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Abstract

We extend Newman and Keldysh theorems to the behavior of sequences

of functions in Hp(µ) which explain geometric properties of discs in these

spaces. Through Keldysh’s theorem we obtain asymptotic results for ex-

tremal polynomials in Sobolev spaces.

Key words and phrases: Hp−space, orthogonal polynomials.

AMS (MOS) subject classification: 32A35, 42C05.

1 Introduction and main results

In this paper we extend Newman and Keldysh theorems to Hp(µ) with 0 < p <

∞. These results are very useful for obtaining convergence in norm. It is known

that Hp, 0 < p ≤ 1, are not locally uniformly convex spaces and they are used

for checking that Hahn-Banach theorem fails in a non-locally convex space with

“reasonable” properties. That Hp would seem destined to be of further interest

in the future can be guessed from the fact that the most common “singularities”

in analysis, such as those given by rational functions, or carried on analytic sub-

varieties, or representable by Fourier integral (“Lagrangian”) distributions, are

all of them locally in Hp, for some p < 1.

We will use these theorems for proving a result about asymptotics of extremal

Sobolev polynomials. Sobolev orthogonal polynomials have been receiving con-

siderable attention in the last two decades, as a natural consequence of the great

importance of Sobolev spaces. They are also connected with spectral theory for

ordinary differential equations, matrix orthogonal polynomials, and higher or-

der recurrence relations. They appear also in a natural way in some problems of

approximation theory where the derivatives are considered. Two updated sur-

veys on Sobolev orthogonal polynomials are presented in [12] and [15] (look at
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the references therein). Asymptotics for Sobolev orthogonal polynomials have

been described among others in [1], [10], [11], [13], and [14].

We begin with the extensions of Newman and Keldysh theorems that will be

proved in Section 3, but first we set some notations. Let m be the normalized

Lebesgue measure on [0, 2π) and let µ be a positive Borel measure on [0, 2π)

satisfying Szegő’s condition, i.e. µ ∈ S ⇔ logµ′(θ) ∈ L1, where µ′(θ) de-

notes the Radon-Nikodym derivate of µ with respect to m. Hp(µ) is defined

as the Lp(µ) closure of the polynomials in eiθ and ‖f‖p,µ denotes as usually(∫
|f(eiθ)|pdµ(θ)

)1/p for f ∈ Lp(µ). For a sake of simplicity we will write Hp

instead of Hp(m). Let Dp(µ, z) be the Szegő function

Dp(µ, z) = exp
{

1
p

∫ π

−π

ζ + z

ζ − z
logµ′(θ) dm(θ)

}
, ζ = eiθ (1)

and

Kp(µ, z) =


Dp(µ,0)
Dp(µ,z) , if z ∈ suppµa,

0, if z ∈ suppµs,
(2)

where µa and µs are the absolutely continuous and singular parts, respectively,

of µ with respect to m. Let Lps(µ) = {f ∈ Lp(µ) : f = 0, µa − a.e.} and

Lpa(µ) = {f ∈ Lp(µ) : f = 0, µs − a.e.} be the absolutely continuous and

singular subspaces, respectively. Similarly, we define Hp
s (µ) and Hp

a(µ). Set

D = {z : |z| < 1} and E = {z : |z| > 1} .

Theorem 1. Assume that µ ∈ S. If fn and f are in Hp
a(µ), 0 < p <∞, such

that

i) lim
n→∞

‖fn‖p,µ = ‖f‖p,µ,

ii) lim
n→∞

fn(z) = f(z) holds uniformly on each compact subset of D,

then

lim
n→∞

‖fn − f‖p,µ = 0. (3)

3



Remark 1. Theorem 1 was proved by Newman ( see [16]) for the cases p = 1

and µ = m, the Lebesgue measure. This theorem gives an alternative look for

the uniform convexity of the Hp(µ) spaces.

In the next section, we are going to prove that if f ∈ Hp(µ), then there exist

unique functions f̃ , fs such that f = Kpf̃ + fs, f̃ ∈ Hp, and fs ∈ Lps(µ). With

these notations we set

Theorem 2. Let {zi}i=1,... ,Λ be a set of points in D where Λ can be finite or

infinite, µ ∈ S, and {fn} ⊂ Hp(µ), 0 < p <∞, such that

i) lim
n→∞

f̃n(0) = 1;

ii) lim
n→∞

f̃n(zi) = 0, i = 1, 2, . . . ;

iii)
Λ∑
i=1

(1− |zi|) < +∞;

iv) lim
n→∞

‖fn‖p,µ =
Dp(µ, 0)∏Λ
i=1 |zi|p

.

Then

a) lim
n→∞

f̃n(z) =
Λ∏
i=1

z − zi
z̄iz − 1

z̄i
|zi|2

holds uniformly on each compact subset of D.

b) lim
n→∞

∥∥∥∥∥fn −
Λ∏
i=1

z − zi
z̄iz − 1

z̄i
|zi|2

Kp(z)

∥∥∥∥∥
p,µ

= 0.

Remark 2. For the cases µ = m and Λ = ∅, Theorem 2 was setting by Keldysh

(see [8]).

Remark 3. Newman and Keldysh theorems do not hold in H∞ as the follow-

ing example shows. Set fn(z) = nz+n−1
n+(n−1)z . It is easy to check that fn ∈

H∞, ‖fn‖∞ = 1, and lim
n→∞

fn = 1 uniformly on each compact subset of D, but

‖fn − 1‖∞ 6→ 0.

The other results that will be proved in Section 4 give us strong asymptotics for

extremal polynomials, {Pn}n=0,1,..., solving the following extremal problem:

τn,µ0,... ,µk,p = inf


k∑
j=0

‖Q(j)‖p,µj : Q(z) = zn + . . .

 , (4)
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where 0 < p < ∞ and µ0, . . . , µk are positive Borel measures on [0, 2π), with

µ0 6≡ 0. When p = 2 the polynomials {Pn}n=0,1,... are usually said to be

Sobolev orthogonal polynomials. The special case k = 1 has been studied by

many authors (see, for instance [12], [14], [20]). For k = 0 we have the classical

orthogonality.

Theorem 3. The following statements are equivalent.

(i) µk ∈ S;

(ii) lim sup
n→∞

τn,µ0,... ,µk,p

nk
> 0;

(iii) There exists a function ∆ ∈ Hp
a(µk) with ∆(0) = 1 such that

lim
n→∞

∫ ∣∣∣∣∣ P (k)
n (z)

nk zn−k
−∆(1/z)

∣∣∣∣∣
p

µ′k(θ)dm(θ) = 0, z = eiθ.

Moreover, if (i) holds then

lim
n→∞

τn,µ0,... ,µk,p

nk
= Dp(µk, 0),

the function ∆(z) is equal to Kp(µk, z) in (iii), and

lim
n→∞

P
(k)
n (z)

nk zn−k
= Kp(µk, 1/z) (5)

holds uniformly on each compact subset of E.

When k = 0 the extremal problem (4) was studied by Geronimus (see [5])

who stated more precisely that Theorem 3 holds for k = 0. The following

theorem is similar to Theorem 2 of [14] where it was observed that there exist

asymptotically extremal polynomials for all j, 0 ≤ j ≤ k, and p = 2.

Theorem 4. If the measures µl ∈ S, j ≤ l ≤ k, then for all l, j ≤ l ≤ k,

lim
n→∞

P
(l)
n (z)
nlzn−l

= Kp(µk, 1/z), (6)

holds uniformly on each compact subset of E.

The framework of this paper is in Section 2 we describe some known properties of

the Hp-extremal Szegő function and the necessary results for proving the three

main results. Finally in Sections 3 and 4 we prove all the theorems presented

in Section 1.
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2 Auxiliary Results

Given µ ∈ S the corresponding Szegő function satisfies the following properties:

1 Dp(µ, z) is analytic on D, more precisely, Dp(µ, z) ∈ Hp;

2 Dp(µ, z) 6= 0 in D, and Dp(µ, 0) > 0;

3 |Dp(µ, eiθ)|p = µ′(θ) a. e. on [0, 2π).

The function Dp(µ, .) is not uniquely determined by the conditions 1 − 3. To

this aim it is also required that Dp(µ, .) must be an outer function (see page

277 in [22] or page 118 in [17]).

We shall need the following well known result (looking for an easy reading we

include the proof).

Lemma 1. There is a unique solution for the extremal problem

inf {‖ΦDp(µ, ·)‖p : Φ ∈ Kp(µ, ·)Hp, Φ(0) = 1}

given by Φ(z) = Kp(µ, z) and the infimum is Dp(µ, 0).

Proof. First, let assume p = 2. Let Φ ∈ K2(µ, ·)H2 be such that Φ(0) = 1, then

|Φ(z)D2(µ, z)|2 is a subharmonic function on D, soD2(µ, 0)2 = |Φ(0)D2(µ, 0)|2 ≤

‖ΦDp(µ, ·)‖22. Moreover, we have that K2 belongs to K2(µ, ·)H2, its value at

z = 0 is 1, and ‖K2D2(µ, ·)‖22 = D2(µ, 0)2. The uniqueness follows immediately

from the parallelogram law. If p 6= 2 we reduce these cases to p = 2 because of

each function f ∈ Kp(µ, ·)Hp has a decomposition f(z) = B(z)[h(z)]2/p, where

B is the Blaschke product associated with the zeros of f and h ∈ K2(µ, ·)H2

with ‖f‖pp = ‖h‖22 (see [9], p. 96).

It is very well known that the density of the space of polynomials in Lp(µ) can

be also characterized in terms of the Szegő condition for µ. Hp(µ) = Lp(µ) if

and only if µ 6∈ S (it is an inmediatly consecuence of Geronimus and Weierstrass

theorems and the fact that continuous functions are dense in Lp(µ)). For p = 2
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and Sobolev’s norms look at [19]. It is even the characterization of Hp(µ) for

µ ∈ S. The following theorem is very well known but we have only found

references for 1 ≤ p ≤ ∞ (see page 29 in [7], page 22 in [18]).

Theorem 5. If we assume µ ∈ S, then Hp(µ) = KpH
p ⊕ Lps(µ).

Proof. Set g ∈ Hp(µ). Then g ∈ Lp(µ) and g = g1 + g2 with g1 ∈ Lpa(µ) and

g2 ∈ Lps(µ). We must prove that either g1 ∈ KpH
p or that

g1

Kp
∈ Hp. It is

enough to prove that there exists {jn}, jn ∈ Hp, such that ‖jn −
g1

Kp
‖p −→ 0.

Indeed, since g ∈ Hp(µ) we can get a sequence of polynomials {hn} such that,

‖hn − g‖p,µ −→ 0. Hence, with z = eiθ,∫ ∣∣∣∣ hn(z)
Kp(z)

− g1(z)
Kp(z)

∣∣∣∣p dm(θ) =
∫
|hn(z)− g1(z)|p µ′(θ)

|Dp(µ, 0)|p
dm(θ) =

∫
|hn(z)− g(z)|p µ′(θ)

|Dp(µ, 0)|p
dm(θ) ≤

∥∥∥∥ hn − g
Dp(µ, 0)

∥∥∥∥p
p,µ

−→ 0,

and jn =
hn
Kp
∈ Hp for each n. The uniqueness of the representation follows

immediately from the fact Hp
a(µ) ∩ Lps(µ) = 0. Hence, we have proved one of

the inclusions. We are going to see that KpH
p ⊂ Hp(µ). Consider f = Kpf̃

with f̃ ∈ Hp. Then there exist polynomials hn such that

‖f̃ − hn‖p → 0 =⇒ ‖Kpf̃ −Kphn‖p,µ → 0,

and because of Kphn ∈ Hp(µ), we get f ∈ Hp(µ).

Now set f ∈ Lps(µ). As µs 6∈ S, there exists polynomials Qn such that

‖f −Qn‖µs,p → 0. (7)

Moreover, because of
Qn
Kp
∈ Hp, we can find a sequence of polynomials {hn}

that satisfy ∥∥∥∥QnKp
− hn

∥∥∥∥
p

→ 0⇐⇒ ‖Qn −Kphn‖µa,p → 0. (8)

Combining (7) and (8) with

‖f −Qn +Kphn‖µ,p = ‖f −Qn‖µs,p + ‖Qn −Kphn‖µa,p,

the proof is concluded.
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The last auxiliary result that we need is

Lemma 2. (see [3], p. 21) Let ϕn, ϕ ∈ Lp, 0 < p < ∞. If ϕn(x) → ϕ(x) a.e.

and ‖ϕn‖p → ‖ϕ‖p, then ‖ϕn − ϕ‖p → 0.

3 Proof of the Theorems 1 and 2

Proof of Theorem 1

Proof. First, we consider the case µ = m the Lebesgue measure.

a) It is easy to see that the theorem holds for 1 < p < ∞. Indeed, from the

asumptions i) and ii) of the Theorem we obtain limn→∞ ‖(fn + f)/2‖p =

‖f‖p, so, because of the uniform convexity of Lp, 1 < p <∞, (or Clarkson

inequalities, see [2], p. 3) we get ‖fn − f‖p → 0.

b) Let us consider 0 < p ≤ 1. We can suppose that f is not identically 0

otherwise the proof of the theorem is trivial, since ‖fn‖p −→ ‖f‖p = 0.

c) From Lemma 2, if i) holds and for any Γ ⊂ N there exists Γ′ ⊂ Γ such that

lim
n
fn(z) = f(z), a.e., n ∈ Γ′, then we have (3).

d) If fn(z) 6= 0 holds for n ≥ N0 and z ∈ D, then using Hurwitz’s theorem also

f(z) 6= 0 holds in D. So we can fix a branch of wp/2 such that hn = f
p/2
n

and h = fp/2 with hn, h ∈ H2, ‖hn‖22 = ‖fn‖pp, ‖h‖22 = ‖f‖pp, limhn = h

uniformly on each compact subset of D, and lim ‖hn‖2 = ‖h‖2. This

means i) and ii) hold for hn and h in H2. Therefore, from a) we have

(3). Then according to the Riesz theorem, there exists Γ ⊂ N such that

lim
n∈Γ

hn(z) = h(z), a.e., hence lim
n∈Γ

fn(z) = f(z), a.e. and from c) we obtain

(3).

e) If fn has some zeros in D, then fn = Bnhn where hn is a zero-free func-

tion in Hp, ‖hn‖p = ‖fn‖p, and Bn is a Blaschke product so Bn ∈

H∞. Then {Bn} and {hn} are uniformly bounded in each compact sub-

set of D. Hence, from the Montel theorem there exists a subsequence
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Γ1 ⊂ N such that lim
n∈Γ1

hn(z) = h(z), h ∈ Hp, and lim
n∈Γ1

Bn(z) =

B(z) hold uniformly on each compact subset of D. Moreover, ‖h‖p ≤

lim sup ‖hn‖p = lim sup ‖fn‖p = ‖f‖p, while ‖f‖p ≤ ‖h‖p‖B‖∞ and

‖B‖∞ ≤ lim sup ‖Bn‖∞ = 1. Thus, ‖hB‖p = ‖h‖p, and as a consequence

|B(eiθ)| = 1, a.e.. So lim
n
‖hn‖p = ‖h‖p and lim

n
‖Bn‖2 = ‖B‖2. Then

using d) and a), there exists Γ2 ⊂ Γ1 such that lim
n∈Γ2

hn(z) = h(z), a.e.

and lim
n∈Γ2

Bn(z) = B(z), a.e., respectively, hence lim
n∈Γ2

fn(z) = f(z), a.e.

and from c) the theorem is proved.

Now, in order to complete the proof it is enough to see that the functions f̃n

and f̃ hold the assumption of theorem with Lebesgue measure.

Proof of Theorem 2

Proof. The sketch of the proof is the following. First, we will prove the theorem

for Lebesgue measure and Λ = ∅ in two steps: p = 2 and p 6= 2. Second, we

consider a general µ ∈ S and again Λ = ∅. Finally, we prove the general case.

A) Set µ = m, p = 2, and Λ = ∅. Notice that in this case Dp(µ, z) ≡ 1.

From the monotonicity of the means and triangular inequality, we get

|fn(0) + 1| ≤ ‖fn + 1‖2 ≤ ‖fn‖2 + ‖1‖2. Hence lim
n→∞

‖fn + 1‖2 = 2. Now,

using the parallelogram law we obtain lim
n→∞

‖fn − 1‖2 = 0, this is b).

The statement a) follows immediately from Cauchy formula and Hőlder

inequality.

B) Now let us consider p 6= 2 and again µ = m, and Λ = ∅. Using the

factorization theorem for Hp, we get that there exist Bn ∈ H∞, more

precisely, Blaschke products, and hn ∈ H2, such that

fn(z) = Bn(z)hn(z)2/p =
Bn(z)
Bn(0)

(Bn(0)p/2hn(z))2/p and ‖fn‖pp = ‖hn‖22.

We are going to see that h̄n(z) = Bn(0)p/2hn(z) ∈ H2 holds the conditions
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studied in A).

1 = lim
n→∞

|fn(0)|p/2 = lim
n→∞

|Bn(0)p/2hn(0)| ≤ lim
n→∞

‖Bn(0)p/2hn‖2 =

lim
n→∞

|Bn(0)|p/2‖hn‖2 = lim
n→∞

|Bn(0)|p/2 ≤ 1,

because |Bn(z)| = 1 if |z| = 1 and from the maximun principle the in-

equality follows.

Hence

lim
n→∞

|Bn(0)|p/2 = 1, (9)

and we obtain lim
n→∞

‖h̄n‖2 = 1. Then, from the previous case, we have a)

and b) for h̄n. The same holds for
{
B̄n(z) =

Bn(z)
Bn(0)

}
, B̄n ∈ H∞ ⊂ H2.

Hence {B̄n} holds a) and b). Then, we have a) for fn.

It remains to see that b) holds. Since b) holds for h̄n and B̄n, there exists

{nj} ⊂ Γ such that

lim
j
h̄nj (z) = 1, a.e. and lim

j
B̄nj (z) = 1, a.e..

Using Lemma 2 the proof of this case is completed.

C) In this step we consider a general µ ∈ S and again Λ = ∅. The main idea is

to apply the previous argument to f̃n. In fact,

lim
n→∞

‖fn‖pp,µ = lim
n→∞

‖Kpf̃n‖pp,µa + ‖fn,s‖pp,µs = Dp(µ, 0)p,

and this yields

lim sup
n→∞

‖Kpf̃n‖pp,µa ≤ Dp(µ, 0)p.

Then

lim sup
n→∞

∫
|Kp(eiθ)f̃n(eiθ)|pµ′(θ)dm(θ) =

Dp(µ, 0)p lim sup
n→∞

∫
|f̃n(eiθ)|pdm(θ) ≤ Dp(µ, 0)p,
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hence lim sup
n→∞

‖f̃n‖pp ≤ 1. From the case analyzed above, we get lim
n→∞

f̃n(z) =

1 uniformly on compact subsets of D and lim
n→∞

‖f̃n − 1‖p = 0. Therefore

lim
n→∞

‖f̃n‖p = 1 and lim
n→∞

‖Kpf̃n‖p,µa = Dp(µ, 0). Thus lim
n→∞

‖fn,s‖p,µs =

0 and as a consequence

lim
n→∞

‖fn −Kp‖pp,µ = lim
n→∞

(
‖fn −Kp‖pp,µa + ‖fn −Kp‖pp,µs

)
=

lim
n→∞

(
‖Kpf̃n −Kp‖pp,µa + ‖fn,s‖pp,µs

)
=

lim
n→∞

(
Dp(µ, 0)p‖f̃n − 1‖pp + ‖fn,s‖pp,µs

)
= 0.

D) Finally, we prove the general case.

Let fn = Kpf̃n + fn,s with f̃n ∈ Hp and ‖fn‖µ,p ≥ ‖Kpf̃n‖µ,p. Then

lim sup
n→∞

‖f̃n‖p ≤
1∏
|zi|p

from iv). We are going to see that all convergent

subsequence of f̃n converges to the same limit uniformly on each compact

subset of D.

Let f̃ be a limit function. From ii), f̃(zi) = 0, f̃ ∈ Hp and ‖f̃‖p ≤
1∏
|zi|p

,

f̃(z) =
∏ z − zi

zz̄i − 1
z̄i
|zi|2

∏ z − wi
zw̄i − 1

w̄i
|wi|2

h(z)

where {zi}, {wi} are zeros of f̃ , h is a zero-free function in Hp, h(0) = 1,

and ‖f̃‖p =
∏ 1
|zi|p

∏ 1
|wi|p

‖h‖p. So ‖h‖p ≤ 1 and, as a consequence,

h ≡ 1. Therefore, the set {wi} is empty and f̃(z) =
∏ z − zi

zz̄i − 1
z̄i
|zi|2

.

Moreover, we have lim
n→∞

f̃n(z) = f̃(z) uniformly on each compact subset

of D and ‖f̃n‖p ≤ ‖f̃‖p. Then from Theorem 1, we obtain lim
n→∞

‖f̃n −

f̃‖p = 0 and this is the same that lim
n→∞

‖Kpf̃n − Kpf̃‖p,µa = 0. In

particular, lim
n→∞

‖Kpf̃n‖p,µa = ‖Kpf̃‖p,µa =
1∏
|zi|p

Dp(µ, 0), and then

lim
n→∞

‖fn‖p,µs = 0. Therefore, we obtain b).
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4 Asymptotics for extremal Sobolev polynomials

Proof of Theorem 3

Proof. (i)⇒(ii)

We are going to prove that lim
n→∞

τn, µ0,... ,µk, p

nk
= Dp(µk, 0) > 0. Obviously

τn, µ0,... ,µk, p ≥ ‖P
(k)
n ‖p, µk ≥ (n)kτn−k, µk, p, with (n)k = n(n− 1) . . . (n−

k + 1). Since µk satisfies the Szegő’s condition, as a consequence of the

Geronimus theorem we obtain limn→∞ τn−k, µk, p = Dp(µk, 0). Thus

lim inf
n→∞

τn, µ0,... ,µk, p

nk
≥ lim inf

n→∞

(n)kτn−k, µk, p
nk

= lim inf
n→∞

τn−k, µk, p = Dp(µk, 0).

Now we prove

lim sup
n→∞

τn, µ0,... ,µk, p

nk
≤ Dp(µk, 0). (10)

Let Qn be the monic polynomial of degree n minimizing the norm ‖·‖p,µk ;

since we are on T and using Minkowski’s inequality, we get

τn+m,{µj},p ≤
k∑
j=0

‖(zmQn)(j)‖p,µj =
k∑
j=0

∥∥∥∥∥
j∑
i=0

(
j

i

)
(zm)(i)(Qn)(j−i)

∥∥∥∥∥
p,µj

≤ (m)k‖Qn‖p,µk + f(n)o(mk).

Dividing these inequalities through bymk and taking limits (first, m→∞,

and then n→∞) we obtain (10).

(ii)⇒(i)

Set k = 1 and assume that µ1 does not satisfy the Szegő’s condition. Then

from the Geronimus theorem lim
n→∞

τn, µ1, p = 0. For a fixed ε > 0, there

exists n0(ε) such that for n ≥ n0(ε) the set

{Q : Q(z) = zn + · · · , ‖Q‖p, µ1 ≤ ε}
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is non empty. For each n ≥ n0 we consider the extremal problem

αn, µ0, µ1, p(ε) = inf {‖Q‖p, µ0 + ‖Q′‖p, µ1 :

Q(z) = zn + · · · , ‖Q‖p, µ1 ≤ ε} .

It is obvious τn, µ0, µ1, p ≤ αn, µ0, µ1, p(ε) and through the same argument as

before for n large enough we have αn+n0, µ0, µ1, p(ε) ≤ αn0, µ0, µ1, p(ε) + nε.

Hence, we have lim sup
n→∞

τn, µ0, µ1, p

n
≤ lim sup

n→∞

αn, µ0, µ1, p(ε)
n

≤ ε, and this is

a contradiction.

Now by induction we obtain the general case.

(i)⇒(iii)

If Q is a polynomial of degree n, then Q∗(z) = znQ( 1
z̄ ) and if |z| = 1, then

|Q(z)| = |Q∗(z)|. So

τn, µ0,... ,µk, p ≥ ‖(P (k)
n )∗‖p, µk ≥ n(k)Dp(µk, 0).

Hence

lim
n→∞

∥∥∥∥∥ (P (k)
n )∗

nk

∥∥∥∥∥
p, µk

= Dp(µk, 0).

Therefore, the sequence of functions { (P (k)
n (z))∗

nk
} holds the hypothesis of

Theorem 2, and hence iii) is proved.

(iii)⇒(ii)

From (iii) we have

lim
n→∞

∫ ∣∣∣∣∣P (k)
n (z)

nkzn−k

∣∣∣∣∣
p

µ′k(θ)dm(θ) =
∫ ∣∣∣∣∆(

1
z̄

)
∣∣∣∣p µ′k(θ)dm(θ) > 0.

On the other hand

τn, µ0,... ,µk, p ≥ ‖(P (k)
n )∗‖p, µk ≥

(∫ ∣∣∣∣∣P (k)
n (z)
zn−k

∣∣∣∣∣
p

µ′k(θ)dm(θ)

)1/p

.

Hence

lim
n→∞

τn, µ0,... ,µk, p

nk
≥

(∫ ∣∣∣∣∣P (k)
n (z)

nkzn−k

∣∣∣∣∣
p

µ′k(θ)dm(θ)

)1/p

> 0.
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Proof of Theorem 4

Proof. Let us consider l = k − 1 and assume µk−1, µk ∈ S. By definition
τn, µ0,... ,µk, p

nk
≥
‖(P (k−1)

n )∗‖p, µk−1

nk
+
‖(P (k)

n )∗‖p, µk
nk

. Because of µk ∈ S, from (ii)

in Theorem 3 we get lim
n→∞

∥∥∥∥∥ P
(k−1)
n

nkzn−k+1

∥∥∥∥∥
p, µk−1

= 0. Hence, using µk−1 ∈ S, the

Cauchy integral formula, and Hőlder inequality, we obtain lim
n→∞

P
(k−1)
n (z)
nkzn−k+1

= 0,

uniformly on each compact subset of E. Thus lim
n→∞

(
P

(k−1)
n (z)
nkzn−k+1

)′
= 0. Taking

into account
(n− k + 1)P (k−1)

n (z)
nkzn−k+2

=
P

(k)
n (z)

nkzn−k+1
−

(
P

(k−1)
n (z)
nkzn−k+1

)′
, for l = k− 1

(6) follows if it holds for l = k,

lim
n→∞

P
(k−1)
n (z)

nk−1zn−k+1
= lim
n→∞

(n− k + 1)P (k−1)
n (z)

nkzn−k+1
=

lim
n→∞

P
(k)
n (z)

nkzn−k
− z

(
P

(k−1)
n (z)
nkzn−k+1

)′
=

Dp(µk, 0)
Dp(µk, 1/z̄)

.

Repeating this reasoning, we obtain the corresponding results for all l, with

j ≤ l ≤ k.

Other extremal problems can be considered. For example, let 0 < p0, p1, . . . , pk <

∞ and µ0, µ1, . . . , µk be positive Borel measures in [0, 2π), set

inf{
k∑
j=0

‖Q(j)‖pj , µj : Q(z) = zn + · · · }, or

inf{(
k∑
j=0

‖Q(j)‖p, µj )1/p : Q(z) = zn + · · · }.

Of course, similar asymptotic results for the corresponding extremal polynomi-

als can be proved.
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