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Abstract. The aim of this work is to present an ongoing project to for-
malize, in the framework of diagrammatic logic (due to Dominique Duval
and Christian Lair) some data structures appearing in Sergeraert’s sym-
bolic computation systems Kenzo and EAT. More precisely, we intend to
translate into the diagrammatic setting a previous work based on stan-
dard algebraic specification techniques. In particular, we give hints on
the reason why an important construction (called imp construction) in
the specification of the systems can be understood as a freely generating
functor between suitable categories of diagrammatic realizations. Even
if very partial, these positive results seem to indicate that this new kind
of specification is promising in the field of symbolic computation.

1 Introduction

Kenzo [7] and its predecessor EAT [14] are software systems developed by F.
Sergeraert. They are devoted to Symbolic Computation in Algebraic Topology.
Particularly, they carry out calculations of homology groups of complex topo-
logical spaces, namely iterated loop spaces. By means of EAT and Kenzo, some
homology groups that had never been obtained with any other method, neither
theoretical nor automatic, have been computed. In view of the obtained results,
some years ago, three of the authors of this paper began the formal study of the
programs, in order to reach a good understanding on the internal calculation
processes of these software systems.

In particular, first we studied the data types used in EAT and Kenzo. In that
study [10, 9, 5, 6] we found that there are two different layers of data structures in
the systems. In the first layer, one finds the usual data structures. For instance,
the system handles integer numbers, (finite) lists or trees of symbols (to represent
linear combinations or polynomials) and so on. In the second layer, one must
deal with algebraic structures like (graded) groups, rings, simplicial sets or chain
complexes, whose elements are data that belong to the first layer.
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We first realized that in a system such as EAT we are not only implementing
an Abstract Data Type, or, shortly, an ADT (as a group, for instance), but also
dealing with implementations of ADTs (several hundreds of implementations of
the ADT group would populate the program memory). In [10] an operation,
which is called imp construction, is defined. This construction models the step
from a kind of structures to families of these structures. Besides, working with
implementations in [10] we were able to prove that EAT (second-layer) data
structures are as general as possible, in the sense that they are ingredients of
final objects in certain categories of ADT implementations. Later on, led by this
characterization of EAT data structures, in [9] we reinterpreted our results in
terms of object-oriented technologies like hidden algebras or coalgebras.

In this paper we extend our interpretation of this construction and concepts
using diagrammatic specifications developed by Duval and Lair [8]. This con-
struction can be understood as a freely generating functor between categories of
diagrammatic realizations.

The paper is organized as follows. In the section below some definitions and
examples on diagrammatic specifications are introduced. In Section 3 the imp
construction is briefly presented. Section 4 is devoted to explain a diagrammatic
interpretation of the imp construction. The paper ends with a section of conclu-
sions and future work.

2 Diagrammatic Logic

Diagrammatic specifications were introduced in [8], as summarized below. The
basic tool for building diagrammatic specifications is the theory of sketches [4, 2,
3]. On the one hand, diagrammatic specifications generalize sketches, and on the
other hand, they are defined by means of projective sketches at a meta-level: a
diagrammatic specification has models, and at the same time it is a realization
(this word is used at the meta-level instead of model) of a projective sketch.

Definition 1. A (directed) graph is made of a set of points, a set of arrows and
two maps from arrows to points. These maps assign to each arrow its source and
target. An arrow g with source G1 and target G2 will be denoted by g:G1 −→ G2.
A morphism of graphs γ:G −→ G′ consists of two maps, both denoted by γ, from
the points of G (the arrows of G, respectively) to the points of G′ (to the arrows
of G′, respectively) such that, for each arrow g:G1 −→ G2 of G, the source of
γ(g) is γ(G1) and its target is γ(G2).

Definition 2. A compositive graph G is made of a directed graph, called the
support of G, together with:
– for some points A, a distinguished arrow idA:A −→ A which is called the
identity at A,
– for some consecutive pairs of arrows (f :G1 −→ G2, g:G2 −→ G3) an arrow
g ◦ f :G1 −→ G3. This arrow is called the composite of f and g.
A morphism of compositive graphs is a morphism of directed graphs which pre-
serves identity arrows and composites.
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Definition 3. A cone in a compositive graph G consists of a point V of G (the
vertex of the cone), a morphism b: I −→ G (the base of the cone) where I is
a compositive graph and, for each point I in I, an arrow pI :V −→ b(I) (the
projections of the cone) such that, for each arrow i: I −→ I ′ in I, the composite
b(i) ◦ pI exists and b(i) ◦ pI = pI′ .

Definition 4. A projective sketch is a compositive graph G together with a set
of cones in G. These cones are called distinguished cones.
A morphism of projective sketches is a morphism of compositive graphs which
preserves the distinguished cones.

Note 1. It is clear that the notion of compositive graph is weaker than (the
notion of) category. Recall that a category is a compositive graph such that each
point has an identity arrow and each pair of consecutive arrows has a composite,
moreover, the associativity and unitarity axioms hold:
– if (f, g) and (g, h) are consecutive, then (h ◦ g) ◦ f = h ◦ (g ◦ f),
– if f :X −→ Y , then f ◦ idX = f and idY ◦ f = f .
A morphism of categories, or functor, is a morphism of compositive graphs.

In a category, limits are cones with a universal property. For instance, a
product is a limit. The product of the points Y1, . . . , Yn is given by a cone:

Pp1
�����

pn
����

�

Y1
. . . Yn

In this case, the universal property of the product establishes that for each cone
with the same base:

Xf1
����

fn
���

�

Y1
. . . Yn

there is a unique arrow (f1, . . . , fn):X −→ P , called factorization of f1, . . . , fn,
such that pi ◦ (f1, . . . , fn) = fi for each i ∈ {1, . . . , n}.

When n = 0, this property says that, for each point X, there is a unique
arrow from X to P ; this means that P is a terminal point in the category.

Here is another example. If we impose that the following diagram is a limit:

PidP
����

idP
���

�

m

��
P

m ���
� P

m���
�

Q

then the universal factorization property implies that m is a monomorphism
(that is, for each pair of arrows fl and fr, if m ◦ fl = m ◦ fr then fl = fr). In
that case m is represented as m:P � Q.

For instance, in the category of sets:
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– A product is a cartesian product, which means that P = Y1 × . . . × Yn, and
p1, . . . , pn are the projections. The factorization arrow (f1, . . . , fn):X −→
Y1 × . . . × Yn builds n-uples of images.

– When n = 0, P is a singleton, i.e., a one-element set;
– A monomorphism is an injective map.

Definition 5. A (set-valued) realization S of a projective sketch E maps each
point E of E to a set S(E) and each arrow e:E −→ E′ of E to a map
S(e):S(E) −→ S(E′), in such a way that each identity arrow becomes an iden-
tity map, each composite arrow becomes the corresponding composite map, and
each distinguished cone becomes a limit.
A morphism σ:S1 −→ S2 of realizations between two realizations S1 and
S2 of E is a natural transformation. That is, for each point E of E a map
σE :S1(E) −→ S2(E) in such a way that S2(e) ◦σE = σE′ ◦S1(e) for each arrow
e:E −→ E′ of E.
The category of realizations of a projective sketch E is denoted by Real(E).

Example 1. Let EGr be the projective sketch with two points and two arrows
(and without any distinguished cone):

EGr : Type Term
context

��

type

		

The idea is that the points Type and Term can be understood respectively
as “points” and “arrows”, and the arrows context and type as “source” and
“target”. Then, the category of realizations of EGr is the category of directed
graphs.

Example 2. The projective sketch EGr can be enriched in order to get a projec-
tive sketch EComp such that the realizations of EComp are compositive graphs.

First, a point Cons is added to EGr , for “pairs of consecutive arrows”. In order
to ensure that it will be interpreted as the set of pairs of consecutive arrows, it
is accompanied by two arrows first: Cons −→ Term and second:Cons −→ Term
(first and second arrow in the pair) and by the following distinguished cone with
vertex Cons (as usual, the diagonal arrow context◦second = type◦first: Cons −→
Type is omitted):

Cons
first


���

� second
����

��

Term
type

��		
		 Term

context









Type

Then, a new point Comp (for composable pairs of terms), a monomorphism
i1: Comp � Cons for the inclusion, and an arrow comp:Cons −→ Term to rep-
resent the composite of composable terms, are added. Moreover, it is necessary
to add the composites:

context ◦ comp = context ◦ first , type ◦ comp = type ◦ second .
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In a similar way a point IdType for types with identity, a monomorphism
i2: IdType � Type for the inclusion, and an arrow idtype: IdType −→ Term for
the selection of the identity of the type, are added. It is also necessary to add
the composites:

context ◦ idtype = i2 , type ◦ idtype = i2 .

IdType i2 ��

idtype

��
Type Term

context

		

type
��

Cons
second

		
first��

Comp
i1��

comp





This enrichment allows to define a morphism of projective sketches
PComp : EGr −→ EComp .

Example 3. We will say that a compositive graph is saturated if each pair of
“composable terms” has a composite and each type has an identity. A sketch
ESComp of saturated compositive graphs is built by enriching EComp with an
inverse for the arrows i1: Comp � Cons and i2: IdType � Type. This means
that two arrows i−1

1 : Cons −→ Comp and i−1
2 : Type −→ IdType are added, such

that:

i1◦i−1
1 = idCons , i−1

1 ◦i1 = idComp and i2◦i−1
2 = idType , i−1

2 ◦i2 = idIdType .

Then, the arrow comp ◦ i−1
1 : Cons −→ Term stands for the composition of

consecutive terms, and the arrow idtype ◦ i−1
2 : Type −→ Term stands for the

selection of identity :

IdType i2 ��

idtype

��
Type

i−1
2

�� ��
� Term
context

		

type
��

Cons
second

		
first��

i−1
1

��� � 
 � � Comp
i1��

comp





This enrichment defines a morphism of projective sketches
PSComp : EComp −→ ESComp .

Example 4. Now, the projective sketch ESComp can be enriched in order to define
a projective sketch ECat for categories. To this aim, it is necessary to include
the associativity and unitarity axioms in the projective sketch which has been
just defined for saturated compositive graphs. These axioms can been seen as
properties (or rules) with a hypothesis and a conclusion (which are required to
be equivalent). For instance, the first part of the unitarity axiom can be seen
as a property such that the hypothesis is made of a term f :X −→ Y and the
identity term at X, idX :X −→ X, and the conclusion is made of these terms
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f and idX , and the composite f ◦ idX which must be equal to f . This rule can
be imposed by enriching the projective sketch ESComp with two new points Hyp
and Conc in the following way:

IdType i2 ��

idtype

��
Type�� ��
� Term

context

		

type
��

Cons
second

		
first��

��� � 
 � � Comp
i1��

comp





Hyp

h1

��												 h2

��������������
Conc

c1

��������������������������

c2

��

com1

��������������������������
i

��

Besides, this projective sketch also contains two distinguished cones with
vertexes Hyp and Conc which determine a hypothesis and a conclusion:

Hyp
h2

����
��
��
�� h1

���
��

��
��

�

Term

context ���
��

��
��

� IdType

i2����
��
��
��

Type

Conc
c2

��

com1����
��
��
�� c1

���
��

��
��

�

Comp
i1◦first

���
��

��
��

�

i1◦second



comp

��

IdType

idtype����
��
��
�� i2

���
��

��
��

�

Term

context

��Term Type

Now, it must be observed that a conclusion contains a hypothesis. This is im-
posed with the arrow i and the composites h1 ◦ i = c1 and h2 ◦ i = c2. Finally,
the rule is declared by enriching this sketch with an inverse arrow for i, that is
i−1: Conc −→ Hyp such that:

i ◦ i−1 = idHyp and i−1 ◦ i = idConc .

This rule means that when the hypothesis is true, then the conclusion is also
true.

Similar processes are needed in order to obtain the other unitarity axiom and
the associativity axiom.

This enrichment defines a sketch morphism PCat : ESComp −→ ECat .

2.1 The Adjunction Associated to a Sketch Morphism

Let us consider a sketch morphism:

P : E −→ E .

In a natural way, we can define the omitting functor GP :Real(E) −→ Real(E).
It is given by GP (C) = C ◦ P , for any realization C of E .

An important fact is that the omitting functor has a left adjoint
FP :Real(E) −→ Real(E). The functor FP is called the freely generating functor.
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In this way, if S is a realization of E and C is a realization of E there exists a
bijection:

HomReal(E)(S,GP (C)) ∼= HomReal(E)(FP (S), C) .

Real(E)
FP �� Real(E)
GP

��

The existence of this left adjoint is a major property of projective sketches
[4, 13].

Example 5. Let P = PSComp ◦ PComp : EGr −→ ESComp be the sketch morphism
obtained by composition of two inclusions (graphs into compositive graphs, and
compositive graphs into saturated graphs). The omitting functor GP maps each
saturated composite graph to its underlying graph.

The freely generating functor FP maps each graph to its freely generated sat-
urated compositive graph, which is obtained by adding all the missing identities
and composites.

Definition 6. A propagator is a morphism of projective sketches P : E −→ E
such that the functor GP is full and faithful.

The following theorem shows a characterization for propagators [8].

Theorem 1. A morphism of projective sketches is a propagator if and only if,
up to equivalence, it consists of adding inverses to arrows.

Example 6. The inclusion PSComp : EComp −→ ESComp is a propagator. The in-
clusion of EGr in ESComp from Example 5 is not a propagator.

2.2 Diagrammatic Specifications and Domains

Projective sketches and propagators can be used at the meta-level to define
diagrammatic specifications. From now on, let us consider a propagator:

P : E −→ E .

Definition 7. A (diagrammatic) P -specification is a realization of E, and a
(diagrammatic) P -domain is a realization of E. That is,

Spec(P ) = Real(E) , Dom(P ) = Real(E) .

So, the adjunction is now represented by:

Spec(P )
FP �� Dom(P )
GP

��

Fixed an specification and a domain for a propagator, we define the notion
of model for the specification with values in the domain.
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Definition 8. Let S denote a P -specification and C a P -domain. The set of
P -models of S with values in C is:

ModP (S, C) = HomDom(P )(FP (S), C) .

The adjunction property yields the following bijection:

ModP (S, C) ∼= HomSpec(P )(S,GP (C)) .

Moreover, for each morphism σ:S −→ S′, it is easy to define a map:

ModP (σ, C) : ModP (S′, C) −→ ModP (S, C) .

In this way, we can establish that ModP (−, C) is a contravariant functor from
the category of P -specifications to the category of sets.

In addition, in the examples we are going to develop, there will exist a nat-
ural notion of morphisms of P -models, and then, a category of P -models of a
specification with values in a domain.

Example 7. Let P = PSComp . A model M of a graph G with values in the
category of sets interprets each point G of G as a set M(G) and each arrow
g:G1 −→ G2 of G as a map M(g):M(G1) −→ M(G2).

2.3 The Yoneda Morphism

The Yoneda morphism is a very classical construction in Category Theory [1]
and plays a basic role in our diagrammatic framework. In the case of projective
sketches, the Yoneda morphism will allow us to relate a sketch with the category
of its realizations [13]. Basically, when E has as underlying compositive graph a
category, its Yoneda morphism maps each point E of E to the realization that
consists of the sets of arrows with source E in E . In the other case, that is E is
not a category, it is easy to build a sketch with this characteristic from E (by
adding all the missing identities and composites, and by identifying arrows when
it is needed for the unitarity and associativity axioms).

This Yoneda morphism is very useful in this framework. On the one hand, it
is a natural way to “illustrate” things defined in a meta specification level using
a specification level. On the other hand, it will give us a method for building the
image of the freely generating functor associated to a morphism of projective
sketches. Before introducing the definition of the Yoneda morphism the notion
of projective prototype is presented.

Definition 9. A projective prototype is a projective sketch such that its under-
lying compositive graph is a category and all its distinguished cones are limits.

Theorem 2. Each projective sketch E freely generates a projective prototype
Proto(E).
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Let E be a projective sketch. Whenever E is a projective prototype (hence, a
category), we define YE as the contravariant functor given by: for any point E
of E , YE(E) = HomE(E,−), and for any arrow e:E −→ E′ of E ,

YE(e) = HomE(e,−):YE(E′) −→ YE(E)

which maps each arrow f :E′ −→ E′′ to f ◦ e:E −→ E′′.
When E is any projective sketch, it freely generates a projective prototype

Proto(E). So we define the Yoneda morphism YE by the composition of the
canonical morphism from E to Proto(E), followed by YProto(E).

Definition 10. The Yoneda morphism of E is the (contravariant) morphism:

E YE ��

���
��

�� Real(E)op

Proto(E)

�������

where Real(E)op is the opposite category of Real(E).

Example 8. Let us consider the projective sketch EGr of graphs described in
Example 1. Then, the prototype Proto(EGr ) is simply the category:

TypeidType �� Term
context

��

type

		 idTerm��

In Proto(EGr ), the identity arrow idType is the unique arrow from Type to
Type, and there is no arrow from Type to Term. So, it follows that the graph
YProto(EGr )(Type) has a unique point and has no arrows. So, a representation of
this graph is:

X�� ���� ��
Similarly, in Proto(EGr ), the identity arrow idTerm is the unique arrow from

Term to Term, and there are two arrows from Term to Type. So, it follows
that the graph YProto(EGr )(Term) assigns as set for the point Term a set with
one element f , and for the point Type a set with two elements Y , Z; which
can be thought that are the context and the type of the unique arrow. So, a
representation of this graph is:

Y

f

��
Z

	
��

���

In this way, a representation for the points Type and Term, which are defined
in a meta specification level, is obtained in a specification level.
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The following theorem states some of the properties of the Yoneda morphism
[8].

Let E be a projective sketch and let S be a realization of E . We consider the
compositive graph E \ S given by: a point Ex for each point E of E and each
x ∈ S(E), an arrow ex:Ex −→ E′

S(e)(x) for each arrow e:E −→ E′ of E and each
x ∈ S(E). Moreover, E \ S has the identities idEx

= (idE)x when idE exists in
E , and the composites (e′ ◦ e)x = e′S(e)(x) ◦ ex, when e′ ◦ e exists in E . As usual,
we define by (E \ S)op the compositive graph opposite of E \ S.

Theorem 3. Let E be a projective sketch and let S be a realization of E.

i) S ∼= colimE∈(E\S)op(YE(E)) ,

ii) Let M : E −→ E be a morphism of projective sketches and FM its correspond-
ing freely generating functor, then:

FM (S) ∼= colimE∈(E\S)op(YE(M(E))) .

The first part of this theorem defines a density property: each realization
can be seen as a colimit of realizations which are in the image of the Yoneda
morphism. The second part gives us a method for building the freely generating
functor associated to a morphism of projective sketches M : E −→ E . Given
a realization S of E , FM (S) is obtained by the following process. First, it is
necessary to obtain, for each point C in E , the image by the Yoneda morphism
YE of M(C). Then, FM (S) is calculated as a colimit of copies of these images
using as index the points E in (E \ S)op.

2.4 Diagrammatic Specification of Equational Logic

In the context of algebraic specifications, as for instance in [12], an equational
specification is made up of three components: a set of sorts, a set of operations
(on the set of sorts) and finally a set of equations. The set of sorts and the set
of operations form the signature of the specification. These three sets are closely
related. Some strings of sorts are used to introduce the operations, and some
terms (derived from the operations) are used to introduce the equations.

For instance, an equational specification for semigroups ESGRP consists of a
signature which has one sort g and one operation prd: g g → g. It uses the string
g g. Besides, it has one equation prd(a, prd(b, c)) = prd(prd(a, b), c), where a, b,
c are variables of sort g. The models of this specification are the semigroups.

The equation of the above specification can be written without variables,
by using relations between composite arrows [1]: prd ◦ fact(p1, prd) ≡ prd ◦
fact(prd, p2), with two projection arrows pi: g g → g, i = 1, 2 and one factor-
ization arrow fact. Then, that equational specification can be replaced with a
projective sketch with some parallel arrows (arrows which share sources and tar-
gets) as equations (see again [1]). The idea is that set-valued realizations of this
sketch coincide with the models of the specification.

In the case of semigroups, we consider the sketch whose set of points is
{g, g g}, and whose set of arrows is {prd, p1, p2, fact(p1, prd), fact(prd, p2), prd◦
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fact(p1, prd), prd◦fact(prd, p2)}. The source and target arrows are defined from
the operations in the natural way (source(prd)=g g, target(prd)=g). Besides, a
distinguished cone is included in order to establish that g g will represent a binary
product: a cone with vertex g g and whose base is the discrete diagram {g, g}.
Moreover, a pair of parallel arrows have to be included in order to represent the
equation prd ◦ fact(p1, prd) ≡ prd ◦ fact(prd, p2).

In general, an equational specification S can be represented as a compositive
graph together with:
– some cones (pi:P → Xi)i=1,...,n, called (potential) products, whose vertex P is
usually denoted by X1 × . . . × Xn. When n = 0, the vertex P of the cone with
empty base is called a (potential) terminal point and it is denoted by 1l,
– some pairs of parallel arrows (f :X → Y, g:X → Y ) in S, called equations (or
potential equalities), which are written f ≡ g.

Note that this representation of an equational specification is slightly different
from the usual one. In this new setting, a point may correspond to a sort or to
a list of sorts, and an arrow to an operation or to a term.

Now, our aim is to use projective sketches at the meta-level in order to obtain
a diagrammatic specification of equational logic. Note that, in this context, an
equational specification will be a realization of that sketch. The starting point
of this process is the sketch for compositive graphs EComp . This sketch is going
to be enriched and we are going to obtain a new sketch EEq which allows to
cover equations and products. In our attempt, only constants, unary and binary
operations are going to be represented, but it is clear that the process can be
extended to general products. Then, a propagator PEq : EEq −→ EEq will be
built, in such a way that the PEq -specifications are the equational specifications,
the PEq -domains are called the equational categories, and the propagator PEq

corresponds to the equational logic.

Equations

In order to include equations we build the following graph:

IdType
i2 ��

idtype

��

Cons
second

��

first





Comp

comp

  

i1��

Type Term
context

		

type
��

Paraleft

�� right
��

Equa
i3��

So, this projective sketch EEq is an enrichment of EComp . The points Para and
Equa stand for “pairs of parallel arrows” and “equations”, respectively. The
arrows left and right extract the two terms of an equation and i3: Equa � Para
is defined as a monomorphism (an equation is a pair of parallel terms).
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The projective sketch EEq also contains the distinguished cone with vertex
Para which establishes that Para represents pairs of parallel terms:

Para
left
!!���

��� right

""��
���

�

Term type

������
�����

�����
��

context ��

Termcontext

##�����
�����

�����
�

type��
Type Type

By using the Yoneda properties, we can give the following description of the
point Para:

X

f
��

g

�� Y
�� ���� ��

Now, it is possible to define a new sketch EEq for equational categories. We
can build EEq by enriching ECat in a similar way to the process used to obtain EEq

from EComp (indeed, an equational category is defined in [8] as a category with a
congruence relation and in that paper some additional rules are needed to obtain
that relation). Then, the equational propagator is the enrichment PEq : EEq −→
EEq . Hence, PEq -specifications are equational specifications and PEq -domains are
equational categories. In this paper, we are only interested in the category Set ,
i.e. the category of sets, which has the equality of maps as congruence relation.
This category will be considered as PEq -domain for all PEq -specifications. But
of course, it is possible to work with other types of equations in other contexts.

Example 9. Let us consider the diagrammatic specification T which has three
points V , N and P , where V is a terminal point, five arrows z:V −→ N , s:N −→
P , p:P −→ N , idN :N −→ N and p ◦ s:N −→ N , where idN is the identity of
N and p ◦ s is the composite of s and p, and one equation p ◦ s ≡ idN . In the
illustration, the identity and the composite have been omitted, and we use the
symbol 1l to represent that V is a terminal point:

T : P

p

$$
1l

z �� N

s

%%

p◦s≡idN

The specification T has a very natural model M which interprets the sort V as
a singleton {�}, the sort N as the set N of non-negative integers, the sort P as
the set P of positive integers, the constant z as the constant map zero: � �→ 0,
and the operations s and p as the maps suc:x �→ x + 1 and pre:x �→ x − 1,
respectively:

M : P

x�→x−1

&&
{�} � �→0 �� N

x�→x+1

''

12



On the one hand, T is a realization of EEq , i.e. a PEq -specification for the equa-
tional propagator PEq : EEq −→ EEq , which gives a completely different illustra-
tion for T :

T :

{N}
⊆��

N �→idN

((

{(s, p), . . .}
##))

{(s, p)}

(s,p) �→p◦s

**
⊇

��

{V,N, P} {z, s, p, p ◦ s, idN}��
++

{(p ◦ s, idN ), . . .}

,, --

{p ◦ s ≡ idN}⊇
��

On the other hand, this realization T of EEq can be seen as the colimit
of three copies of YProto(EEq )(Type) (which has the same representation as
YProto(EGr )(Type) in Example 8), one copy for each element of T (Type),
and five copies of YProto(EEq )(Term) (which has the same representation as
YProto(EGr )(Type) in Example 8), one copy for each element of T (Term), and
so on. If they are summed following the diagram defined by (EEq \ T )op, we
retrieve the representation:

T : X3

t3
&&

X1
t1 �� X2

t3◦t2

..

t2

''

t4// X2

t3◦t2 00≡
t4

�� X2

�� ��
�� � 

Finally, Set is a realization for EEq , i.e. a PEq -domain for the equational
propagator PEq : EEq −→ EEq . Then, a PEq model of T with values in Set is
a homomorphism in HomSpec(PEq)(T,GPEq

(Set)), i.e. a family of applications
fE :T (E) −→ GPEq

(Set)(E), one application for each point of E in EEq . In these
families, the application fType assigns each type of T to a set, and the applica-
tion fTerm assigns each term of T to an application and so on. For instance, the
model M has the following interpretation:

M :

{N}

⊆
��

N�→idN

��

{(suc,pre),...}

##



{(suc,pre)}

(suc,pre) �→pre◦suc

  

⊇
��

{�,N,P} {zero,suc,pre,pre◦suc,idN}		
��

{(pre◦suc,idN),...}

�� --

{pre◦suc=idN}⊇
��

13



It must be observed that the terms of the specifications for EEq have exactly
one argument. We can easily avoid this problem by considering n-ary terms
as terms which have a n-ary record type (X1, . . . , Xn) as unique argument (this
record type is considered a product of types). But, at this point, it is not possible
to distinguish between an operation with a “single” sort as argument from an
operation which has a n-ary product of sorts as argument. In the following
subsection products are included in our realizations.

Products

The sketch EEq is now enriched in order to include binary products of sorts and
a sort that allows to represent the constants. This sketch will be also denoted
by EEq .

A binary product is a binary cone which satisfies a universal property. So,
we include in the sketch two new points: 2Cone for binary cones and 2Prod
for binary products. Similarly, a point Un is included in order to specify the
constants:

Equa
i3 ��
Para

left

11

right

22

IdType
i2 ��

idtype

��

Cons
second

++

first





Comp

comp

  

i1��

Un un
�� Type Term

context

		

type
��

2Conepr2

33 pr1

��

vertex

44

2Prod
i4��

The arrows vertex, pr1, pr2 stand for the vertex and for the two projections
of a binary cone. The arrow i4 represents the inclusion of binary products as
binary cones.

Moreover, the projective sketch EEq contains a distinguished cone with vertex
Un and empty base (which determines that realizations for this sketch will have
a singleton on this point), and a distinguished cone with vertex 2Cone:

2Conepr1


���

�

vertex

��

pr2
����

��

Term
context

����
�� Term

context


���

�

Type

which establishes that a binary cone consists of two terms with the same context.
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By using the Yoneda properties, we can give the following description for
2Cone:

H
pr1

����
��
��
�

pr2

���
��

��
��

�

X Y

�� ���� � 

Now, it is necessary to impose the universal property of binary products: if
P is a binary product then, for each binary cone C having the same base of P ,
there exists a (unique) factorization term from the vertex of C to the vertex of
P whose composites with the projections of P commute with the projections of
C.

The property of existence of this factorization term can be visualized as a
rule with a hypothesis and a conclusion. The hypothesis consists of a binary
product and a binary cone with the same base. The conclusion consists of a
binary product, a binary cone (with the same base) and a term from the vertex
of the cone to the vertex of the product which commutes with the projections.

In order to represent this property, two new points Hyp and Conc are included
in the projective sketch EEq :

Equa
i3 ��
Para

left

11

right

22

IdType
i2 ��

idtype

��

Cons
second

++

first





Comp

comp

  

i1��

Un un
�� Type Term

context

		

type
��

2Conepr2

33 pr1

��

vertex

44

2Prod
i4��

Hyp
h1

��
h2

�������������
Conc

c2

��
c1

�������������

fact

55

i5
��

The projective sketch EEq also contains a distinguished cone with vertex Hyp
which determines that the hypothesis consists of a binary cone and a binary
product such that they share their basis, and a distinguished cone with vertex
Conc which determines that the conclusion consists of such binary cone and
binary product and a term from the vertex of the cone to the vertex of the
product:
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Hyp
h1

����
��
��
�� h2

���
��

��
��

2Cone type◦pr2

((��
���

���
���

�

type◦pr1
��

2Prod

type◦pr1◦i4
))���

���
���

���
type◦pr2◦i4

��
Type Type

Conc
c1

����
��
��
��

c2

��

fact

���
��

��
��

�

2Cone

���
��

��
��

�

��

vertex

66

2Prod

����
��
��
��

��
vertex◦i4

  
 

�� 
  

Term

type

��

context

���
��

��
��

�

Type Type Type Type

Now, we still have to impose that the composites of the factorization term
with the projections of the product are the projections of the cone. In order to
include these composites, a new arrow for the first projection com1: Conc −→
Comp is added to EEq (a similar one is needed for the second projection). This
arrow is needed to define the composite of fact and pr1 ◦ i4 ◦ c2 as a term. This
is obtained through the following equalities:

fact = first ◦ i1 ◦ com1 and pr1 ◦ i4 ◦ c2 = second ◦ i1 ◦ com1 ,

and then the composition of these terms are equal to the first projection of the
cone:

pr1 ◦ c1 = comp ◦ com1 .

The description given by Yoneda properties of the conclusion Comp of this
rule is:

H
pr1

77��
��
� pr2

��!
!!

!!

fact

��

X ≡≡ Y

X × Y
p1

88!!!!!
p2

99"""""

�� ��
�� � 

Similar processes allow to represent the unicity of the factorization arrow
and to model that the point Un represents a terminal point.

Now, rules are declared by enriching EEq with inverses. For instance, an arrow
i−1
5 : Conc −→ Hyp is added, such that:

i5 ◦ i−1
5 = idHyp and i−1

5 ◦ i5 = idConc .

3 The imp Construction

We have pointed out that in Kenzo and EAT systems [7, 14] two layers of data
structures coexist. In a first layer, one finds the usual data structures like in-
teger numbers, (finite) lists, trees of symbols (to represent linear combinations
or polynomials) and so on. In the second layer, one must deal with algebraic
structures like (graded) groups, rings, simplicial sets or chain complexes, whose
elements are data belonging to the first layer. These algebraic structures are first
order elements in Algebraic Topology and then systems such as Kenzo and EAT

16



do not work with a unique instance of these structures, but handle families of
them at runtime.

To carry out the specification of this kind of structures, an operation between
abstract data types was defined in [10]. This operation models the step from
working with a data type to working with the data type of families of “elements”
of that data type. The operation is called imp construction (this name has
been chosen because this kind of specifications are related to implementations
of structures rather to the structures themselves, i.e. related to the treatment at
low level that the systems make of the structures).

The following simple example is used to explain the syntactic aspects of
this construction. Let ESGRP be the equational specification for semigroups. It
consists of a signature ΣSGRP which has one sort g and one operation prd: g g →
g. Besides, it has one equation prd(a, prd(b, c)) = prd(prd(a, b), c), where a, b, c
are variables of sort g.

The specification ESGRP is obviously the basis of the algebraic specifica-
tion for a semigroup, whose underlying set is abstracted by the sort g. But
if, as it is usual in symbolic computation systems, it is necessary to handle
several semigroups on the same underlying data set, a new data type, which
remains hidden in the signature ΣSGRP , must be considered: the type of semi-
groups represented on g. If we make explicit this invisible (or hidden) type, we
obtain a new specification, denoted by ESGRPimp, whose signature ΣSGRPimp

contains a new sort impΣSGRP
, and an operation: imp prd: impΣSGRP

g g →
g. Besides, it has one equation: imp prd(zimp, a, imp prd(zimp, b, c)) =
imp prd(zimp, imp prd(zimp, a, b), c), where a, b, c are variables of sort g and
zimp is a variable of the new sort.

The ΣSGRPimp-algebras for ESGRPimp represent families of ΣSGRP -algebras
for ESGRP , in the sense that each element of the carrier set for the distinguished
sort allows to retrieve a ΣSGRP -algebra which satisfies the equation. To be more
precise, given a ΣSGRPimp-algebra A, each element a ∈ AimpΣSGRP

defines the
ΣSGRP -algebra Aa = 〈Ag, imp prd(a,−,−)〉. Note that the functions of Aa are
obtained by fixing the element a as the first argument of the functions in A.

In general, given a specification E = (Σ,E) with Σ = (S,Ω), a new specifi-
cation Eimp = (Σimp,Eimp) with Σimp = (Simp, Ωimp) can be defined as follows:

– Simp = S ∪ {impΣ} with impΣ /∈ S,
– for each operation ω: s1 . . . sn → s in Ω, an operation

imp ω: impΣs1 . . . sn → s is included in Ωimp,
– for each equation t = s in E, an equation θ(t) = θ(u) is included in Eimp

where θ = (θs)s∈S is a family of maps between the terms of Σ and the terms
of Σimp defined as follows:
• if t = x, a variable of sort s ∈ S, then θs(x) = x;
• if t = ω(t1, . . . , tn), with ω: s1 . . . sn → s ∈ Ω, n ≥ 0 and ti term of Σ

i = 1, . . . , n, then θs(ω(t1, . . . , tn)) = imp ω(zimp, θs1(t1), . . . , θsn
(tn)),

with zimp a variable of sort impΣ .

In the following section we are going to describe this construction using
diagrammatic techniques.
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4 Diagrammatic Specification of the imp Construction

A diagrammatic specification of the imp construction will be given in this sec-
tion in terms of a freely generating functor associated to a sketch morphism.
The source of this sketch morphism will be the sketch EEq for equational speci-
fications in Section 2.4, its target will be the sketch E∗

Eq for pointed equational
specifications. Roughly speaking, a pointed specification consists of an equational
specification such that a sort is distinguished in its signature.

Our stating point is the compositive graph EEq . Then, the graph E∗
Eq is

defined as an extension of it. In order to obtain pointed specifications, a new
arrow is added to the initial graph:

imp:Un −→ Type .

This arrow determines the distinguished sort. Now, it is possible to generate
the binary products having this sort as first component. These products are
represented through a new point ImpType (an inclusion j: ImpType � 2Prod
and a new arrow typeimp: ImpType −→ Un are also included in the graph):

Equa
i3 ��
Para

left

11

right

22

IdType
i2 ��

idtype

��

Cons
second

��

first

77

Comp

comp

��

i1��

Un un
��

imp

""
Type Term

context

		

type
��

2Conepr2

�� pr1

��

vertex

::

2Prod
i4��

ImpType

j

;;typeimp

44#############

In a similar way, we have to state explicitly the point ImpTerm of terms whose
context is a type in ImpType. Moreover, the corresponding arrows impcontext
and imptype have to be included. For a given realization S of E∗

Eq , an element of
S(ImpType) will be a binary product: (imp ←− imp × X −→ X) and elements
of S(ImpTerm) are arrows:

imp imp × X�� ��

imp−t

<<#
##

##
##

##
# X

imp × Y

88!!!!!!!!!
�� Y

�� ��
�� � 

We say that imp − t is the term associated to the imp term.

18



An arrow, termimp: ImpTerm −→ Term, which extracts the associated term,
is also included:

Equa
i3 ��
Para

left

11

right

22

IdType
i2 ��

idtype

��

Cons
second

++

first





Comp

comp

��

i1��

Un un
��

imp

""
Type Term

context

		

type
��

2Conepr2

33 pr1

��

vertex

88

2Prod
i4��

ImpType

j

==typeimp

44#############
ImpTerm

impcontext

��

imptype
++

termimp

��

It is clear that some new composites and distinguished cones have to be
considered. For instance, in order to establish that the first component of an
ImpType is the distinguished type we have to include the composite:

type ◦ pr1 ◦ i4 ◦ j = imp ◦ typeimp .

and the property of the term associated to an imp term which has as context a
type in ImpType is obtained through the distinguished cone:

ImpTerm
impcontext



���
���

���
�
termimp

��

imptype

����
���

���
��

ImpType

vertex◦i4◦j

��

Term
context



���
���

���
��

type

����
���

���
���

ImpType

type◦pr2◦i4◦j

��
Type Type

In the next subsections we are going to briefly introduce the rest of imp
components which must be included in E∗

Eq . To preserve the readability of the
paper, some technical details of these construction will be avoided.

4.1 Composites and Identities

In order to represent the imp components associated to the composition of arrows
we have to enrich the sketch E∗

Eq with two points ImpCons and ImpComp (for
pairs of consecutive and composable imp terms, respectively). We have also to
consider the corresponding projections (impfirst and impsecond from ImpCons
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to ImpTerm), the inclusion from ImpComp to ImpCons and, finally, an arrow to
extract the imp term associated to the composition of two composable imp terms
(impcomp from ImpComp to ImpTerm). Then, composites and distinguished
cones on these imp points and imp arrows are included in E∗

Eq which correspond
to composites and distinguished cones in EEq .

If we consider a realization of E∗
Eq (that is, a pointed signature) and two of

its composable imp terms:

imp imp × X�� ��

imp−t1

<<#
##

##
##

##
# X imp imp × Y�� ��

imp−t2

<<$
$$

$$
$$

$$
Y

imp × Y

88!!!!!!!!!
�� Y imp × Z

88���������
�� Z

�� ��
�� � 

The composite must be an imp term

imp imp × X�� ��

imp−t3

<<#
##

##
##

##
# X

imp × Z

88!!!!!!!!!
�� Z

�� ��
�� � 

It is clear that it is not possible to directly use the composition of terms (in
fact, they are not composable terms). The imp composite of these imp terms
is defined by the composite of fact(pr1, imp − t1): imp × X −→ imp × Y and
imp− t2: imp×Y −→ Z, where fact is the factorization term obtained from the
universal property of the binary product imp × Y (by using the cone imp × X
with arrows pr1, its first projection, and imp − t1). This idea is (a variant of) a
well-know construction in Category Theory, called Kleisli composition [11]. We
are not going to develop the technical details which are needed in order to give
a complete formalization of the above definition.

With regard to identities, a new point ImpIdType, and the corresponding
arrows from it to ImpTerm and ImpType, have to be included in the graph.

4.2 Equations

Similarly to composite terms, the imp equations are included in the sketch E∗
Eq

by means of two points: ImpPara and ImpEqua, which represent parallel imp
terms and imp equations, respectively. The two corresponding projections from
ImpPara to ImpTerm and the inclusion of ImpEqua into ImpPara are also consid-
ered. Moreover, we have to impose (by means of the corresponding distinguished
cones and composites) that the description of a pair of parallel imp terms (for
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a given realization) is the following:

imp imp × X�� ��

imp−t1

>>
imp−t2

??

X

imp × Y

88!!!!!!!!!
�� Y

�� ��
�� � 

Then, two new arrows have to be pointed out in the graph in order to extract
the parallel terms (the equation, respectively) associated to an imp parallel term
(imp equation, respectively).

4.3 Cones and Products

Finally, the imp components which correspond to binary cones and binary prod-
ucts are represented. This leads us to introduce two new points Imp2Cone and
Imp2Prod and the corresponding imp arrows and distinguished cones. For in-
stance, the imp binary cone (for a realization of E∗

Eq) is described as follows:

imp imp × H�� ��

imp−t1
����
��
��
��

imp−t2
���

��
��

��
� H

imp imp × X�� �� X Y imp × Y�� �� imp

�� ��
�� � 

where the points imp should be identified.

4.4 Two Sketch Morphisms to Represent the imp Construction

In the above subsections, a sketch E∗
Eq for pointed equational specifications have

been built by enriching the sketch EEq for equational specifications. Then, a
first morphism of sketches can be trivially defined between these sketches: the
inclusion morphism iimp: EEq −→ E∗

Eq .
In order to obtain a diagrammatic representation of the imp construction,

another morphism between these sketches is defined. Recall that the imp con-
struction assigns to each operation in a signature a new operation which includes
a new distinguished sort as first argument in its context. When a signature is
represented as a projective sketch (following the comments in Section 2.4), each
term in the signature with a type as context has to be mapped to a new term
with the corresponding imp type as context. This is obtained with the freely
generating functor associated to a morphism of sketches mimp: EEq −→ E∗

Eq .
This morphism assigns each point of EEq to its corresponding imp point of E∗

Eq

and each arrow of EEq to its corresponding imp arrow of E∗
Eq . With respect to
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equations, it must be observed that in the two terms of an equation, the first
projection over a product type (with the distinguished type as first component
of the product) is always included in the corresponding imp equation. Besides,
this first projection is also included in each imp composite included of these
terms. This corresponds, in equational logic, to include the same variable of the
distinguished sort in the imp terms.

The diagrammatic specification of the imp construction is obtained through
the two morphism of sketches previously defined:

EEq

iimp

��

mimp

@@ E∗
Eq

The inclusion morphism iimp allows to obtain an equational specification
from a pointed equational specification. To this aim, the omitting functor asso-
ciated to this morphism is used:

EEq
iimp ��

Giimp
(S∗) ((��

���
��

E∗
Eq

S∗))���
���

�

Set
where S∗ is a set valued realization of E∗

Eq and Giimp
(S∗) = S∗ ◦ iimp.

The morphism mimp allows to build the imp specification associated to an
equational specification. To this aim, the freely generating functor associated to
this morphism is used:

EEq
mimp ��

S ((��
���

��
E∗
Eq

Fmimp
(S)))���

���
�

Set
where S is a set valued realization of EEq .

Then, by construction, the following theorem is obtained:

Theorem 4. Let S be a set valued realization of EEq which is the diagrammatic
representation of an equational specification E, then Giimp

(Fmimp
(S)) is the di-

agrammatic representation of Eimp.

From the diagrammatic representation S of an equational specification, a
diagrammatic representation of the corresponding imp specification is built by
freely generation Fmimp

(S). This corresponds to a pointed equational specifica-
tion. Then, this pointed equational specification can be seen as an equational
specification by omitting the imp components.

5 Conclusions and Future Work

In this ongoing work we have translated into diagrammatic specifications our
previous results in the specification of some data structures appearing in Serg-
eraert’s symbolic computation systems which were obtained with standard alge-
braic specification techniques. In particular, we have given hints on the reason
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why an important construction (called imp construction) in the specification of
the systems, can be understood as a freely generating functor between suitable
categories of diagrammatic realizations. Even if very partial, these positive re-
sults seem to indicate that this new kind of specification is promising in the field
of symbolic computation.

This work may be continued along different lines. On the one hand, it will
be necessary to continue the translation of our previous results into diagram-
matic specifications: final algebra, hidden specifications, coalgebras, study of the
inheritance... On the other hand, we may try to apply directly diagrammatic
techniques to the specification of our systems and not only to make a transla-
tion of our previous work. In this line, the diagrammatic description of other
parts of EAT and Kenzo systems should be undertaken. Finally, we can try to
transfer our results to other symbolic computation systems.
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