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Abstract. Erdős proved that every increasing additive function
must be a constant multiple of the logarithmic function. We prove
a weaker result that assumes that the function is completely addi-
tive. In particular, what this paper does show is how wide the gulf
is between additive and completely additive functions: proving the
result for completely additive functions is very easy, but Erdős’s
proof for merely additive functions required a formidable effort.

An additive function is defined as a real-valued arithmetic function
f : N → R such that f(nm) = f(n) + f(m) for all pairs of coprime
integers n and m. If f(nm) = f(n) + f(m) for all n,m ∈ N, then we
say that f is a completely additive function.

In [1, Theorem XI, p. 17], Erdős states that if f is an additive
function such that f(n+ 1) > f(n) for all n ∈ N, then f(n) = C logn
for a constant C ∈ R. Without the hypothesis f(n + 1) > f(n), this
is not true in general, as is shown, for instance, by the completely
additive function Ω(n) defined by Ω(pa1

1 p
a2
2 · · ·p

ak
k ) = a1 + a2 +

· · · + ak, where n = pa1
1 p

a2
2 · · ·p

ak
k is the prime decomposition of n.

Erdős’s Theorem is a deep and interesting result, but its proof is
rather complicated; see [3, p. 133] and [2, § 8.33 and 8.34, p. 265
and ff.] for adequate comments and additional references, including
a proof (due to Moser and Lambek) that simplifies the original proof
of Erdős.

In this note, we pose a weaker result, but with a very elementary
proof. Also, we will show a nice consequence.

Theorem 1. Let f be a completely additive function such that
f(n+1) > f(n) for all n ∈ N. Then, there is a real constant C > 0
such that f(n) = C logn for all n ∈ N.
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Proof. We claim that, if f and g are two functions satisfying the
conditions, they must satisfy

(1) f(n)g(2) = f(2)g(n) ∀n ∈ N.

In particular, this would be true for g(n) = logn. Then, our claim
implies that f(n) = C logn with C = f(2)/ log 2 and so the theorem
is proved. Thus, we only need to check (1).

Let n ∈ N and k ∈ N. Let us take l ∈ N such that 2l−1 6 nk < 2l.
Then (l − 1)f(2) 6 kf(n) 6 lf(2). The same inequality is true for
the function g; we can write it as −lg(2) 6 −kg(n) 6 −(l − 1)g(2).
Multiplying the first expression by g(2), the second by f(2), adding
them, and dividing by k, we get

−
1
k
f(2)g(2) 6 f(n)g(2) − f(2)g(n) 6

1
k
f(2)g(2).

Since this happens for every k ∈ N, equation (1) follows and the proof
is complete. �

As a consequence, let us establish the following result:

Theorem 2. Let f : N → N ∪ {0} be an increasing and completely
additive function. Then, f is the zero function.

Proof. Let us suppose that f is not the zero function. By Theorem 1,
there is a real constant C > 0 such that f(n) = C logn for all n ∈ N.
If f takes integer values, then f(n)/f(m) = (logn)/(logm) for all
integers n,m > 2. Therefore, (logn)/(logm) = a/b with a,b ∈ N.
This implies that nb = ma. But this is impossible if n and m have
a non common prime factor. �

Remark. By using Erdős’s Theorem, we see that the same proof
serves to establish the corresponding result for additive functions.

For completeness, let us show that, without using Theorem 1, an-
other proof of the Theorem 2 can be given. Let us begin with

Lemma. Let f be an increasing and completely additive function.
Then, f(1) = 0. Moreover, if f is not the zero function, it satisfies
f(n) > 0 for all n > 1, and f is strictly increasing.

Proof. We have f(n) = f(1·n) = f(1)+f(n) and so f(1) = 0. If f is not
the zero function, there exists a ∈ N such that f(a) 6= 0. Since a > 1,
it follows that f(a) > f(1) = 0; hence, f(a) > 0. Now, given n > 1,
there exists k such that nk > a; then kf(n) = f(nk) > f(a) > 0, and
we have f(n) > 0.
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Finally, let us suppose that f(n) = f(m) with n < m. This is
not possible if n = 1, because f(1) = 0 and f(m) > 0; thus, we
may assume that 1 < n < m. Let us take k large enough such that
nk+1 < mk (it suffices to take k > (logn)/(logm− logn)). Then

f(nk) = kf(n) = kf(m) = f(mk).

Consequently, f(r) = f(nk) = f(mk) for every r such that nk 6 r 6
mk. In particular, f(nk+1) = f(nk), and so (k + 1)f(n) = kf(n),
which is impossible, because f(n) > 0. �

Using this lemma we get the following.

Second proof of Theorem 2. For every n ∈ N, there exists an inte-
ger k such that 2k+1 − 2k = 2k > n. Let us take n intermediate
numbers ri between 2k and 2k+1; that is,

2k < r1 < r2 < · · · < rn < 2k+1.

Now, let us suppose that f is not the zero function. By the lemma, f
is strictly increasing which implies that

kf(2) = f(2k) < f(r1) < f(r2) < · · · < f(rn) < f(2k+1)

= (k+ 1)f(2) = kf(2) + f(2).

Then, by the pigeonhole principle, we have f(2) > n. But this hap-
pens for every n ∈ N, which is absurd. �
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