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1 Introduction

1.1 Motivation

One of the most important results in the theory of orthogonal polynomials is the Szegd asymptotic
formula (see Theorem 12.1.1, page 297 of [22] or Theorem C here). This formula can be understood
as a relation between two families of orthogonal polynomials (comparative asymptotics). In this
direction many extensions of the Szegd theory have been published (see [12]), [17], [18], and [21]).

The purpose of this paper is to describe comparative asymptotic formulas for orthogonal poly-
nomials with respect to varying measures. Some results of this kind can be seen in the paper
[12]; this paper also shows that the orthogonal polynomials with respect to varying measures are
a powerful tool in solving problems where a fixed measure and orthogonality in the usual sense
are involved. Some other applications can be seen in [2], [4], [5], (9], [12], [16], [20], and [23]; in
these papers, some problems are transferred to varying measures on the unit circle. Sequences of
polynomials which are orthogonal with respect to varying measures arise naturally in the study of
the convergence of sequences of rational functions which interpolate a given analytic function along
a table of interpolation points (see [8] and [10]).

Two kind of results have been used in the proofs given here. Namely, some algebraic results, the
main of which is the relationship between families of orthogonal polynomials whose measures are
related by a rational modification of the type |z — {|?, |¢| < 1 (see Theorem 7 in this respect, see

also [7] and [21]). Moreover, some results from the theory of polynomials orthogonal with respect

to varying measures are used.

1.2 Some notations and main results

Let M denote the set of positive Borel measures on [0,27) with an infinite set of points in its
support. For each u € M, let pn(2) = @m(p;2),m = 0,1..., be the orthonormal polynomials

assoclated with p:

Om(2) = kmz™ + lower degree terms;  &m = Km(p) > 0,



and
1 2T 0, k T
%f wr(2)om(2)du(8) = b
. 1, k=m
All the integrals are taken on [0,27); therefore, from now on we do not write the integration
interval.

We will always write with capital letter, ®.,(u;2) = ®,,(z), the respective monic orthogonal

polynomial.
Let {w,; : j = 1,...,n}3%, be a triangular array of complex numbers on the unit disk, i.e.
d
lwni] < 1. Set Wo(z) = H?zl(z —Wwnj), n > 1. For each y € M such that [ W <
oo (z = e, n € N), we consider the sequence of measures {du, := TWE‘(L;T}%N in M. For

n € N, let {¢nm(2) = @m(pn;2)}$_, be the sequence of orthonormal polynomials associated
with pn, @am(z) = anmz™ + ..., and anm > 0. Of course, if w,; =0, j = 1,2, ,n, then
[Wa(e)] =1, § € [0,27), and the orthogonal polynomials with respect to these varying measures
become the orthogonal polynomials with respect to the fixed measure u.

Moreover, when Wy(z) = ¢n(2), using the Geronimus identity (see [6], pages 198 and 199)

j / .
/mdﬁzfz?dﬂn j=0,41... ,+n, 2z =¢", o

it follows that ¢, m(2) = wm(z), m=0,... ,n.

The following definition was introduced by G. Lépez (see [14]).

Definition 1. Let k € Z be a fized integer. We say that (p, {Wn}, k) is admissible on {z € T :
lz| =1} if:

(1) p' >0 almost everywhere;

(ii) [dp, < o0, neN;

(iii) In the case of k < 0, there exist j1,...,j_r such that
—k
/Hiz— wn g, dp <M < oo, n -k
i=1

(iv) limp_eo 3 ey (1 — Jwn i) = oo.

We consider ki, k3 € [N, Let {Cf(li,? ci=1,0.0 k32, and {(7(12]) J =1,k }2, be two

arrays of complex numbers on the unit disk. Set Vrsi)(z) = Hle(z - ng,), ¢ = 1, 2. For each



(4
duy, < oo and n € N, let {t,bnm(z) = ©om ‘Kﬂé—)g—

ditn; z) }ri=o be

d,un. We denote by {Bn.m}oo—q

u € M such that f‘;’m&

Z

0

the sequence of polynomials orthonormal with respect to

their sequence of positive leading coeflicients.

Theorem 2. Let u € M. We consider a triangular array of complez numbers on the unit disk
{wnj:j=1,...,n}2, and set Wo(2) = [[;o1(2 —wnj), n2 L If (p, {Wy }, —ks) s admissible,
then

(2)
lim wn,n+k1(z) _ zQ(kl—kz s (z) =0
=90 Otk (2) Vé )(z)

b

uniformly on each compact subset of |z| > 1. Besides

lim Smath g

n—=00 Uy ntky

vy |? .
Remark 3. The factor ’W 15 equal to
n (2

z‘“r'“lv“’ts) H’-“ (1—2“(1_%)
D@ - )

thus Theorem 2 shows that zeros and poles out of ihe unit circle of the analytic extension of the

H |ZL: ]‘J

weight do not play any role (see [13], Theorem 6).

Using similar techniques, a comparative asymptotics for families of polynomials orthogonal with

respect to varying measures and with respect to a fixed measure, is obtained.

Theorem 4. Let p, 0 € M such that lim,_. ®,(c,0) = 0 and logp’ € Li. If {thn m(2)} =0

denotes the sequence of orthonoermal polynomaals with respect to ﬁi—‘;'%:ll—d“—)l;, then
o ¥na(@)D (577 V()
11m - 2) = UJ
n—roo en(0;2) TE (2)

uniformly on each compact subset of |z| > 1 and

As usual,
D036 =exp (4= [ og /@) ) =, il < 1,
4 Fhes
is the Szegd function for p'.

The outline of this paper is as follows. In Section 2 we give some auxiliary results. Theorems 2

and 4 are proved in Section 3. Theorems 7 and 8 seem to be interesting on their own.



2 Auxiliary results

1 Ifp(z) is a polynomial of degree n, the reverse polynomial is usually defined as p*(z) = 2" p ().

Of course, if p(2) # 0 for |z| = 1, then

=1, l¢=1. 2)

Let {0} be a sequence of measures in M. It is very well known that the monic polynomials

assoclated to each o, satisfy the following recurrence relations:

Pnt1(0n; 2) = 285 (0n; 2) + Prp1(0n; OB, (0n; 2); (3)

O oz =08 (0h32) F Opifoa0) 2@l 2.

and for the leading coefficients we have

I o

Kmi1(@n)? 1 — |®mt1(00;0)]%. "

These formulae lead us to another known result:

Theorem A. Let!l € Z. The following conditions are equivalent:

nlgl;lo Pnpivi(on 0] = O

lim Sntir1(on) _ 1;
R0 Kn-}-i’(o’n)
£ (:D .
I‘Il'l Qan+i'+1(o-nsz) s MR n+?+l('7npz) =z, |zl 2 1)
e ies Son—l»l(o-n;z) b @n+f(dn;z)

where the convergence in the last limits are uniform on each compact subset of the prescribed region.

The reproducing kernel K,,(o,; 2, y) associated with the measure ¢, is defined in the usual way

by

Kpn(on;2,9) = Y ¢1(0n; )25 (0n; 2).

=0

The following Christoffel-Darboux formulae are also well known. If zg # 1

Km(on;z,y) = Prat1 (05 Y) i1 (On; zl) - ‘fim+l(0'n§ Y)Pm+1(0n; z); %)
— 27
I{m(a'n;z, y) — wm(gn; y)‘lom(o'n,, z) i Zy‘Pm(G'n;y)ipm(O'n; Z) } (6)

1-=zy



Besides
K (on; 2,0) = &m(on)on, (on; 2).

The m—kernel is characterized by the reproducing properties:

Lemma 5. (1) Let p(z) be o polynomial of degree at most m, then

1

gﬂf Km(o'mz: y)P(Z)dUn :p(y)- (7)

(2) Ifp(2) = am+12™ 1! + lower degree terms, then

1 —_— m
i / Km(on; z,y)p(2)do, = p(y) — ——~M“Hmm+1?;n)som+1(an;y). (8)
Since
doy, Kom41( zd_o 7)
¢m+1(m; z) — %(2 —{)pm(on; 2)

is a polynomial of degree m and has the reproducing property (7), we obtain (see also [7], Corollary

2):

Corollary 6. If (| <1 and such that [ ]zi_clélﬁ < 0o, then

don, fcm+1(l;%°'c'|%) . 90m+1(|7df—§”|7§0 ” do,
. @m+1(_—|2*C[2’Z)_ _ﬁm(an) (Z—C)(pm(o’n,Z)+ I{m(%;c,()Am(lz—Clszjg), n2 0.

=
(9)

In ([13], Theorem 3) G. Ldpez proved the following result:

Theorem B. Let (4, {Wp}, 1) be admissible on {z € C: [z| = 1}. Then liMp_co ®p ntm1(0) =0

for allm > L
Also we shall need the following two theorems:

Theorem C. (see [15], Theorem 2; this theorem has been improved in [3]) Let ¢ € M such that
[loga' (§)df > —oo. Let {wnj :j =1,...,n}32, be a triangular array of complez numbers on the
unit disk such that limp oo 35—, (1= |wn ;]) = 00, Let pn,m(z) = fpm(m}:d(g;)lj;z) be the arthogonal
polynomials with respect to W—fé)—lg_ Then

s 52 - (@)

uniformly on each compact subset of |z| > 1.



Theorem D. (see [1]) Let {2,;}7_; denote the zeros of the orthogonal polynomial pn(z). The

following statements are equivalent:

(a) limg,_,e ©,(0) = 0.

(b) limn—co 371 (1 = |2n,5]) = 00

2 Throughout this paragraph let us consider { € {|z| < 1} and we set o, as in the previous

paragraph. We also assume that f - ﬂz < 00, z = ¢, Rakhmanov proved the following formula

in [21], page 157T:

(2 =)z —C")®m (]2 — C|2d‘7niz) = @py2(0n;2) + cnm g1 (on; 2) + dn,m Ppy (o) 2), (10)

where
k2 (on
dn. m — C (I)m—{nl(a'n:o)ﬁ—):
A _ (pm+2(0'nic*) g (D;-L(JH;C*)
n,m o n,m ;
' q>m+1(0'n;c*) ' (I‘m+1(‘7n§(:*)
and ¢* = 1/,

Some other algebraic relations that we will also need are going to be obtained in what follows.

The next one can be seen as an inverse formula of (10) or as extension of the recurrence relation
(3):

Theorem 7. For m > 0, the following equality holds:

do,, . . k2 (4] oy
(I)m+1(|z_clgﬁ )—( )Cl)m( n, )

m+l(lz gp)

4 ( m+1(| d C|2‘ )+C m(o'n)(I) dc(rO'n;)U)) (I)*m(U'nQZ)- (11)

Ko+ (=

Proof. Let us consider the polynomial

doy, "Cm+l(i:?(|2) K ()
I, m 18] = = - e
(2)=¢ +1(| CIZ 2 Km (0n) fﬂfn+1(|zifc“|‘2)C PR

it is obvious that the degree of I, is at most m. Moreover, from the orthonormality relation,



simple computations give us

/H;(z)z_kdan:jzm"’“(z~C)( C)som+1( |2, )[z R

~ #”m“ F“fql_) m—k Km(0n) = oo 2 do
2=l ( 12».1+1(]f—fg“|?)c) (e <) i

Thus the proof is completed since (11) is true at z = 0. |

Moreaver, in this framework the respective extension of (4) is:

Theorem 8. The leading coefficients satisfy

Kﬁwl(]"ff_g“]?) i I‘Pm+1(£ﬁf;C)P >0 (19)
K%(0n) K220, 0)

Proof. ;From the orthonormality we have

1 / don B2 {eq)
s ——', z2)(z—¢ On; 2 = =

o) 7 +1(| ¢I? ) Vel )|Z —C|2 Kg%+l(lsdv5i2)

1 d.rrn

3= [ (2= Qpm(0n; 2)(z = em(Tn; 2) lpm(on; 2)[Pdon = 1;
T |z —
taking into account (8) we obtain
1 Km(on) doy,

%/K (2 O~ Opmlom I, = pmbt(22550)

man ()

Therefore, we prove (12) multiplying both sides of (9) by (2 — ()¢m(0on;2) and integrating with

respect to Ezd:;ag. |
Since 0 < Km(pd_”T“P; ¢,¢) from the previous theorem we have:

Corollary 9. For each m > 0,

Emp1 (=)
. |z — (|

Km ()
Corollary 10. Let us suppose that |(| <r < 1. Then
km1(20m) pmt1{Egm¢)

=1 <= liMymies =il

Km(on) ‘P:n+1(|%fﬁ§c)
‘Pm+1(]j__oﬁ§;C)‘ —1
(P:H+1( zdf(’-lz rC)

L, lims_s

Em (o)

———=0 = limy, oo
Ao (28)

2. iMoo




Proof. Both results are obtained easily if we write (12) in the form

K1 (i) B Km+1(|—zdja¢“17;C.C)
fm(on)  Km(22:¢,0)

and we use the Christoffel-Darboux formulas (5) and (6) to deduce

- 2
1 _ |0

k() i )

do
K?”Jrl(]z_—gl—Q) 1—|¢|?

Pmt1 T‘é“?:f)

dap
E'am+l lz— (|2 =’:}

3 During this paragraph let us consider {o,} a sequence of measures in M and {¢,} a sequence

of points in the unit disk such that f P C P < 00

Lemma 11. Let 1 € Z. Iflimn—co Puti1(5252530) = 0, then we have

i 1 /'
um —
neA 2

where this equality means that if A is a sequence of indezes such that one of the limits exists, then

et (25w ) |

‘Pn+f(crnx )

df = hm(l fell |4 i 698,

the other one also exists and both are equal

‘Proof. The main tool in proving this lemma is to use together Theorem A and (1), twice. Some

additional calculus allow us to write:

s%yg(ﬁ';,—g;ﬁ

2 5 2
df = lim L] enri(Em7)

lim i/ dd
neA 2m On+i{on; 2) neA 2 Pnyi(on; 2)
1 doy, 2 do,
_}llgl\%/ ( Cﬂ.)ﬁon—l-f(l C‘nlE, ) ,Z —Cn,lz
Entilz 121 %
=lim e | [ 222 (= = )
neA 27 Wn+f+l(]—;:fir2§3)

= lim(1 24
nlg}&( +1¢al*)

Corollary 12. Iflim,_, o qMH{ﬁﬁF; 0) =0, then

En+1( = 2)
hmsup*ﬁl—“<\/_.

n—o0o f"\:n(o'n)



Proof. The inequality follows from

2

Kni1(F20) <if Phi(rori 2) "
Kn(0n) Tm oh(on; 2)
2
_ i/’ $9n+1(]%;°¢‘f;13;z) 40
Pz ©n(on; 2) ’
lemma above, and |{,| < 1.
|
Lemma 13. Let [ € Z. If
; doy, :
nlingo ®n+g+l(|z—;—c—i§;0) =0 and nangO ®,14(0,;0) =0,
n
then we have
K41 (Fog2ps)
im ————>—=1 (13)
B Kng1(0n)

and

lim

n—o0

{%H(lz_ﬂ?ﬁ;ﬂ _ Zan}:o, (14)

Qon-i-l(o'n;z) <

uniformly on each compact subset of |z| > 1.

Proof. Using (2), Corollary 9, and the hypothesis in Theorem 7 we obtain

G ~don ol K dog
lim {90 ++1(E=g 7) - ( +{+1(|Z_C“|2)z _ __finsi(on) )Cn)} =0, (15)

n-—00 QDH+[(O'R;Z) Hﬂ+l(o—”) "{n‘i"H'l( a'o'iirzl2

uniformly on each compact subset of |z| > 1. As a result of (15) we have that (14) follows from

(13) and Theorem A. The rest of the proof is devoted to prove (13). Let A be a sequence of

; . b1 (T250m) L g :
indexes such that lim,cp T.H%an‘ exists and let [ be its value. Now let us consider that
limsup, ¢4 [¢n| = [¢| and take a subsequence of A (to avoid excessive notations we also denote this

subsequence of indexes by A) such that limpea [¢n] = [¢]- Because of Lemma 11 and (15), a simple
computation give us the equation 1+ [¢|> = L% + L™?|(|? since L > 1 and |{| < 1 the unique

solution of this equation is L = 1. |

Now if we use Theorem A we obtain:

10



Corollary 14. Under conditions of lemma above and moreover if lim,_,oo ®pyiy1(0,;0) =0 then

it (7257 2 -
lim{tpH(m ) _: C"}:o,

(Pn+i‘+1(0'n.}z) 22

n—oo

uniformly on each compact subset of |z| > 1.

Lemma 15. Iflim,_ oo ®niit1(0n;0) =0, forl=0,1, then we have

ﬂ’lim ®ni1(|z — (nl?dan;0) =0, forl=0,1; (16)
: Kn(00)
1 =1 {=0,1;
'n.lrnolo mn{»l(lz — Cn|2dfrn) ) foT' ] (17)
and
: ‘Pﬂ+1(|2“<’n|2do'n;z) £ }
lim — =, 18
i { el G (8)

wniformly on each compact subset of |z| > 1.

Proof. Given the hypothesis, using (13) and Theorem A (replacing in it ¢, by |z — (u|*doy), we
have that (16) and (17) are equivalent. Moreover, it is enough to prove (16) or (17) for I = 0 or for
I'=1.

Because of Theorem A, hypothesis limp oo ®nq141(05;0) = 0 for [ = 0,1 are respectively

equivalent to

@n n;
g DeiOniE) g, (19)
n—co @, 4i(on;2)

uniformly on each compact subset of |z| > 1 and

lim fntilon) (20)
n—00 Kpt14+1(0n)

Besides, replacing ¢ by (, and m by n in (10) and dividing both sides of this new equation by

®,(cp; 2) we obtain

O, (|z = Culdon;2)  Ppya(on;2) By pi(on; 2) O* (o 2)
- - = : 7,7 . dﬂ & : 3 21
(2 =)z = Ca) D, (0n;2) D, (0n; %) ] D, (opn;2) + G (00 2) (21)
then taking limits when n — o and using hypothesis, (19), and (20) we deduce
. Bu(|z = Cal?don; 2) z
| — =
noo Bn(om;7) =G 2

uniformly on each compact subset of |z] > 1. Thus, if we prove (17) or equivalently (16), then from

(22), hypothesis of lemma and Theorem 11 we obtain (18).

11



Now we consider two cases. First, if |(,| < r < 1 then the equality in (22) is also true for |z| = 1.
Thus, (17) follows immediately from the definition xn(0,)™% = &= [ |®n(0n;2)|? doy, (similazly for
the measure |z — {,|? doy,) and (22).

Second, if limsup [¢,| = 1 then evaluating at z = 0 in (21) we obtain
Cﬂ.c,:q)n(l: — (n deo'n; 0) = (Dn+2(0'n; O) o Cn®n+1(0n3 0) + dn,

thus, in this case using again hypothesis of lemma, (19), and (20) we obtain (16). I

4 In this paragraph we proof some auxiliary lemmas that we shall need in the proof of Theorem

4,

Lemma 16. Let | € Z. Let u, 0 € M such that lim,_ o @,(0;0) = 0. Let Vn(m(z) be as above.

Then we achieve
2

(2)( )on(0; 2) w2 I

¢ﬂ+f(TlW? n—oo

Proof. ;From Theorem A and hypothesis we have

2 2
2 2
lim [ 2f D@enl5i2) | gy g [ ] L En da i(932) | 4o
n—00 au : -
n 2 2 ) n _(_T——gl
(e wpmeriE) et a4

for j € Z. Using then the Geronimus identity (1) we obtain

2
(2) . (2)
S ] YN W PPy ] PR 2du(®)[
()OH-H( i )l,on(o' 3)|2’ ) ( )Sgn(g' z)

The proof is completed using again Theorem A and the well known result that the trigonometric

polynomials are dense in the space of 27-periodic continuous function on R. [ |

;From this result, using the same proofs as for Lemma 2 in [11] (see also Theorem 3 in [19])

and Theorem 2 in [19] respectively), the following result is obtained:

Lemma 17. Let [ € Z. Let u, 0 € M such that lim,_ e $,(0,0) =0, then

d 2
Prti(mr s oo 2)
lim b i) ~1|d§ =0;
noee ‘Pn+1+1(—r—L4W‘52 (z)%(o;z)lzsz)
d
hm o £ $0)i=ig

Vi (2)ga(o;2)[2

12



3 Proof of main results

1 Proof of Theorem 2

Obviously, we have

V(U( ’ 2)
'llb?’b,ﬂ-l-k[(z) :(Pn+k1 ﬂs
Pr,ntks (%) (Pn-l-kz(.luﬂ:z)
1 z—(,(:) 2
Pty %l dpin; 2) en1(| ey | dini?)
- V,,(l) z)f(z— (1) 2 n %PL_“;Z
Prtk—1(|— (V)(_ig(z)gn.l) dptn; 2) e TATIR
dlin s
(s Pl o)
le=¢) 2dun " n ns '
(’D”“(W' 2) Prtiz(Hn; 2)
Because of (g, {W,}, —ky) is admissible by Theorem B we achieve
(2) 2
lim ®n+m+1( 3 ) = lim (Dn—{-m(—;o) =
teses Ve e Va2 (z)[2
; d
= lim ‘I’n+m—k2+2(%§ 0) = lim @nym_k,41(1n;0) =0, (23)
Z n ko "

for all m > 0.

n,l?

z—c(D)2
On the one hand, using Corollary 14 for do,, = 'J—Vcr('% and ¢, = () we obtain

o s

lim =0,
n—o0 lz=¢ P 2du, 7
et R
and with analogous reasoning we have
2 Cf(z.zll dpn
i Wnﬁ—l(W' z) C(2)
im =
n—o0 2 2 diin in
eniallz = (D~ PPy 2
= ——‘L—‘——— 2
- Pn+kq 1( 52%:3)‘2, ) 7 — C‘i,gg B
= lim = =
n—eo ¢n+kg(#m 2) z

On the other hand, as we said before, since (i, {W, }, —k2) is admissible, using Theorem B, we

obtain

. dpin
lim (Dn+m+l(—'—2——_; ): 0,
e Va2 (z)P?

13



for all m > 0, so by (16) in Lemma 15 we have

ol
Im @, 40m,( V(; Ll dpg;0) = ...

n—o2

2
vi(2)

= lim ®pim—k, ———=| dpn;0) =0,
+m—kit1( e )

— 00

for all m > 0.
Thus, applying (17) in Lemma 15, we have

V(l)(

' dl""ﬂ: 2-'2
e _C(lg =
n,

‘Pﬂ‘l'kl(

lim
L vf”(z)/(z Gk
(2)

2
d#ﬂﬂ) 2

Ptk -1 d,un;z)

(2— c“’ )

Va (:)
= lim o
(’0"( (z)|2’ ) £= Cn,!‘cl

(Pn+1(

Therefore, the last equalities prove Theorem 2.

Remark 18. Under the conditions of Theorem 2, if Iy, lo € (NU{0}), Iy > k1, {2 > k2 we have

that

i Ymnin(2)  FOTVDE)
n—reo (Pn,nflz(z) 152)(2)

uniformly on each compact subset of |z| > 1.

2 Proof of Theorem 4
The main step in the proof of Theorem 2 is (23) and this follows from admissibility hypothesis

of (o, {W,},—k2). But in the case under study, since o satisfies the Szegd condition, we have

obviously that lim,_,.o ®,(c;0) = 0. Therefore, from Lemma 17 we obtain

lim P om ol 0) = lim ®pyml 2 = G P
m ®nim 9 3 = m ®np4m : =T
nme D (o) e D (2)en(os )2
. dp ; dy
= lim ®pim :0)= lim &4 m(——3;0) =0,
nmoo " (l(z—df;z)aon(a;z)w Az B TR

for all m € Z. Thus, following step by step the proof of Theorem 2 we achieve

(1)
T wn n( Vo (Z)

=,
"= pulatmi ) W)

uniformly in each compact subset of |z| > 1, and the proof of Theorem 4 is finished combining

Theorems C and D.

14



Remark 19. As it was observed, under assumption of Theorem 4, apn(hp—&%ﬂg;z) has relative

asymptotic behaviour with respect to p,(c;z). Moreover, since

de *

|Pn(o; 2)F neo

we think that pn(ﬁ%;z) could be also a good “bridge” for obtain comparative asymptotics of

on(o;2) and @, (¢ do; z).
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