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Abstract

The paper studies the influence the convexity of a real function f
has in the Whittaker method, in order to get the solution of f(z)=0,
and obtains a method for accelerating this iterative process. Also,
some new iterative processes are obtained.
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1. Introduction

The aim in this paper is to study the influence of the convexity in the solution
of f(z) = 0,z € [a,b] C R, by the iteration zn = Zp_1 - ¢5f(zn-1),
where ¢; is a constant, [1]-[6], in order to get accelerations of this method
by means of the convexity of f. Moreover, we shall obtain new iterative
processes of the second and third order, and also give sufficient conditions
for their convergence.
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Assume that the function f satisfies the conditions
f(a) <0 < f(b), f'(z) >0, f(z) > 0 for z € [a,b]

These conditions imply that f € C™)([a,b]), m > 2, and it has one and only
one root s € (a,b). Besides, we consider zg € [a,b] such that f(z¢) > 0.

First, we are going to introduce the Log-degi-ee of convexity, which will
provide us with an index of convexity measure of a function at each point.

This index is given by U[f](z) = f"(z) - [f'(z)]}~2.

We shall prove that when the log-degree of convexity of f,U[f](z), de-
creases, the sequence {z,} converges faster to s. Since the straight lines have
a minimum log-degree of convexity, we take g(z) = f(z)—[f"(s)/2!](z — s)?
as an approximation to the tangent line of f at s. Hence, U[g](z) tends to
zero as r tends to s; therefore, if we asssume f”(z) > 0 in (a, b), there ex-
ists an interval (e, 8) C [a,b], f(a) < 0 < f(B), such that g is an increasing
convex function and U[g](z) < U[f](z) in (a,B), and it is obvious that s is
the unique root of g in (a, b). Therefore, when we take accelerations, we
shall suppose m >3 and f"(z)>0 in [a,b].

Now, we shall consider Whittaker’s method for ¢ = [f/(5)]™!. Then,
1 - 2 ~ (4 - 2 f,(b) 2
F'(s)(zn-1-9) f'(Za-1)(Zn-1 — 2n) [f'(zn—l)]

since

() (zn-1— 3)2 -

AP (7S "

and it follows that
— f”(zn—l)f(zn—l)
g(zn—l) - f(zn-l) 2![f,(zn—l)]2
Then, we obtain y, = 2,1 —¢$y9(Za-1), and this sequence converges faster

to s than does {z,}, and this acceleration allows us to define new iterative
processes.

" 2. An index of convexity measure

Let h € C@(V) a convex function and V a neighbourhood of a suitable
zg € [a,b]. The curvature K, [3], is a measure of the convexity of a function
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at each point, note that if ¢ is a concave function in C®(U),h(zo) € U,
with ¢/(h(zo)) = 1, it is clear that @ oh has a smaller curvature than h,
fig.1., since that

@"(h(z0))R'(20)*

K(poh)(zo) = K(h)(zo) + [T+ h'(zo )2/

Hence, by applying a concave operator to a convex function we obtain a
function with a smaller curvature than the original convex function.

Taking this account, if we consider the logarithmic function and the
convex function T[h], with T[h|(z) = h(z) — h(zo) + 1, we are in the
previous conditions. Now, if we apply the logarithmic operator to T[h]
sucessively, until we obtain a concave function, we can define an index of
the convexity measure of a function at each point considering the number
of times that we need to apply the logarithmic operator to get a concave
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function. So, if we define H,(z) = logGn_i(z) with Gy(z) = T[f](z)
and G,(z) = T[H,)(z) for n > 1, the sequence {H,(z)} will characterize
the log-degree of convexity of h, since K(h)(zo) > K(Hi)(zo) > -.. >
K(H.)(z0) 2 0> K(Hp1)(z0) > ... (fig. 2.)

On the other hand, it is easy to prove by induction that H(zo) =
h"(zo) — nh'(zo)? for all n, and therefore it follows that H,, is convex at zq
if and only if A"(zo)[h'(z0)]~% > n. When z; is a minimum of f, it follows
that H, is convex at zg for all n, and conversely. Then, the log-degree of
convexity of h at zg is defined to be the positive real number given by

S N Ulh)(zo) = K"(z0)[H(z0)]*
If zo is a minimum of h, we set U[h](zo) = +o0o0.

Note that there exists a similar behaviour between the curvature and
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the log-degree of convexity of a function, except in a neighbourhood of the
critical points; a situation that it is not present in our conditions.

On the other hand, Roberts [5] points out some of the "good properties”
that a measure of the convexity should have. It is easy to prove that U[h](z)
satisfies some of these.

(i) U[h)(z0) 2 0 and Ulk)(z) = 0 in V if and only if h is
affine. .

(ii) In our conditions, i.e., h; and hy increasing functions, it is
verified that Ulhy + h2)(zo) < U[k1)(za) + Ulh2)(z0).

Finally, we are going to illustrate that U[h] is a good index of convexity
measure with some examples about power functions. If we consider the
functions: z2,z3 and z* in a neighbourhood of zy = 2, where these functions
fulfil our conditions, it is easy to observe (fig. 3.) that their log-degree of
convexity and the curvature have an analogous behaviour.

3. Whittaker’s method and convexity

Whittaker’s method, [4], consists in applying the iterative process
(2) zn, = F(zp-1) with F(z)=z - Af(2)

When the method is convergent, i.e. 0 < A < [f'(b)]~!, we obtain a de-
creasing sequence {z,}, such that lim,z, = s, and this convergence is
linear.

The following results point out the influence of convexity in the conver-
gence of {z,}.

Theorem 1. Assume f and g as in the Introduction, Ulg](z) < U[f)(z)
in [a,b] and let h(z) = kg(z), where k = max{1, f'(b)/¢'(b)}. Then, the
sequence {yn} defined by yn = yn-1 — A(yn-1), with yo = 2o and A <
min{[¢g'(6)]"1,[f(8)]"'}, is converges to s and y, < z, for all n.

Proof. If we suppose that f'(b) < ¢'(b), then the sequences {z,} de-
fined in (2) and {y,} are two decreasing sequences to s when X < [¢(8)]7.
We shall prove that y, < z,, by using the induction.
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Since U[g](=z) < U[f)(z)in [a,b], then ¢'(z) > f'(z)in (a,b). Moreover,
it follows that g(z) > f(z) in (s,b), and therefore

= 1 = Ag(20) - f(20)] > 0

Now, assume zr >y for k=1,2,...,n—1. Since F is an increasing
function we have that z, — y, > A[g(yn—-1) = f(¥n-1)]. In a similar way to
the case n = 1, we obtain that z, > yn.

If g'(b) < f'(b), we consider h(z) = f'(b)[¢'(b)]~1g(z). Then, Ulk)(z) <
Ulf)(z) in [a,b] with A'(b) = f'(b), and the result is proved by applying
the above arguments to function A.

Since the best approximation in Whittaker’s method is obtained when
A = [f'(b)]"!, we are going to take an acceleration of Whittaker’s method
for this A. By reasoning as in the Introduction, as ¢'(b) ~ f!(3) ~ f'(zn-1),
we get.

Corollary 1. Let m >3 with f"(z)>0 in [a,b]. Then, there ezists
ng € N such that the sequence

®) tn = 2t = g2 f(zn)U[f](2n-1)]

is an acceleration of {zp,} for n > ne.

Proof. Denote Ly(z) = f(z)- U[f](z) and let F(z) =z — %[2 -

Ly(z)]. Since F'(z) = —JE-[4 - 3Ls(z)) + %,L?-Ff”'(z), then F is an
increasing function in a neghbourhood of s, and so {yn} is a decreasing
sequence to s.

Note that as

f(2n_1)U[fl(2n-1) 1

—Yn = f(:l:n 1)[ 9 ) - f’(b)]’

f’( P

then there exists ng € N such that z, > Yn.
I Zo is a good approximation to s, the previous acceleration is effec-
tive from the first iteration. This is the convex acceleration of Whittaker’s

method and it enables us to define a new iterative process, and to give a
theorem of convergence.
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Theorem 2. Let f be as before with m > 3. If U[f](z) < l/f(b) and
Ulf')(z) 2 (~1)/f'(a) in [a,b], then the iterative process

f(zn 1)
2f!(zpn-1

yields a decreasing sequence which converges to s.

(4) In = Tn-1— [2 f(Za-1)Uf)(zn-1))

Proof. If F is as in the Corollary, then

F) = 24 - 1,@) + L @ULKE) - 2)

Since Lg(z) <1 in (s,b), then F'(z) >0 if f'(z)U[f'](a:) > —1,and
therefore F is an increasing function in (s,b).

As z) — 8 = F(zo) - F(s) = F'(&)(z0 —8) for & € (s,zp), it follows
that z; > s. Repeating the reasoning we obtain that z, > s for all n.
Moreover, it is obvious that {z,} is a decreasing sequence and therefore
there exists lim,z, = u, and since f(u)U[f](u) < 1, one can conclude
that u = s taking the limits in (4). :

If m > 4,itis easy to pove that F(s)=s, F'(s)=0 and F"(s) #0,
from which it follows that the iteration (4) is of the second order.

Notice that we have used the condition f'(z)U[f'](z) > —1, which is
weaker than f"(z) > 0.

Below we are going to study the convex acceleration of this new iterative
process. Let f, g be as before, and defiene C(z) = g(z)[f(z)]™! if z#s
and C(s) = ¢'(s)[f'(s)]"!. Denote M = max{C(z)/z € [a,b]}.

Theorem 3. Let z, = F(z,—1) and y, = G(yn-1), where F(z) =
z—-},-((%H(Lj(z)), G(z) = z—ﬁ%H(Lg(z)) and H(z)=1-%. Consider
f and g as in Theorem 2, with U(f](z) > MU[g)(z) and zo = y € [a,}],
Then y, <z, foralln.

Proof. As Lys(z) > Ly(z) in (s,b), then f(z)/f'(z) < g(z)/d'(2)-
Hence, F(z) > G(z) in (s,b) and by using the induction, z,, > y, holds
for all n.

Now, proceeding as in the Introduction, we obtain that the convex ac-
celeration of {z,} in (4)is
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_ f(za-1) 4+ 2Ls(2n-1)
(5)y11"' Tpn-1— 4f’(z,._11)[2 - Lf(zn—l) + 92— Lf(zn—l)(g _ L;(zn-l))]

This acceleration provides us with a new iterative process. It is known [2],
that if we have an iterative process z, = F(zn_1) with z, = 2,1 —
f{ga=il (L ((25-1)) and H(0) = 1,H'(0) = } and |H"(0)| < +oo,
it has a cubic convergence. Then, if m > 4, it is easy to prove that the

iterative process given by the analogous to (5) is of the third order.

4. Practical remark

By applying the iterative process (4), it is necessary to compute f, f’ and f”
for each step, whereas in Whittaker’s method it is only necessary to compute
f for each step and f’ in a fixed point (moreover of specific calculations of
each process). But, the calculations required have not an negative practical
influence since, for the solution of ordinary equations, Whittaker’s method
(linear convergence) needs a number of iterations bigger than the iterative
process (4). Then, the time that the computer takes to get a good approxi-
mation to the solution is minor with this new iterative process. Besides, we
obtain a very good approximation.

Repeating these previous reasonings for the iterative process obtained
from (5), we get the same results, since this new process is of the third
order.

Example: We are going to comparate these new iterative processes ap-
plied to the Wallis polynomial equation, fig. 4., with respect to the Whit-
taker method.

The computer time of each process is shorter than in the Whittaker
method, fig.4, and it provides us a better approximation to the solution of
the equation (the solution to 18 decimal places is v = 2.094551481542326591,
[4]). If we consider another tolerance between the iterations, we can obtain
a better approximation to the solution with the Whittaker method, but the
computer time increases.
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.- whitteker
X,= 6.728187919463087245

x,= 5.768058106362144742

Xg= 5.179568078700984464

X =2.094551484172055972
520

Rgor 2.094551484073560801

\,

r' N

DATA
equation :

Ks" 2%-5=0
initial point: x_= 10

0

-10

tolersnce: 1.0e

Lomputer time_

Process {l): 36 -
Process (I1): 3.2~
Process (I11): 1.8 ~

rll.- First scceleration (4)
R, = 7.8056847747350397482

R,= 6.109529371063474274

Ky = 4.804977095134809626

x' = 2.094551481542398919

x12= 2.094551481542326592

.

( I11.- Second acceleration (S)
X, = 5.007114164633108352

X,= 2.759125404657486673

Xg= 2.094551481542326591

K= 2.113913532218545575 -

w

Figure 4:
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5. General remarks

If function f is decreasing, all the previous results turn out to be valid by
changing slightly the used reasoning.

The condition f(z¢) > 0 does not affect the results obtained. If f(zo) <
0, then the only change is that the sequence {z,} is increasing.

If function f is concave, then we have to consider the corresponding exp-
degree of concavity and, by applying the previously studied reasoning, we
obtain analogous results.
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REZIME

JEDNA UBRZANA PROCEDURA ZA WHITTAKEROV METOD
POMOCU KONVEKSNOSTI

U radu se posmatra uticaj konveksnosti realne funkcije f pri primeni Whit-
takerove metode na resavanje jednaéine f(z) = 0 i dobijen je metod za
ubrzanje ovog iterativnog procesa. Takodje su dobijeni neki novi iterativni
procesi.
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