Pirineo Central. Cuaternario y Geomorfología 26 (1-2), 9-28.
  • Regüés, D., Badía, D., Echeverría, M.T., Gispert, M., Lana-Renault, N., León, J., Nadal-Romero, E., Pardini, G., Serrano-Muela, P. 2017. Analysing the effect of land uses and vegetation cover on soil infiltration in three contrasting environments in north east Spain. Cuadernos de Investigación Geográfica- Geographical Research Letters 43, 141-169. https://doi.org/10.18172/cig.3164.
  • Richard, D., Mathys, N. 1999. Historique, contexte technique et scientifique des BVRE de Draix. In: N. Mathys, N. (Ed.), Caractéristiques, données disponibles et principaux résultats acquis au cours des dix ans de suivi. Actes du séminaire Les bassins versants expérimentaux de Draix. Cemagref-Editions, Coll. Actes de colloques. Grenoble, pp. 11-28.
  • Romero-Díaz, A., Ruiz-Sinoga, J.D., Robledano-Aymerich, F., Brevik, E.C., Cerdà, A. 2017. Ecosystem responses to land abandonment in Western Mediterranean Mountains. Catena 149, 824-835. http://doi.org/10.1016/j.catena.2016.08.013.
  • Sandercock, P.J., Hooke, J.M. 2011. Vegetation effects on sediment connectivity and processes in an ephemeral channel in SE Spain. Journal of Arid Environments 75 (3), 239-254. https://doi.org/10.1016/j. jaridenv.2010.10.005.
  • Sanjuán, Y., Gómez-Villar, A., Nadal-Romero, E., Álvarez-Martínez, J., Arnáez, J., Serrano-Muela, M.P., Rubiales, J.M., González-Sampériz, P., García-Ruiz, J.M. 2016. Linking land cover changes in the sub-alpine and montane belts to changes in a torrential river. Land Degradation & Development 27, 179-189. https://doi.org/10.1002/ldr.2294.
  • Schwab, G.O., Fangmeier, D.D., Elliot, W.J. 1996. Soil and water management systems, fourth edition. John Wiley and Sons, New York, 371 pp.
  • Seeger, M., Ries, J.B. 2008. Soil degradation and soil surface process intensities on abandoned fields in Mediterranean mountain environments. Land Degradation & Development 19, 488-501. https://doi.org/10.1002/ldr.854.
  • Seeger, M., Errea, M.P., Beguería, S., Arnáez, J., Martí-Bono, C., García-Ruiz, J.M. 2004. Catchment soil moisture and rainfall characteristics as determinant factors for discharge/suspended sediment hysteretic loops in a small headwater catchment in the Spanish Pyrenees. Journal of Hydrology 288, 299-311. https://doi.org/ 10.1016/j.jhydrol.2003.10.012.
  • Serrano-Muela, M.P., Lana-Renault, N., Nadal-Romero, E., Regüés, D., Latron, J., Martín-Bono, C., García-Ruiz, J.M. 2008. Forests and their hydrological effects in Mediterranean Mountains. The case of the Central Spanish Pyrenees. Mountain Research and Development 28 (3-4) 279-285. https://doi.org/10.1659/mrd.0876.
  • Serano-Muela, M.P., Regüés, D., Nadal-Romero, E. 2012. Trascolación y escorrentía cortical en la cuenca experimental de San Salvador, Pirineo Central español. Cuaternario y Geomorfología 26 (1-2), 49-72.
  • Serrano-Muela, P., Nadal-Romero, E., Lana-Renault, N. 2014. La relación suelo-vegetación y su influencia en el comportamiento hidrológico de distintos ambientes vegetales. In: J. Arnáez, P. González-Sampériz, T. Lasanta, B. Valero-Garcés (Eds), Geoecología, cambio ambiental y paisaje. IPE-CSIC-Universidad de La Rioja, pp. 217-228
  • Solé-Benet, A., Lázaro, R., Domingo, F., Cantón, Y., Puigdefábregas, J. 2010. Why most agricultural terraces in steep slopes in semiarid SE Spain remain well preserved since their abandonment 50 years ago? Pirineos 165, 215-235. https://doi.org/ 10.3989/Pirineos.2010.165011.
  • Tarboton, D.G. 1997. A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resources Research 33, 309-319. https://doi.org/10.1029/96WR03137.
  • Tarboton, D.G. 2013. TauDEM 5.1, Terrain Analysis Using Digital Elevation Models [online] Available from: https://hydrology.usu.edu/taudem/taudem5/.
  • Tzanopoulos, J., Mitchley, J., Pantis, J.D. 2007. Vegetation dynamics in abandoned crop fields on a Mediterranean island: development of succession model and estimation of disturbance thresholds. Agriculture, Ecosystems & Environment 120, 370-376. https://doi.org/10.1016/j.agee.2006.10.011.
  • Vallauri, D.R., Aroson, J., Barbero, M. 2002. An analysis of forest restoration 120 years after reforestation on badlands in the Southwestern Alps. Restoration Ecology 10 (1), 16-26. https://doi.org/10.1046/j.1526-100X.2002.10102.x.
  • Verburg, P.H., Overmars, K.P. 2009. Combining top-down and bottom-up dynamics in land use modeling: exploring the future of abandoned farmlands in Europe with Dyna-CLUE model. Landscape Ecology 24 (9), 1167-81. https://doi.org/10.1007/s10980-009-9355-7.
  • Vigiak, O., Borselli, L., Newham, L.T.H., McInnes, J., Roberts, A.M. 2012. Comparison of conceptual landscape metrics to define hillslope-scale sediment delivery ratio. Geomorphology 138, 74-88. https://doi.org/10.1016/j.geomorph.2011.08.026.
  • Whipkey, R.Z. 1965. Subsurface storm-flow from forested slopes. Bulletin of the International Association of Hydrological Sciences 10, 74-85. https://doi.org/10.1080/02626666509493392.