RECURSIVE FORMULAS RELATED TO THE SUMMATION OF THE MÖBIUS FUNCTION

MANUEL BENITO AND JUAN L. VARONA

Abstract

For positive integers n, let $\mu(n)$ be the Möbius function, and $M(n)$ its sum $M(n)=\sum_{k=1}^{n} \mu(k)$. We find some identities and recursive formulas for computing $M(n)$; in particular, we present a two-parametric family of recursive formulas.

1. Introduction

The well-known Möbius function $\mu(n)$ is defined, for positive integers n, as

$$
\mu(n):= \begin{cases}1 & \text { if } n=1 \\ (-1)^{k} & \text { if } n \text { is a product of } k \text { different prime numbers } \\ 0 & \text { if there exists a prime } p \text { such that } p^{2} \text { divides } n\end{cases}
$$

(see [1, Chapter 2]). Then, for every real number $x \geq 0$, the summation of the Möbius function is defined by taking

$$
M(x)=M(\lfloor x\rfloor):=\sum_{k=1}^{\lfloor x\rfloor} \mu(k) .
$$

In what follows, and as usually, we refer to $M(x)$ as the Mertens function, although, before F. Mertens (who used it in 1897, see [2]), T. J. Stieltjes already had introduced this function in his attempts to prove the Riemann Hypothesis (see [3, Lettre 79, p. 160-164], dated in 1885).

The behaviour of $M(x)$ is rather erratic and difficult of analyze, but it is very important in analytic number theory. In 1912, J. E. Littlewood [4] proved that the Riemann Hypothesis is equivalent to this fact:

$$
\begin{equation*}
|M(x)|=O\left(x^{1 / 2+\varepsilon}\right), \quad \text { when } x \rightarrow \infty, \quad \text { for every } \varepsilon>0 \tag{1}
\end{equation*}
$$

in relation to this subject, see also [5]. Of course, it is not yet known if (1) is true or false. Previously, in 1897, Mertens [2] had given a table of values of $M(n)$ for $1 \leq n \leq 10000$. Relying on this table, he conjectured that, for $x>1$,

$$
|M(x)|<\sqrt{x}
$$

This conjecture was disproved, in 1985, by A. M. Odlyzko and H. te Riele [6], but they did not find an explicit counterexample. Actually, for every value of $M(n)$ computed up to that date, always happened $|M(n)|<0.6 \sqrt{n}$. In 1987, J. Pintz [7] proved that the Mertens conjecture is false for some $n<\exp \left(3.21 \times 10^{64}\right)$; and this was improved further recently in 2006 by T. Kotnik and H. te Riele [8], who showed that the Mertens conjecture is false for some $n<\exp \left(1.59 \times 10^{40}\right)$. More studies about the order of the Mertens function can

[^0]be found in [9] and [10]. Nowadays, to find an explicit counterexample of the Mertens conjecture is yet a very pursued result in number theory, and it generally believed that no counterexample will be found for $n<10^{20}$.

To evaluate $M(n)$, a big quantity of recursive formulas appear in the mathematical literature. For instance, Stieltjes [3, Letter 79, p. 163] proved the expression

$$
\begin{equation*}
\sum_{k \leq \sqrt{n}}(-1)^{k-1} M(n / k)=-1+M(\sqrt{n}) z(\sqrt{n})-\sum_{k \leq \sqrt{n}} z(n / k) \mu(k) \tag{2}
\end{equation*}
$$

where $z(x)=0$ if $\lfloor x\rfloor$ is even and 1 if it is odd; some other recursive formulas appear in the famous Primzahlen of E. Landau [11]. In 1996, M. Deléglise and J. Rivat [12], used an algorithm derived from the recurrence formula

$$
\begin{equation*}
M(x)=M(u)-\sum_{a \leq u} \mu(a) \sum_{\frac{u}{a}<b \leq \frac{x}{a}} M\left(\frac{x}{a b}\right) \tag{3}
\end{equation*}
$$

(being $1 \leq u \leq x)$ to evaluate $M\left(10^{16}\right)=-3195437$. More recursive formulas can be found in [13], and [14]; also, a large number of further references to related studies, including a nice historical review, are given in [15].

The aim of this paper is to prove different identities and recursive formulas satisfied by the Mertens function M. We devote to this end sections 2,3 and 4 ; see Theorems $2,3,6$, 9 , and 10. For instance, in Theorem 3 we present a formula to evaluate $M(n)$ similar to the one given by its definition, but with only $\left\lfloor\frac{n}{3}\right\rfloor$ summands. Also, let us note the interesting expansion for $2 M(n)+3$ that appears in Theorem 6, as well as the properties of the involved coefficients, studied below; they will lead us to Theorems 9 and 10. In particular, Theorem 10 gives a two-parametric family of recursive formulas for computing the Mertens function. As long as we know, all the "theorems" that we present in these sections are new; however, some of the "propositions" are already known, and we have included them by completeness.

Finally, in section 5 , we study some properties of a function (that we will denote $H(n, m)$) related with the ones that appear in the previous sections; in particular, we prove the periodicity of this function.

2. Formulas in which only M appears

Let us begin by recalling the following well-known property of the Möbius function:

$$
\sum_{d \mid n} \mu(d)=\left\{\begin{array}{lll}
1 & \text { if } & n=1 \tag{4}\\
0 & \text { if } & n>1
\end{array}\right.
$$

Indeed, it is trivial for $n=1$. And, for $n>1$, if $n=\prod_{j=1}^{k} p_{j}^{\alpha_{j}}>1\left(p_{j}\right.$ primes, $p_{j} \neq p_{i}$ for $j \neq i$), then

$$
\sum_{d \mid n} \mu(d)=\binom{k}{0}-\binom{k}{1}+\cdots+(-1)^{k}\binom{k}{k}=(1-1)^{k}=0
$$

The identity (4) allows to find a way of relating the value $M(n)$ with the values of $M(m)$, with m less than n. This result, also known (and whose proof we reproduce by completeness), is the following:

Proposition 1. For every positive n, the Mertens function verifies

$$
\begin{equation*}
1=\sum_{a=1}^{n} M\left(\frac{n}{a}\right) \tag{5}
\end{equation*}
$$

Proof. Actually, we will prove (5) also for real numbers $x \geq 1$. From the definition $M(x)=$ $\sum_{k \leq x} \mu(k)$, we have

$$
\sum_{a=1}^{\lfloor x\rfloor} M\left(\frac{x}{a}\right)=\sum_{a=1}^{\lfloor x\rfloor} \sum_{b=1}^{\left\lfloor\frac{x}{a}\right\rfloor} \mu(b)
$$

If $a b=k$, then $a \mid k$ and, moreover, when the values of a and b vary, k takes the values $1,2, \ldots,\lfloor x\rfloor$. Then, we have

$$
\sum_{a=1}^{\lfloor x\rfloor} \sum_{b=1}^{\left\lfloor\frac{x}{a}\right\rfloor} \mu(b)=\sum_{1 \leq k \leq\lfloor x\rfloor} \sum_{a \mid k} \mu(a)
$$

By applying (4), we get (5).
Of course, from (5) we obtain the following recursive formula satisfied by $M(n)$:

$$
\begin{equation*}
M(n)=1-\sum_{a=2}^{n} M\left(\frac{n}{a}\right) \tag{6}
\end{equation*}
$$

which is essentially one of the recursive formulae used by Neubauer [13] to compute $M(n)$ up to 10^{10}. Moreover, let us note that (4) and (5) were used by Deléglise and Rivat [12] to find the identity (3).

In (6), n summands appear. In the following theorem, we reduce the number of summands up to $\left\lfloor\frac{n-1}{2}\right\rfloor$.
Theorem 2. If $n \geq 3$, then

$$
\begin{equation*}
M(n)=-\sum_{a=1}^{\left\lfloor\frac{n-1}{2}\right\rfloor} M\left(\frac{n}{2 a+1}\right) \tag{7}
\end{equation*}
$$

Proof. If $n=2 m$ with $m>1$, by applying (6) and (5), we get

$$
\begin{aligned}
M(2 m) & =1-\sum_{a=2}^{2 m} M\left(\frac{2 m}{a}\right)=\sum_{a=1}^{m} M\left(\frac{m}{a}\right)-\sum_{a=2}^{2 m} M\left(\frac{2 m}{a}\right) \\
& =-\sum_{a=1}^{m-1} M\left(\frac{2 m}{2 a+1}\right)=-\sum_{a=1}^{\left\lfloor\frac{n-1}{2}\right\rfloor} M\left(\frac{n}{2 a+1}\right) .
\end{aligned}
$$

For the case $n=2 m+1$, let us first note that the greatest remainder that can be obtained when m is divided by a is $a-1$, and, moreover

$$
\frac{a-1}{a}+\frac{1}{2 a}=\frac{2 a-2+1}{2 a}=\frac{2 a-1}{2 a}<1 .
$$

Thus, it is clear that

$$
M\left(\frac{2 m+1}{2 a}\right)=M\left(\frac{m}{a}+\frac{1}{2 a}\right)=M\left(\frac{m}{a}\right)
$$

Then, by applying (6), (5), and this fact, we get

$$
\begin{aligned}
M(2 m+1) & =1-\sum_{a=2}^{2 m+1} M\left(\frac{2 m+1}{a}\right)=\sum_{a=1}^{m} M\left(\frac{m}{a}\right)-\sum_{a=2}^{2 m+1} M\left(\frac{2 m+1}{a}\right) \\
& =-\sum_{a=1}^{m} M\left(\frac{2 m+1}{2 a+1}\right)=-\sum_{a=1}^{\left\lfloor\frac{n-1}{2}\right\rfloor} M\left(\frac{n}{2 a+1}\right) .
\end{aligned}
$$

3. Formulas in which only μ appears

In the following theorem, we expand $M(n)$ as a sum with $\left\lfloor\frac{n}{3}\right\rfloor$ summands, in which only μ and the integer-part function appear. In particular, this result provides a more efficient way to compute $M(n)$ than just to use its definition $M(n)=\sum_{k=1}^{n} \mu(k)$.

Theorem 3. If $n \geq 3$, then

$$
\begin{equation*}
M(n)=-\sum_{k=1}^{\left\lfloor\frac{n}{3}\right\rfloor}\left\lfloor\frac{n-k}{2 k}\right\rfloor \mu(k) \tag{8}
\end{equation*}
$$

Proof. Let us remind (7) in Theorem 2. The greatest value achieved by $\left\lfloor\frac{n}{2 a+1}\right\rfloor$ is $\left\lfloor\frac{n}{3}\right\rfloor$.
Moreover, $\left\lfloor\frac{n}{2 a+1}\right\rfloor$ takes value k if

$$
k \leq \frac{n}{2 a+1}<k+1
$$

i.e.,

$$
\frac{n-(k+1)}{2(k+1)}<a \leq \frac{n-k}{2 k}
$$

In this way, $\left\lfloor\frac{n}{2 a+1}\right\rfloor=k$ for $\left\lfloor\frac{n-k}{2 k}\right\rfloor-\left\lfloor\frac{n-(k+1)}{2(k+1)}\right\rfloor$ values of a.
As a consequence,

$$
\begin{aligned}
M(n)= & -\sum_{k=1}^{\left\lfloor\frac{n}{3}\right\rfloor}\left(\left\lfloor\frac{n-k}{2 k}\right\rfloor-\left\lfloor\frac{n-(k+1)}{2(k+1)}\right\rfloor\right) M(k) \\
= & -\left(\left(\left\lfloor\frac{n-1}{2}\right\rfloor-\left\lfloor\frac{n-2}{2 \cdot 2}\right\rfloor\right) M(1)+\left(\left\lfloor\frac{n-2}{2 \cdot 2}\right\rfloor-\left\lfloor\frac{n-3}{2 \cdot 3}\right\rfloor\right) M(2)+\cdots\right. \\
& \left.+\left(\left\lfloor\frac{n-\left\lfloor\frac{n}{3}\right\rfloor}{2\left\lfloor\frac{n}{3}\right\rfloor}\right\rfloor-\left\lfloor\frac{n-\left\lfloor\frac{n}{3}\right\rfloor-1}{2\left(\left\lfloor\frac{n}{3}\right\rfloor+1\right)}\right\rfloor\right) M\left(\left\lfloor\frac{n}{3}\right\rfloor\right)\right) \\
& =-\left(\left\lfloor\frac{n-1}{2}\right\rfloor \mu(1)+\left\lfloor\frac{n-2}{2 \cdot 2}\right\rfloor \mu(2)+\left\lfloor\frac{n-3}{2 \cdot 3}\right\rfloor \mu(3)+\cdots\right. \\
& \left.+\left\lfloor\frac{n-\left\lfloor\frac{n}{3}\right\rfloor}{2\left\lfloor\frac{n}{3}\right\rfloor}\right\rfloor \mu\left(\left\lfloor\frac{n}{3}\right\rfloor\right)-\left\lfloor\frac{n-\left\lfloor\frac{n}{3}\right\rfloor-1}{2\left(\left\lfloor\frac{n}{3}\right\rfloor+1\right)}\right\rfloor M\left(\left\lfloor\frac{n}{3}\right\rfloor\right)\right) .
\end{aligned}
$$

Now, let us observe

$$
\frac{n-\left\lfloor\frac{n}{3}\right\rfloor-1}{2\left(\left\lfloor\frac{n}{3}\right\rfloor+1\right)}=\left\{\begin{array}{lll}
\frac{3 m-m-1}{2 m+2}=\frac{2 m-1}{2 m+2}<1 & \text { if } & n=3 m \\
\frac{3 m+1-m-1}{2 m+2}=\frac{2 m}{2 m+2}<1 & \text { if } & n=3 m+1 \\
\frac{3 m+2-m-1}{2 m+2}=\frac{2 m+1}{2 m+2}<1 & \text { if } & n=3 m+2
\end{array}\right.
$$

and so

$$
\left\lfloor\frac{n-\left\lfloor\frac{n}{3}\right\rfloor-1}{2\left(\left\lfloor\frac{n}{3}\right\rfloor+1\right)}\right\rfloor=0 .
$$

Then, (8) follows.
The following result relates the value of $\mu(n)$ to the values of $\mu(m)$ for $1 \leq m<n$. Actually, this result is already known (see [1, Theorem 3.12]), although the proof that we
make in this paper is different and, perhaps, new; here, we use an argument similar to the one used in the proof of Theorem 3.

Proposition 4. The Möbius function satisfies

$$
\begin{equation*}
1=\sum_{k=1}^{n}\left\lfloor\frac{n}{k}\right\rfloor \mu(k) \tag{9}
\end{equation*}
$$

Proof. By Proposition $1,1=\sum_{a=1}^{n} M\left(\frac{n}{a}\right)$. Here, we have $\left\lfloor\frac{n}{a}\right\rfloor=k$ if and only if

$$
k \leq \frac{n}{a}<k+1
$$

i.e.,

$$
\frac{n}{k+1}<a \leq \frac{n}{k}
$$

and so $M\left(\frac{n}{a}\right)=M\left(\left\lfloor\frac{n}{a}\right\rfloor\right)=M(k)$ for $\left\lfloor\frac{n}{k}\right\rfloor-\left\lfloor\frac{n}{k+1}\right\rfloor$ values of a.
Then

$$
\begin{aligned}
1 & =\sum_{a=1}^{n} M\left(\frac{n}{a}\right)=\sum_{k=1}^{n}\left(\left\lfloor\frac{n}{k}\right\rfloor-\left\lfloor\frac{n}{k+1}\right\rfloor\right) M(k) \\
& =\left(\left\lfloor\frac{n}{1}\right\rfloor-\left\lfloor\frac{n}{2}\right\rfloor\right) M(1)+\left(\left\lfloor\frac{n}{2}\right\rfloor-\left\lfloor\frac{n}{3}\right\rfloor\right) M(2)+\cdots+\left(\left\lfloor\frac{n}{n}\right\rfloor-\left\lfloor\frac{n}{n+1}\right\rfloor\right) M(n) \\
& =\left\lfloor\frac{n}{1}\right\rfloor+\left\lfloor\frac{n}{2}\right\rfloor(M(2)-M(1))+\cdots+\left\lfloor\frac{n}{n}\right\rfloor(M(n)-M(n-1))-\left\lfloor\frac{n}{n+1}\right\rfloor M(n) \\
& =\left\lfloor\frac{n}{1}\right\rfloor \mu(1)+\left\lfloor\frac{n}{2}\right\rfloor \mu(2)+\cdots+\left\lfloor\frac{n}{n}\right\rfloor \mu(n)=\sum_{k=1}^{n}\left\lfloor\frac{n}{k}\right\rfloor \mu(k) .
\end{aligned}
$$

Now, let us prove another expansion of 1 as a sum of μ 's. We will use this result in the proof of Theorem 6.
Proposition 5. For $n \geq 3$, the Möbius function satisfies

$$
1=\sum_{k=1}^{\left\lfloor\frac{n}{3}\right\rfloor}\left\lfloor\frac{n}{3 k}\right\rfloor \mu(k)
$$

Proof. First, let us suppose $n=3 m$. By Proposition 4, we have

$$
1=\sum_{k=1}^{m}\left\lfloor\frac{m}{k}\right\rfloor \mu(k)=\sum_{k=1}^{\frac{n}{3}}\left\lfloor\frac{3 m}{3 k}\right\rfloor \mu(k)=\sum_{k=1}^{\left\lfloor\frac{n}{3}\right\rfloor}\left\lfloor\frac{n}{3 k}\right\rfloor \mu(k) .
$$

If $n=3 m+1$,

$$
\sum_{k=1}^{\left\lfloor\frac{n}{3}\right\rfloor}\left\lfloor\frac{n}{3 k}\right\rfloor \mu(k)=\sum_{k=1}^{m}\left\lfloor\frac{3 m+1}{3 k}\right\rfloor \mu(k)=\sum_{k=1}^{m}\left\lfloor\frac{m}{k}\right\rfloor \mu(k)=1
$$

because, in

$$
\left\lfloor\frac{3 m+1}{3 k}\right\rfloor=\left\lfloor\frac{m}{k}+\frac{1}{3 k}\right\rfloor,
$$

the remainder when m is divided by k is always less or equal than $k-1$; and, by being

$$
\frac{k-1}{k}+\frac{1}{3 k}=\frac{3 k-2}{3 k}<1
$$

we have

$$
\left\lfloor\frac{3 m+1}{3 k}\right\rfloor=\left\lfloor\frac{m}{k}\right\rfloor .
$$

If $n=3 m+2$,

$$
\left\lfloor\frac{3 m+2}{3 k}\right\rfloor=\left\lfloor\frac{m}{k}+\frac{2}{3 k}\right\rfloor=\left\lfloor\frac{m}{k}\right\rfloor
$$

by being

$$
\frac{k-1}{k}+\frac{2}{3 k}=\frac{3 k-1}{3 k}<1 ;
$$

thus,

$$
\sum_{k=1}^{\left\lfloor\frac{n}{3}\right\rfloor}\left\lfloor\frac{n}{3 k}\right\rfloor \mu(k)=\sum_{k=1}^{m}\left\lfloor\frac{3 m+2}{3 k}\right\rfloor \mu(k)=\sum_{k=1}^{m}\left\lfloor\frac{m}{k}\right\rfloor \mu(k)=1 .
$$

Then, we establish the following result, in which, as in Theorem 3, we show an expansion of $M(n)$ as a sum of $\left\lfloor\frac{n}{3}\right\rfloor$ summands; in every summand, only the Möbius function and a coefficient (related to the integer-part function) appear. This will be a fruitful result, because, later in this paper, we will find some alternative formulas and interesting properties for the coefficients.

Theorem 6. For $n \geq 3$, we have

$$
\begin{equation*}
2 M(n)+3=\sum_{k=1}^{\left\lfloor\frac{n}{3}\right\rfloor} g(n, k) \mu(k) \tag{10}
\end{equation*}
$$

with

$$
\begin{equation*}
g(n, k)=3\left\lfloor\frac{n}{3 k}\right\rfloor-2\left\lfloor\frac{n}{2 k}-\frac{1}{2}\right\rfloor . \tag{11}
\end{equation*}
$$

Proof. Let us add 2 times the expansion for $M(n)$ in Theorem 3 plus 3 times the expansion for 1 in Proposition 5.

The next result presents an alternative way for computing $g(n, k)$:
Proposition 7. For $k>0$ and $n \geq 0$, let us take n_{0} such that

$$
n \equiv n_{0} \quad \bmod 6 k, \quad 0 \leq n_{0}<6 k
$$

Then

$$
g(n, k)= \begin{cases}2 & \text { if } \quad 0 \leq n_{0}<k \tag{12}\\ 0 & \text { if } \quad k \leq n_{0}<3 k \\ 1 & \text { if } \quad 3 k \leq n_{0}<5 k \\ -1 & \text { if } \quad 5 k \leq n_{0}<6 k\end{cases}
$$

Proof. Le us decompose $n=n_{0}+6 k n_{1}$, with $0 \leq n_{0}<6 k$. By (11),

$$
g(n, k)=3\left\lfloor\frac{n_{0}+6 k n_{1}}{3 k}\right\rfloor-2\left\lfloor\frac{n_{0}+6 k n_{1}-k}{2 k}\right\rfloor .
$$

Then, it is clear that

$$
\begin{array}{ll}
\text { if } \quad 0 \leq n_{0}<k, & g(n, k)=6 n_{1}-2\left\lfloor\frac{6 k\left(n_{1}-1\right)}{2 k}+\frac{5 k+n_{0}}{2 k}\right\rfloor=2 ; \\
\text { if } \quad k \leq n_{0}<3 k, & g(n, k)=6 n_{1}-6 n_{1}=0 ; \\
\text { if } \quad 3 k \leq n_{0}<5 k, & g(n, k)=3+6 n_{1}-6 n_{1}-2=1 ; \\
\text { if } \quad 5 k \leq n_{0}<6 k, & g(n, k)=3+6 n_{1}-6 n_{1}-4=-1 .
\end{array}
$$

4. Formulas in which both M and μ appear

Let us consider the function $g(n, k)$ for fixed n, i.e., as a function of k. In the following proposition, we show how $g(n, k)$ is constant when k varies a certain interval.

Proposition 8. Let a and n be positive integers, with $a<n$. When k varies in the interval

$$
\frac{n}{a+1}<k \leq \frac{n}{a}
$$

the value of $g(n, k)$ remains constant. This value depends only upon the remainder of a modulus 6.

Proof. Let us decompose $a=a_{0}+6 a_{1}$ with $0 \leq a_{0}<6$. If $\frac{n}{a+1}<k \leq \frac{n}{a}$, then $k a \leq n<$ $k(a+1)$ and so

$$
\begin{equation*}
k a_{0}+6 k a_{1} \leq n<k\left(a_{0}+6 a_{1}+1\right) \tag{13}
\end{equation*}
$$

Thus, $n=n_{0}+6 k a_{1}$ for some n_{0} verifying $0 \leq n_{0}<6 k$. By substituting this value of n in (13), it becomes

$$
\begin{equation*}
k a_{0} \leq n_{0}<k a_{0}+k \tag{14}
\end{equation*}
$$

By (12), $g(n, k)$ takes the same value for all n_{0} that satisfies (14), and this value of $g(n, k)$ depends only on a_{0}.

As a consequence of Proposition 8, we can define the function

$$
\begin{equation*}
h(a)=g(n, k) \quad \text { for } \quad \frac{n}{a+1}<k \leq \frac{n}{a} \tag{15}
\end{equation*}
$$

By using (12) (pay attention to a_{0} in the proof of Proposition 8), $h(a)$ takes these values:

$$
h(a)=\left\{\begin{array}{lll}
2, & \text { if } \quad a \equiv 0 & \bmod 6 \tag{16}\\
0, & \text { if } \quad a \equiv 1 & \bmod 6 \\
0, & \text { if } \quad a \equiv 2 & \bmod 6 \\
1, & \text { if } & a \equiv 3 \\
\bmod 6 \\
1, & \text { if } & a \equiv 4 \\
\bmod 6 \\
-1, & \text { if } & a \equiv 5
\end{array} \bmod 6 .\right.
$$

Now, we will split the sum in (10) in two parts, introducing a parameter r. The first part will consist in the $\left\lfloor\frac{n}{r+1}\right\rfloor$ first terms of the sum in (10). The second part will be, of course, the summands that remain; they will be manipulated in such way that we will get r sumands in which only the functions h and M appear. We can say that this is a mixed recursive formula for computing $M: M(n)$ is obtained from $\mu(m)$ and $M(m)$ with $m<n$.
Theorem 9. Let n and r two integers satisfying $3 \leq r \leq n-1$. Then

$$
\begin{equation*}
2 M(n)+3=\sum_{k=1}^{\left\lfloor\frac{n}{r+1}\right\rfloor} g(n, k) \mu(k)+\sum_{a=3}^{r} h(a)\left(M\left(\frac{n}{a}\right)-M\left(\frac{n}{a+1}\right)\right) . \tag{17}
\end{equation*}
$$

Proof. By (10) and (15),

$$
\begin{aligned}
2 M(n)+3 & =\sum_{k=1}^{\left\lfloor\frac{n}{3}\right\rfloor} g(n, k) \mu(k)=\sum_{k=1}^{\left\lfloor\frac{n}{r+1}\right\rfloor} g(n, k) \mu(k)+\sum_{a=3}^{r} \sum_{k=\left\lfloor\frac{n}{a+1}\right\rfloor+1}^{\left\lfloor\frac{n}{a}\right\rfloor} g(n, k) \mu(k) \\
& =\sum_{k=1}^{\left\lfloor\frac{n}{r+1}\right\rfloor} g(n, k) \mu(k)+\sum_{a=3}^{r} h(a) \sum_{k=\left\lfloor\frac{n}{a+1}\right\rfloor+1}^{\left\lfloor\left\lfloor\frac{n}{a}\right\rfloor\right.} \mu(k)
\end{aligned}
$$

$$
=\sum_{k=1}^{\left\lfloor\frac{n}{r+1}\right\rfloor} g(n, k) \mu(k)+\sum_{a=3}^{r} h(a)\left(M\left(\frac{n}{a}\right)-M\left(\frac{n}{a+1}\right)\right) .
$$

Prior to continue, let us note which would be the two limit cases: of course, $r=2$ is Theorem 6; and, when $r=n$, the sum indexed by k in (9) disappears. Another particular case appears by taking $r=\lfloor\sqrt{n}\rfloor$; thus (17) becomes

$$
\begin{aligned}
M(n)=\frac{1}{2}\left(-3+\sum_{k=1}^{\left\lfloor\frac{n}{\lfloor\sqrt{n}\rfloor+1}\right\rfloor}\right. & g(n, k) \mu(k)+M\left(\frac{n}{3}\right) \\
& \left.+\sum_{a=4}^{\lfloor\sqrt{n}\rfloor}(h(a)-h(a-1)) M\left(\frac{n}{a}\right)-h(\lfloor\sqrt{n}\rfloor) M\left(\frac{n}{\lfloor\sqrt{n}\rfloor+1}\right)\right)
\end{aligned}
$$

a formula that resembles (2) after isolating $M(n)$, but starting in $M\left(\frac{n}{3}\right)$ instead of $M\left(\frac{n}{2}\right)$.
On the other hand, by splitting again the summand on the right in (17), we can introduce a new parameter s :
Theorem 10. Let n, r and s be three integers such that $s \geq 0$ and $6 s+9 \leq r \leq n-1$. Then

$$
\left.\left.\begin{array}{rl}
2 M(n)+3= & \sum_{k=1}^{\left\lfloor\frac{n}{r+1}\right\rfloor} g(n, k) \mu(k) \\
+ & \sum_{b=0}^{s}\left(M\left(\frac{n}{3+6 b}\right)-2 M\left(\frac{n}{5+6 b}\right)\right.
\end{array}\right)=3 M\left(\frac{n}{6+6 b}\right)-2 M\left(\frac{n}{7+6 b}\right)\right) .
$$

Proof. Let us expand the summand $\sum_{a=3}^{r}$ in (17). In this way,

$$
\begin{aligned}
2 M(n)+3= & \sum_{k=1}^{\left\lfloor\frac{n}{r+1}\right\rfloor} g(n, k) \mu(k)+h(3) M\left(\frac{n}{3}\right)-h(3) M\left(\frac{n}{4}\right) \\
& +h(4) M\left(\frac{n}{4}\right)-h(4) M\left(\frac{n}{5}\right)+h(5) M\left(\frac{n}{5}\right)-h(5) M\left(\frac{n}{6}\right) \\
& +h(6) M\left(\frac{n}{6}\right)-h(6) M\left(\frac{n}{7}\right)+h(7) M\left(\frac{n}{7}\right)-h(7) M\left(\frac{n}{8}\right) \\
& \quad+h(8) M\left(\frac{n}{8}\right)-h(8) M\left(\frac{n}{9}\right)+\cdots \\
& +h(6 s+8) M\left(\frac{n}{6 s+8}\right)-h(6 s+8) M\left(\frac{n}{6 s+9}\right) \\
& +\sum_{a=6 s+9}^{r} h(a)\left(M\left(\frac{n}{a}\right)-M\left(\frac{n}{a+1}\right)\right) .
\end{aligned}
$$

By applying the values of h according (16), the result follows.
Thus, in Theorem 10 we have presented a two-parametric family of recurrence relation for computing an isolated value of $M(n)$. They provide mixed ways to calculate $M(n)$ using, in part, previously computed (and stored) values of $M(m)$ for a certain values of m, and another part that must be explicitly computed. Eventually, a suitable election of parameters
r and s (that may depend on n) will allow to get efficient methods of running this algorithm in a computer; at this point, it is clear that a careful implementation must be performed, taking into account the machine to be used. The idea to use this expansion is as follows: The terms in the first sum $\sum_{k=1}^{\left\lfloor\frac{n}{n+1}\right\rfloor}$ are directly evaluated. The second sum $\sum_{b=0}^{s}$ is computed by using previously computed and stored values of M. And the third sum

$$
\sum_{a=6 s+9}^{r} h(a)\left(M\left(\frac{n}{a}\right)-M\left(\frac{n}{a+1}\right)\right)=\sum_{a=6 s+9}^{r} h(a) \sum_{k=\left\lfloor\frac{n}{a+1}\right\rfloor+1}^{\left\lfloor\frac{n}{a}\right\rfloor} \mu(k)
$$

can be computed by using both methods, according the size of n, r and s.
Finally, let us note which are the limit cases of the identity established by Theorem 10: $s=-1$ (Theorem 9); $s=-1$ and $r=2$ (Theorem 6); $r=n\left(\sum_{b}\right.$ disappears); and $r=6 s+8$ (\sum_{k} disappears).

5. The function $H(n, m)$. Periodicity

In the previous sections (see Theorems 6, 9 and 10), we often obtain expressions with the form $\sum_{k=1}^{m} g(n, k) \mu(k)$. Thus, in this section, we define a new function $H(n, m)$ (for non-negative integers n and positive integers m) by taking

$$
H(n, m):=\sum_{k=1}^{m} g(n, k) \mu(k),
$$

and we are going to study some of its properties. Also, we will use the following notation:

$$
C_{m}:=6 \cdot \operatorname{lcm}\{1,2, \ldots, m\} .
$$

First, let us see that, when we fix m in the second variable of H, the function is periodic with period C_{m}.

Proposition 11. For every non-negative integer t, we have

$$
H\left(n+t C_{m}, m\right)=H(n, m)
$$

Proof. By being $g(n+6 k t, k)=g(n, k)$ for $k=1,2, \ldots, m$, we have $g\left(n+C_{m} t, k\right)=g(n, k)$. Thus, the result follows.

The following result gives the value of $H(n, m)$ as a function of $M(m)$.
Proposition 12. For every non-negative integer t, we have

$$
\begin{aligned}
H\left(0+t C_{m}, m\right) & =2 M(m) \\
H\left(1+t C_{m}, m\right) & =2 M(m)-2 \\
H\left(2+t C_{m}, m\right) & =2 M(m) \\
H\left(n+t C_{m}, m\right) & =2 M(m)+3, \quad \text { if } 2<n \leq m .
\end{aligned}
$$

Proof. By Proposition 11, without loss of generality, we can suposse $t=0$. Then, it is enough for computing $H(n, m)$ for $0 \leq n \leq m$. First, let us analyze the cases $n=0,1,2,3$. By applying (12), we have

$$
\begin{aligned}
& H(0, m)=\sum_{k=1}^{m} g(0, k) \mu(k)=2 \sum_{k=1}^{m} \mu(k)=2 M(m), \\
& H(1, m)=\sum_{k=1}^{m} g(1, k) \mu(k)=0 \cdot \mu(1)+2 \sum_{k=2}^{m} \mu(k)=2 M(m)-2,
\end{aligned}
$$

$$
H(2, m)=\sum_{k=1}^{m} g(2, k) \mu(k)=0 \cdot \mu(1)+0 \cdot \mu(2)+2 \sum_{k=3}^{m} \mu(k)=2 M(m) .
$$

For n verifying $2<n \leq m$, let us decompose

$$
\begin{equation*}
H(n, m)=\sum_{k=1}^{\left\lfloor\frac{n}{3}\right\rfloor} g(n, k) \mu(k)+\sum_{k=\left\lfloor\frac{n}{3}\right\rfloor+1}^{n} g(n, k) \mu(k)+\sum_{k=n+1}^{m} g(n, k) \mu(k) \tag{18}
\end{equation*}
$$

Now, in the first sum, let us apply (10); in the second sum, let us use that, for $\left\lfloor\frac{n}{3}\right\rfloor<k \leq n$ (i.e., $k \leq n<3 k$) we have $g(n, k)=0$ (see (12)); and, finally, for the third sum, let us note that $g(n, k)=2$ for $0 \leq n<n+1 \leq k$. In this way, (18) becomes

$$
H(n, m)=(2 M(n)+3)+0+2(M(m)-M(n))=2 M(m)+3
$$

References

[1] Apostol TM. Introduction to Analytic Number Theory. New York: Springer-Verlag; 1976.
[2] Mertens F. Über eine zahlentheoretische Funktion. Sitzungsberichte Akad. Wiss. Wien IIa. 1897; 106: 761-830.
[3] Hermite C. Correspondence d'Hermite et de Stieltjes: publiée par le soins de B. Baillaud et H. Bourget. Vol. 1. Paris: Gauthier-Villars; 1905.
[4] Littlewood JE, Quelques conséquences de l'hypothèse que la fonction $\zeta(s)$ n'a pas de zéros dans le demi-plan $\operatorname{Re}(s)>\frac{1}{2}$. C. R. Acad. Sci. Paris. 1912; 154: 263-266.
[5] Titchmarsh EC. The Theory of the Riemann Zeta-Function. Oxford: At the Clarendon Press; 1967.
[6] Odlyzko AM, te Riele H. Disproof of the Mertens conjecture. J. Reine Angew. Math. 1985; 357: 138-160.
[7] Pintz J. An effective disproof of the Mertens conjecture. In: Journées Arithmétiques (Besançon, France, 1985). Astérisque. 1987; 147-148: 325-333, 346.
[8] Kotnik T, te Riele H. The Mertens conjecture revisited. In: Algorithmic number theory. Lecture Notes in Comput. Sci. 4076. Berlin: Springer; 2006. p. 156-167.
[9] el Marraki M. Fonction sommatoire de la fonction de Möbius, 3. Majorations asymptotiques effectives fortes. J. Théor. Nombres Bordeaux. 1995; 7: 407-433.
[10] Kotnik T, van de Lune J. On the order of the Mertens function. Experiment. Math. 2004; 13: 473-481.
[11] Landau E. Handbuch der Lehre von der Verteilung der Primzahlen. Leipzig \& Berlin: Teubner; 1909.
[12] Deléglise M, Rivat J. Computing the summation of the Möbius function. Experiment. Math. 1996; 5: 291-295.
[13] Neubauer G. Eine empirische Untersuchung zur Mertensschen Funktion. Numer. Math. 1963; 5: 1-13.
[14] Dress F. Fonction sommatiore de la fonction de Möbius. I. Majorations expérimentales. Experiment. Math. 1993; 2: 89-98.
[15] te Riele H. On the history of the function $M(x) / \sqrt{x}$ since Stieltjes. In: Thomas Jan Stieltjes: Euvres Complètes/Collected Papers. Vol. 1. Berlin: Springer-Verlag; 1993. p. 69-79.

Instituto Sagasta, Glorieta del Doctor Zubía s/n, 26003 Logroño, Spain
E-mail address: mbenit8@palmera.pntic.mec.es
Departamento de Matemáticas y Computación, Universidad de La Rioja, Edificio J. L. Vives, Calle Luis de Ulloa s/n, 26004 Logroño, Spain

E-mail address: jvarona@dmc.unirioja.es
URL: http://www.unirioja.es/dptos/dmc/jvarona/welcome.html

Received: January 242008 Revised: April 18, 2008 Accepted: September 6, 2008
© Benito and Varona; Licensee Bentham Open.
This is an open access article licensed under the terms of the Creative Commons Attribution NonCommercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

[^0]: 2000 Mathematics Subject Classification. Primary 11A25.
 Key words and phrases. Möbius function, summation of the Möbius function, Mertens function.
 Research of the second author supported by grant MTM2006-13000-C03-03 of the DGI.

