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RECURRENCE RELATIONS FOR THE MIDPOINT METHOD

J. A. EZQUERRO. M. A. HERNÁNDEZ AND M. A. SALANOVA

Abstract. In this paper, we present a new convergence analysis and error estimates for the

Midpoint method in Banach spaces by using Newton-Kantorovich-type assumptions and a tech-

nique based on a new system of recurrence relations. Finally, we give three examples where we

improve the error bounds are better given by other authors.

Introduction

Many scientific problems are like solving a nonlinear equation of the form F (x) = 0.

This equations can represent differential equations, integral equations or a system of

equations in the simplest case. In order to set out these equation types in a general

way, we consider F as a nonlinear operator defined on a subset Ω of a Banach space X

with values in another Banach space Y . The Newton method is the most used iteration

to solve those equations as a consequence of computational efficiency even less speed of

convergence can be got.

Our goals in this paper is to increase the speed of convergence of Newton’s method

and not to increase its operational cost very much. Taking into account these goals, we

consider a multipoint Newton-type method of order three called the Midpoint method

studied by other authors ([3], [7]). This method is defined for all n ≥ 0 by

yn = xn − ΓnF (xn), zn = xn +
1

2
(yn − xn),

xn+1 = xn − ΓnF (xn) (1)

where Γn = F ′(xn)−1 and Γn = F ′(zn)−1.

We introduce a new technique to study the convergence of (1) based on the con-

struction of a system of recurrence relations that consists of two sequences of positive

real numbers that guarantee the convergence of sequence (1) in Banach spaces. We also

provide some a priori error bounds. By this new technique better convergence domains

Received February 4, 1999.
1991 Mathematics Subject Classification. 47H17, 65J15.
Key words and phrases. Nonlinear equations in Banach spaces, third-order method, recurrence
relations, multipoint iteration.
Supported in part by the University of La Rioja (grants API-97/A30 and API-99/B14) and DGES(grants
PB96-0120-C03-02 and PB98-0198).

33



34 J. A. EZQUERRO. M. A. HERNÁNDEZ AND M. A. SALANOVA

and better error bounds are obtained than the ones obtained by other authors, as we can

see in the applications included at the end of the paper.

Recurrence Relations

Let X, Y be Banach spaces and F : Ω ⊆ X → Y be a nonlinear twice Fréchet

differentiable operator in an open convex domain Ω0 ⊆ Ω. The Midpoint method to

solve the equation F (x) = 0 given by (1) can be written in the following form:

H(xn, zn) = Γn[F ′(zn) − F ′(xn)]

xn+1 = yn − H(xn, zn)(yn − xn), (2)

Let us assume that Γ0 = F ′(x0)
−1 ∈ L(Y, X) exists at some x0 ∈ Ω0, where L(Y, X)

is the set of bounded linear operators from Y into X .

Throughout this paper we assume that

(i) ‖Γ0‖ ≤ β.

(ii) ‖Γ0F (X0)‖ ≤ η.

(iii) ‖F ′′(x)‖ ≤ M , x ∈ Ω0.

(iv) ‖F ′′(x) − F ′′(y)‖ ≤ K‖x − y‖, x, y ∈ Ω0.

Let us denote

a0 = Mβη, b0 = Kβη2. (3)

Next we define the sequences

an+1 = anf(an)2g(an, bn), bn+1 = bnf(an)3g(an, bn)2. (4)

where

f(x) =
2 − x

2 − 3x
. (5)

and

g(x, y) =
x2

(2 − x)2
+

7y

24
. (6)

Assuming now that a0 < 2
3 and y0 ∈ Ω0 we deduce that z0 ∈ Ω0. Then by the initial

hypotheses (i)-(iv), we have

‖I − Γ0F
′(z0)‖ ≤ ‖Γ0‖‖F

′(x0) − F ′(z0)‖ ≤
M

2
‖Γ0‖‖y0 − x0‖ ≤

a0

2
< 1

and, by the Banach lemma, Γ0 exists and ‖Γ0‖ ≤ 2
2−a0

Γ0. On the other hand

M‖Γ0‖‖y0 − x0‖ ≤ a0,

K‖Γ0‖‖y0 − x0‖
2 ≤ b0.

‖H(x0, z0)‖ = ‖Γ0[F
′(z0) − F ′(x0)]‖ ≤

a0

2 − a0
.



RECURRENCE RELATIONS FOR THE MIDPOINT METHOD 35

Then x1 is well defined and

‖x1 − x0‖ ≤ ‖Γ0F (x0)‖ ≤ ‖Γ0F
′(x0)‖‖Γ0F (x0)‖ ≤

2

2 − a0
‖Γ0F (x0)‖.

In that situation we prove the following estimates for all n ≥ 1:
(In) ‖Γn‖ ≤ f(an−1)‖Γn−1‖,

(IIn) ‖yn − xn‖ = ‖ΓnF (xn)‖ ≤ f(an−1)g(an−1, bn−1)‖yn−1 − xn−1‖,
(IIIn) M‖Γn‖‖yn − xn‖ ≤ an,
(IVn) K‖Γn‖‖yn − xn‖

2 ≤ bn,
(Vn) ‖Γn‖ ≤ 2

2−an

‖Γn‖,
(V In) ‖H(xn, zn)‖ ≤ an

2−an

,

(V IIn) ‖xn+1 − xn‖ ≤ 2
2−an

‖ΓnF (xn)‖ = 2
2−an

‖yn − xn‖.
We proceed by mathematical induction on n.
[I1]: Taking into account that a0 < 2

3 and x1 ∈ Ω0, then

‖I − Γ0F
′(x1)‖ ≤ ‖Γ0‖‖F

′(x0) − F ′(x1)‖ ≤ M‖Γ0‖‖x1 − x0‖ ≤
2a0

2 − a0
< 1

and, by the Banach lemma, Γ1 exists and

‖Γ1‖ ≤
‖Γ0‖

1 − ‖I − Γ0F ′(x1)‖
≤ f(a0)‖Γ0‖.

Hence ‖Γ1F
′(x0)‖ ≤ f(a0).

[II1]: Using Taylor’s formula, if y0 ∈ Ω0, then z0 ∈ Ω0 and we have

F (x1) = F (y0) + F ′(y0)(x1 − y0) +

∫ x1

y0

F ′′(x)(x1 − x)dx

=

∫ 1

0

F ′′(y0 + t(x1 − y0))(1 − t)dt(x1 − y0)
2

−

∫ 1

0

F ′′(z0 + t(y0 − z0))(y0 − z0)dtH(x0, z0)(y0 − x0)

+

∫ 1

0

[F ′′(x0 + t(y0 − x0)) − F ′′(x0)](1 − t)dt(y0 − x0)
2

+
1

2

∫ 1

0

[

F ′′(x0) − F ′′(x0 +
1

2
t(y0 − x0))

]

dt(y0 − x0)
2.

So
‖y1 − x1‖ = ‖Γ1F (x1)‖ ≤ f(a0)g(a0, b0)‖y0 − x0‖.

[III1]:
M‖Γ1‖‖y1 − x1‖ ≤ M‖Γ0‖‖y0 − x0‖f(a0)

2g(a0, b0) ≤ a1.

[IV1]:
K‖Γ1‖‖y1 − x1‖

2 ≤ K‖Γ0‖‖y0 − x0‖
2f(a0)

3g(a0, b0)
2 ≤ b1.
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[V1]: Notice that if a1 < 2
3 and y1 ∈ Ω0, then z1 ∈ Ω0 and

‖I − Γ1F
′(z1)‖ ≤ ‖Γ1‖‖F

′(x1) − F ′(z1)‖ <
M

2
‖Γ1‖‖y1 − x1‖ ≤

a1

2
≤ 1.

and, by the Banach lemma. Γ1 exists and ‖Γ1‖ ≤ 2
2−a1

‖Γ1‖. Consequently, ‖Γ1F
′(x1)‖ ≤

2
2−a1

.

[VI1]:

‖H(x1, z1)‖ = ‖Γ1[F
′(z1) − F ′(x1)‖ ≤

a1

2 − a1
.

[VII1]:

‖x2 − x1‖ = ‖Γ1F (x1)‖ ≤ ‖Γ1F
′(x1)‖‖Γ1F (x1)‖ ≤

2

2 − a1
‖y1 − x1‖.

Following an inductive procedure and assuming for all n ≥ 0 that xn+1, yn ∈ Ω0 and

an < 2
3 , items [In]-[VIIn] are true for a fixed n ≥ 1. We can prove [In+1]-[Vn+1] in the

a similar way and the induction is complete.

To study the sequence {xn} defined in a Banach space we analyse the real sequences

{an} and {bn}. To establish the convergence of {xn} we only have to prove that {xn} is

a Cauchy sequence and the following assumptions:

xn+1, yn ∈ Ω0 and an <
2

3
, n ∈ N.

All of that is the aim of the following section.

A Convergence Study

In this section, we study the sequences {an} and {bn} defined in (4) to prove the

convergence of (1). First at all. We give a technical lemma, whose proof is trivial, that

includes the results over the functions f(x) and g(x, y) given respectively by (5) and (6).

Lemma 1. Let f and g two real functions give in (5) and (6) respectively. Then

(i) f is increasing and f(x) > 1 for x ∈ (0, 2/3),

(ii) g is increasing for all x ∈ (0, 2/3) and for all y > 0.

(iii) f(γx) < f(x) and g(γx, γ2y) < γ2g(x, y) for γ ∈ (0, 1), y > 0 and x ∈ (0, 2/3).

Some properties for the sequences {an} and {bn} given by (4) are now provided. From

now on, let us denote

h(x) =
96(1 − x)(1 − 2x)

7(2 − x)2
(7)

Lemma 2. Let f and g be as before, a0 ∈ (0, 1/2) and b0 < h(a0). Then

(i) f(a0)
2g(a0, b0) < 1,

(ii) the sequences {an} and {bn} are decreasing
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(iii) an < 2/3 for all n ≥ 0.

Proof. From the hypotheses, (i) follows immediately. We show (ii) by mathematical
induction on n. The facts that 0 < a1 < a0 and 0 < b1 < b0 follow by previous (i) and
lemma 1 (i). Next, it is supposed that aj < aj−1 and 0 < bj < bj−1 for j = 1, 2, . . . , n.
Then

an+1 = anf(an)2g(an, bn) < an−1f(an−1)
2g(an−1, bn−1) = an

since f and g are increasing and f(x) > 1 for x ∈ (0, 2/3).

By a similar reasoning, we have

bn+1 = bnf(an)3g(an, bn)2 < bnf(an)4g(an, bn)2 < bn[f(an)2g(an, bn)]2

< bn[f(a0)
2g(a0, b0)]

2 < bn

Finally, for all n ≥ 0, we have an < 2/3 since {an} is a decreasing sequence and a0 ∈
(0, 1/2). The proof is complete.

Lemma 3. Let us suppose the hypotheses of lemma 2 and define γ = a1/a0. Then,

we have

(in) an < γ3n−1

an−1 < γ
3n
−1

2 a0 and bn < (γ3n−1

)2bn−1 < γ3n

−1b0, for n ≥ 2.

(iin) f(an)g(an, bn) < γ3n f(a0)g(a0,b0)
γ

= γ3n

f(a0)
, for n ≥ 1.

Proof. We prove (in) following an inductive procedure. Taking into account that
a1 = γa0 and

b1 = b0f(a0)
3g(a0, b0)

2 < b0[f(a0)
2g(a0, b0)]

2 = γ2b0.

(i2) holds by lemma 1 (iii). If we suppose that (in) is true, then

an+1 = anf(an)2g(an, bn) < γ3n−1

an−1f(γ3n−1an−1)
2g

(

γ3n−1

an−1, (γ
3n−1

)2bn−1

)

< γ3n−1

(γ3n−1

)2an−1f(an−1)
2g(an−1, bn−1) = γ3n

an.

Similarly,

bn+1 = bnf(an)3g(an, bn)2 < bnf(an)4g(an, bn)2 < bn

(an+1

an

)2

< (γ3n

)2bn.

Moreover,

an+1 < γ3n

an < γ3nγ
3n
−1

2 a0 = γ
3n+1

−1

2 a0,

bn+1 < (γ3n

)2bn < (γ3n

)2γ3n

−1b0 = γ3n+1
−1b0.

On the other hand, we observe that

f(an)g(anbn) < f(γ
3n
−1

2 a0)g(γ
3n
−1

2 a0, γ
3n

−1b0) < γ3n

−1f(a0)g(a0, b0) =
γ3n

f(a0)
.
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The proof is complete.

So we are ready to state the following result on the convergence of iteration (1).

Theorem 1. Let X, Y be Banach spaces and F : Ω ⊆ X → Y be a nonlinear twice

Fréchet differentiable operator in an open convex domain Ω0 ⊆ Ω. Let us assume that

Γ0 = F ′(x0)
−1 ∈ L(Y, X) exists at some x0 ∈ Ω0 and assumptions (i)-(iv) are satisfied.

Let us denote a0 = Mβη and b0 = Kβη2. Suppose that 0 < a0 < 1/2 and b0 < h(a0),

where h(x) is the function defined in (7). Then, if B(x0, Rη) = {x ∈ X ; ‖x − x0‖ ≤

Rη} ⊆ Ω0, where R = 2
2−a0

1
1−∆ with ∆ = 1

f(a0)
, the sequence {xn} defined in (1) and

starting at x0 converges at least R-cubically to a solution x∗ of the equation F (x) = 0.

In that case, the solution x∗ and the iterates xn, yn, zn belong to B(x0, Rη), and x∗ is

the only solution of F (x) = 0 in B(x0,
2

Mβ
− Rη) ∩ Ω0.

Furthermore, the following error estimates holds:

‖x∗ − xn+1‖ ≤
2

2 − a0

(

γ
3n
−1

2

) ∆n

1 − ∆
η. (8)

Proof. Firstly, we prove that {xn} is a Cauchy sequence. Observe that

‖xn+1 − xn‖ ≤
2

2 − an

‖yn − xn‖ ≤
2

2 − a0
f(an−1)g(an−1, bn−1)‖yn−1 − xn−1‖

≤ · · · ≤
2

2 − a0
‖y0 − x0‖

n−1
∏

j=0

f(aj)g(aj , bj)

as a consequence of estimate [IIn]. Then, from lemma 3, it follows that

n−1
∏

j=0

f(aj)g(aj , bj) ≤

n−1
∏

j=0

(γ3j∆) = γ
3n
−1

2 ∆n

where γ = a1/a0 < 1 and ∆ = 1
f(a0)

< 1.

Then

‖xn+m − xn‖ ≤ ‖xn+m − xn+m−1‖ + ‖xn+m−1 − xn+m−2‖ + · · · + ‖xn+1 − xn‖

≤
2η

2 − an+m−1

n+m−2
∏

j=0

f(aj)g(aj , bj) + · · · +
2η

2 − an

n−1
∏

j=0

f(aj)g(aj , bj)

≤
2η

2 − an

(

γ
2n+m−1

−1

2 ∆n+m−1 + · · · + γ
3n
−1

2 ∆n
)

≤

(

γ
3n−1

2

)

2η

2 − a0

∆n(1 − ∆m)

1 − ∆
. (9)
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and, for n = 0, we obtain

‖xm − x0‖ ≤
2η

2 − a0

(1 − ∆m)

1 − ∆
< Rη.

By letting m → ∞ in (9), we get (8). Similarly, we have yn, zn ∈ B(x0, Rη) for all n ≥ 0.
To see that x∗ is a solution of F (x) = 0, we have ‖ΓnF (xn)‖ → 0 as n → ∞.

Taking into account that ‖F (xn)‖ ≤ ‖F ′(xn)‖‖ΓnF (xn)‖ and the sequence {‖F ′(xn)‖}
is bounded, we infer that ‖F (xn)‖ → 0 as n → ∞. Consequently, we obtain F (x∗) = 0
by the continuity of F .

To prove the uniqueness, we assume a some other solution y∗ of F (x) = 0 in
B(x0,

2
Mβ

− Rη) ∩ Ω0. From the approximation

0 = F (y∗) − F (x∗) =

∫ 1

0

F ′(x∗ + t(y∗ − x∗))dt(y∗ − x∗).

we have to prove that the operator
∫ 1

0 F ′(x∗ = t(y∗−x∗))dt is invertible and then y∗ = x∗.
Indeed, from

‖Γ0‖

∫ 1

0

‖F ′(x∗ + t(y∗ − x∗)) − F ′(x0)‖dt ≤ Kβ

∫ 1

0

‖x∗ + t(y∗ − x∗) − x0‖dt

≤ Kβ

∫ 1

0

((1 − t)‖x∗ − x0‖ + t‖y∗ − x0‖)dt <
Kβ

2

(

Rη +
2

Kβ
− Rη

)

= 1,

it follows that [
∫ 1

0 F ′(x∗ + t(y∗ − x∗))dt]−1 exists.
Finally, we deduce that the R-order of convergence [5] of sequence (3) is at least three.

This conclusion follows by (8), since that

‖x∗ − xn‖ <
2η

(2 − a0)γ(1 − ∆)
γ3n

, n ≥ 0.

The proof is complete.

Applications

Finally we give three examples to illustrate the previous results. We take three
functions used as a test in several papers. In these examples, we compare the convergence
domains and the the error bounds obtained for other authors for his method.

Example 1. ([2]) Let us consider F (x) = x3 − 10, x0 = 2 and denote x∗ the positive
root of F (x) = 0. We will give an upper bound C for 107‖x∗ − x2‖, where x2 is the
second iterate of the Midpoint method. Starting at the interval [1, 3] we have β = 1/12,
η = 1/6, M = 18, K = 6, and consecuently, a0 = 1/4 and b0 = 1/72. Taking into
account that our optimal estimates are respect to consecutive points. We consider

‖x∗ − x2‖ ≤ ‖x∗ − x4‖ + ‖x4 − x3‖ + ‖x3 − x2‖
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to get C = 2.48367. For the same function the upper bound C that we obtain from ([3])

by method (1) is 5.00483.

Example 2. ([4]) Let us consider F : C[0, 1] → C[0, 1] the operator defined by

F (x)(s) = x(s) − s +
1

2

∫ 1

0

s cos(x(t))dt.

where C[0, 1] is the space of all continuous functions defined on the interval [0,1] with

the sup norm ‖ · ‖ = ‖ · ‖∞.

If we take x0 = x0(s) = s as a starting point, we obtain the upper bound C =

0.000156396 for ‖x∗ − x2‖, where x2 is the second iterate of the Midpoint method.

The hypotheses given by Dong Chen and Argyors in ([3]) are not satisfied and their

convergence analysis cannot then be applied to the above integral equation.

Example 3. ([1]) Let X = C[0, 1] be the space of continuous functions defined on

the interval [0,1], with the max-norm and consider the integral equation F (x) = 0, where

F (x)(s) = λx(s)

∫ 1

0

s

s + t
x(t)dt − x(s) + 1.

with s ∈ [0, 1], x ∈ C[0, 1] and 0 < λ ≤ 2. Integral equations of this kind (called

Chandrasekhar equations) arise in elasticity or neutron transport problems (see [1], [6]).

For λ = 1/4, and starting at x0 = x0(s) = 1, we obtain (see [1]), ‖Γ0‖ = 1.5309421 =

β. ‖Γ0F (x0)‖ ≤ 0.2651971 = η, ‖F ′′(x)‖ ≤ 0.3465735 = M and K = 0. So a0 = Mβη =

0.140659 and b0 = 0. We give the upper bound C = 5.59621 to the number 1010‖x∗−x2‖,

where x2 is the second iterate of the Midpoint method. Taking into account the error

estimates given in ([3]), the upper bound for 1010‖x∗ − x2‖ is C = 5.67272. In this case,

the improvement brought about by our technique is a little significant.
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