therefore,

$$
\sum_{n=1}^{\infty} \frac{\arctan \left(\frac{1}{L_{2 n}}\right) \arctan \left(\frac{1}{L_{2 n+2}}\right)}{\arctan \left(\frac{1}{F_{2 n+1}}\right)} \leq \frac{1}{4} \sum_{n=1}^{\infty} \arctan \left(\frac{1}{F_{2 n+1}}\right)
$$

Using the relation $\boldsymbol{F}_{2 n+2}-\boldsymbol{F}_{2 n}=\boldsymbol{F}_{2 n+1}$ and the well known and easy to check formula $F_{2 n} F_{2 n+2}+1=F_{2 n+1}^{2}$, we have

$$
\frac{1}{F_{2 n+1}}=\frac{F_{2 n+2}-F_{2 n}}{F_{2 n} F_{2 n+2}+1}=\frac{\frac{1}{F_{2 n}}-\frac{1}{F_{2 n+2}}}{1+\frac{1}{F_{2 n}} \frac{1}{F_{2 n+2}}}
$$

and then

$$
\begin{aligned}
\arctan \left(\frac{1}{F_{2 n+1}}\right) & =\arctan \left(\frac{\frac{1}{F_{2 n}}-\frac{1}{F_{2 n+2}}}{1+\frac{1}{F_{2 n}} \frac{1}{F_{2 n+2}}}\right) \\
& =\arctan \left(\frac{1}{F_{2 n}}\right)-\arctan \left(\frac{1}{F_{2 n+2}}\right)
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\frac{1}{4} \sum_{n=1}^{\infty} \arctan \left(\frac{1}{F_{2 n+1}}\right) & =\frac{1}{4} \sum_{n=1}^{\infty}\left[\arctan \left(\frac{1}{F_{2 n}}\right)-\arctan \left(\frac{1}{F_{2 n+2}}\right)\right] \\
& =\frac{1}{4} \arctan \left(\frac{1}{F_{2}}\right)=\frac{1}{4} \arctan 1=\frac{\pi}{16}
\end{aligned}
$$

Thus, the sum of the given series does not exceed $\frac{\pi}{16} \approx \mathbf{0 . 1 9 6}$, which improves the proposed upper bound, because

$$
\frac{4}{\pi} \arctan (\beta)\left(\arctan (\beta)+\frac{1}{3}\right) \approx 0.625
$$

Also solved by WALTHER JANOUS, Ursulinengymnasium, Innsbruck, Austria; and the proposer.

Janous also improved the proposed upper bound.
3262. [2007: 299, 301] Proposed by Ovidiu Furdui, University of Toledo, Toledo, OH, USA.

Let m be an integer, $m \geq 2$, and let $a_{1}, a_{2}, \ldots, a_{m}$ be positive real numbers. Evaluate the limit

$$
L_{m}=\lim _{n \rightarrow \infty} \frac{1}{n^{m}} \int_{1}^{e} \prod_{k=1}^{m} \ln \left(1+a_{k} x^{n}\right) d x
$$

Solution by Manuel Benito, Óscar Ciaurri, Emilio Fernández, and Luz Roncal, Logroño, Spain, modified by the editor.

For each integer $m \geq 1$ we will show that

$$
\begin{equation*}
L_{m}=(-1)^{m+1} m!+e \sum_{k=0}^{m}(-1)^{k} \frac{m!}{(m-k)!} \tag{1}
\end{equation*}
$$

First note that for $x \geq 1$, we have

$$
\begin{equation*}
x a_{k}^{1 / n} \leq\left(1+a_{k} x^{n}\right)^{1 / n} \leq x\left(1+a_{k}\right)^{1 / n} \tag{2}
\end{equation*}
$$

Since $a_{k}^{1 / n}$ and $\left(1+a_{k}\right)^{1 / n}$ each converge to 1 as $n \rightarrow \infty$, it follows from the above that $\left(1+a_{k} x^{n}\right)^{1 / n}$ converges to x as $n \rightarrow \infty$, thus,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\ln \left(1+a_{k} x^{n}\right)}{n}=\lim _{n \rightarrow \infty} \ln \left(1+a_{k} x^{n}\right)^{1 / n}=\ln x \tag{3}
\end{equation*}
$$

Taking logarithms across the last inequality in (2), we obtain

$$
\frac{\ln \left(1+a_{k} x^{n}\right)}{n} \leq \ln x+\frac{\ln \left(1+a_{k}\right)}{n} \leq \ln x+\ln \left(1+a_{k}\right)
$$

from which it follows that

$$
\prod_{k=1}^{m} \frac{\ln \left(1+a_{k} x^{n}\right)}{n} \leq \prod_{k=1}^{n}\left(\ln x+\ln \left(1+a_{k}\right)\right)
$$

By Lebesgue's Dominated Convergence Theorem, we may bring the limit inside the integral; then we apply (3) as follows

$$
\begin{align*}
L_{m} & =\int_{1}^{e} \lim _{n \rightarrow \infty} \prod_{k=1}^{n} \frac{\ln \left(1+a_{k} x^{n}\right)}{n} d x \\
& =\int_{1}^{e} \prod_{k=1}^{n} \lim _{n \rightarrow \infty} \frac{\ln \left(1+a_{k} x^{n}\right)}{n} d x \\
& =\int_{1}^{e}(\ln x)^{m} d x \tag{4}
\end{align*}
$$

Next we integrate by parts to derive the recurrence relation

$$
\begin{equation*}
L_{m}=e-m L_{m-1} \tag{5}
\end{equation*}
$$

Finally, we use induction on m to show that (with the appropriate initial condition) the solution to the reccurence in (5) is given by (1).

The case when $\boldsymbol{m}=1$ is clear, since the right side of (1) is $\mathbf{1}$ and from (4) we have $L_{1}=\int_{1}^{e} \ln x d x=1$.

Suppose (1) holds for some $m \geq 1$. Then using (5) we have

$$
\begin{aligned}
L_{m} & =e-m\left\{(-1)^{m}(m-1)!+e \sum_{k=0}^{m-1}(-1)^{k} \frac{(m-1)!}{(m-1-k)!}\right\} \\
& =e+(-1)^{m+1} m!+e \sum_{k=0}^{m-1}(-1)^{k+1} \frac{m!}{(m-1-k)!} \\
& =(-1)^{m+1} m!+e+e \sum_{k=1}^{m}(-1)^{k} \frac{m!}{(m-k)!} \\
& =(-1)^{m+1} m!+e \sum_{k=0}^{m}(-1)^{k} \frac{m!}{(m-k)!}
\end{aligned}
$$

and our proof is complete.
Also solved by MICHEL BATAILLE, Rouen, France; PAUL BRACKEN and N. NADEAU, University of Texas, Edinburg, TX, USA; CHIP CURTIS, Missouri Southern State University, Joplin, MO, USA; RICHARD I. HESS, Rancho Palos Verdes, CA, USA; WALTHER JANOUS, Ursulinengymnasium, Innsbruck, Austria; XAVIER ROS, student, Universitat Politècnica de Catalunya, Barcelona, Spain; PETER Y. WOO, Biola University, La Mirada, CA, USA; and the proposer. There was 1 incorrect solution submitted.

Janous notes the interesting fact that \boldsymbol{L}_{m} can be expressed in terms of $\boldsymbol{D}_{\boldsymbol{m}}$, the number of derangements of $\mathbf{1}, \mathbf{2}, \ldots, \boldsymbol{m}$. (A permutation $\boldsymbol{\sigma}$ of $\mathbf{1}, \mathbf{2}, \ldots, \boldsymbol{m}$ is called a derangement if $\sigma(i) \neq i$ for all $i=1,2, \ldots, m$.) Since it is well known that $D_{m}=m!\sum_{k=0}^{m}(-1)^{k} \frac{1}{k!}$, we see that $L_{m}=(-1)^{m+1} m!+(-1)^{m} e D_{m}$.

The proposer remarked that his proposal was a generalization of the following problem which appeared in the Romanian journal Gazeta in 2000:

Compute $\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \int_{1}^{e} \ln \left(1+x^{n}\right) \ln \left(1+2 x^{n}\right) d x$.
Both he and Bracken and Nadeau pointed out the interesting fact that the answer is completely independent of the $\boldsymbol{a}_{\boldsymbol{k}}$'s given.

Crux Mathematicorum with Mathematical Mayhem

Former Editors / Anciens Rédacteurs: Bruce L. R. Shawyer, James E. Totten

Crux Mathematicorum

Founding Editors / Rédacteurs-fondateurs: Léopold Sauvé \& Frederick G.B. Maskell Former Editors / Anciens Rédacteurs: G.W. Sands, R.E. Woodrow, Bruce L. R. Shawyer

Mathematical Mayhem

Founding Editors / Rédacteurs-fondateurs: Patrick Surry \& Ravi Vakil Former Editors / Anciens Rédacteurs: Philip Jong, Jeff Higham, J.P. Grossman, Andre Chang, Naoki Sato, Cyrus Hsia, Shawn Godin, Jeff Hooper

