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Differentiability of a pathological function,
diophantine approximation, and a reformulation

of the Thue–Siegel–Roth theorem

Juan Luis Varona∗

Abstract

We study the differentiability of the real function

fν(x) =

{
0, if x ∈ R \ Q,

1/qν , if x = p/q ∈ Q, an irreducible fraction,

for different values of ν. For every ν > 0, the function fν is continuous at
the irrationals and discontinuous at the rationals. But perhaps the most in-
teresting case is what happens for ν > 2. In this case, it is shown that fν

is differentiable in a set Dν such that both Dν and R \ Dν are dense in R.
Moreover, the Lebesgue measure of the set R \ Dν is 0. In the proofs, the
diophantine approximation by means of continued fractions is used. Finally,
we show a nice reformulation of the Thue–Siegel–Roth theorem in terms of
the differentiability of fν for ν > 2.

A well-known pathological real function is

f(x) =

{
0, if x ∈ R \ Q,

1/q, if x = p/q ∈ Q, an irreducible fraction,

where, here and in the rest of the paper, we assume that, when we write a rational
number p/q, we have p, q ∈ Z and q > 0 (in particular, f(k) = f(k/1) = 1 for every
k ∈ Z, including k = 0). This function is of interest because it is discontinuous at
the rationals and continuous at the irrationals. For completeness, let us prove it.

If x = p/q ∈ Q, let us take a sequence {xn} of irrational numbers such that xn → x
when n → ∞; then f(xn) = 0 for every n and the sequence {f(xn)} does not
converge to f(x) = 1/q, so f is not continuous at x. On the other hand, for
x ∈ R \ Q, let us see that f is continuous at x by checking that f(xn) → f(x) = 0
for every sequence {xn} that tends to x. As f(y) = f(x) for every irrational
number y, we can consider, without loss of generality, that xn = pn/qn ∈ Q for
every n. Now, from pn/qn → x, an irrational number, it follows that qn → ∞.
Then, f(xn) = 1/qn → 0 = f(x) and so f is continuous at x.

But, what about the differentiability of f?
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354 Differentiability and diophantine approximation

It is clear that f is not differentiable at rational numbers (it is not continuous);
moreover, if the derivative exists for an irrational number, it must be zero. Thus,
given x an irrational number, we only need to check whether, for arbitrary se-
quences {xn} that tend to x (where we can again assume rationals xn = pn/qn),
we always have

lim
n

f(xn) − f(x)
xn − x

= 0 (1)

or not.

This can be analysed in terms of the approximation of real numbers by rationals.
Let us remember that, for any irrational x, there exists a positive constant C such
that the inequality ∣∣∣∣x − p

q

∣∣∣∣ <
C

q2 (2)

has infinitely many rational solutions p/q; this is Dirichlet’s theorem, that is an
easy consequence of the pigeonhole principle (moreover, Hurwitz’s theorem ensures
that the smallest constant for which this property is true for every irrational x is
C = 1/

√
5). Thus, we can build a sequence of different rational numbers {pn/qn}

(where qn → ∞) such that |x − pn/qn| < C/q2
n. Then,∣∣∣∣f(xn) − f(x)

xn − x

∣∣∣∣ =
∣∣∣∣ 1/qn − 0
pn/qn − x

∣∣∣∣ > qn/C,

that tends to infinity, so (1) is not satisfied, and f is nowhere differentiable.

Is it possible to build examples similar to f but in such a way that the function
is differentiable in some set? Perhaps the differentiability will increase by defining
f(p/q) = 1/qν for big values of ν? So, in this paper we are going to analyse the
differentiability of the real function

fν(x) =

{
0, if x ∈ R \ Q,

1/qν , if x = p/q ∈ Q, irreducible,

for various values of ν ∈ R. Actually, a large proportion of this study has already
been covered in the literature; see, for instance, [2], [3], [6], [7]. Here we present
some results that are already known (usually with a different proof), and some
that seem to be new. In the opinion of this author, fν is a very interesting function,
and it is worthwhile to continue analysing its behaviour.

In this way, we find examples of functions whose properties about continuity and
differentiability are pathological at the same time. For every ν > 0, the function
fν is continuous at the irrationals and discontinuous at the rationals. And, when
ν > 2 (that is the most interesting case), we prove that fν is differentiable in a
set Dν such that both Dν and R \ Dν are dense in R. Moreover, the Lebesgue
measure of the set R\Dν is 0. It is astonishing that, differentiability being a local
concept, fν is differentiable almost everywhere in spite of the fact that it is not
continuous at any rational number.

We finish the paper by showing a reformulation of the Thue–Siegel–Roth theorem
in terms of the differentiability of fν for ν > 2 (see Theorem 3 and the final Re-
mark). It seems surprising that a theorem about diophantine approximation is
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equivalent to another theorem about the differentiablity of a real function: a nice
new connection between number theory and analysis! As far as I know, this char-
acterisation of the Thue–Siegel–Roth theorem has not been previously observed.

Remark 1. The pathological behaviour of functions is a useful source of examples
that help to understand the rigorous definitions of the basic concepts in mathe-
matical analysis. In this respect, it is interesting to note that, here, we have shown
a kind of pathological behaviour that is different from that of the more commonly
studied: the existence of continuous nowhere differentiable real functions, whose
most typical example is the Weierstrass function

∑∞
n=0 an cos(bnπx), for 0 < a < 1

and ab ≥ 1; see [1] for a recent proof, or [8], [10] for a couple of surveys on this
subject.

Case ν ≤ 0

In this case, it is clear that fν is nowhere continuous, so nowhere differentiable.

Case 0 < ν ≤ 2

Now, the same proof of the case ν = 1 serves to show that, when 0 < ν ≤ 2, the
function fν is discontinuous at the rationals, continuous at the irrationals, and
nowhere differentiable. Actually, this can be found in [3] (where it is also observed
that fν is nowhere Lipschitzian when 0 < ν < 2).

Case ν > 2

The key to study the differentiability of fν at an irrational number is to analyse
the diophantine approximation of such number. To obtain good rational approx-
imations of an irrational number, one of the most used methods is to employ
continued fractions, so let us briefly introduce it. See [4] or [5, Chapter 7] for
details. (Although in a different way, continued fractions are also being used to
study the differentiability in [6].)

For an irrational number x, let be

x = a0 +
1

a1 +
1

a2 +
1

a3 + · · ·

(3)

its expansion as an (infinite) continued fraction; here ak ∈ Z and ak > 0 for k > 0,
and they are called the elements of the continued fraction. Thus, we say that x
has bounded elements if there exists a constant M such that ak < M for every k.

By truncating (3) up to ak, we get a fraction pk/qk (the so-called convergent or
approximant of x); these fractions can be obtained by means of the recurrence
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relation

pk = akpk−1 + pk−2,

qk = akqk−1 + qk−2

starting with p−1 = 1, q−1 = 0, p0 = a0, and q0 = 1. One of the basic facts of the
approximation by continued fractions is that

1
qk(qk + qk+1)

<

∣∣∣∣x − pk

qk

∣∣∣∣ <
1

qkqk+1
(4)

for every k ≥ 0. From this, and taking into account that {qk} is always an increas-
ing sequence, it follows that |x − pk/qk| < 1/q2

k for every convergent pk/qk. In
particular, this proves that (2) with C = 1 has infinitely many rational solutions.

Given an irrational number x, it is not always possible to get diophantine approx-
imation of order ϕ(q) for functions ϕ(q) that decrease faster than 1/q2. But, by
constructing suitable x by means of continued fractions, this is sometimes possi-
ble. For instance, if we take ϕ(q) an arbitrary positive function, let us construct a
continued fraction x by choosing its elements in such a way that they will satisfy
the inequalities

ak+1 >
1

q2
kϕ(qk)

, k ≥ 0.

This, of course, can be done in an infinite number of ways; in particular, a0 can
be chosen arbitrarily. Then, from the right inequality in (4), we have∣∣∣∣x − pk

qk

∣∣∣∣ <
1

qkqk+1
=

1
qk(ak+1qk + qk−1)

≤ 1
ak+1q2

k

< ϕ(qk)

for any k ≥ 0. In this way, we have proved the following (note that x is irrational
because the continued fraction does not terminate):

Lemma 1 ([4, Theorem 22, p. 35]). For any positive function ϕ(q) with natural ar-
gument q, there exist infinitely many irrational numbers x such that the inequality

∣∣∣∣x − p

q

∣∣∣∣ < ϕ(q) (5)

has an infinite quantity of rational solutions p/q.

Also, let us recall the following result, whose proof is also an easy consequence
of (4) and other simple properties of the continued fractions:

Lemma 2 ([4, Theorem 23, p. 36]). For every irrational number x with bounded
elements, and for sufficient small C, the inequality∣∣∣∣x − p

q

∣∣∣∣ <
C

q2 (6)

has no rational solution p/q. On the other hand, for every number x with an
unbounded sequence of elements and arbitrary C > 0, the inequality (6) has an
infinite set of such solutions.
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Then, we have the following theorem:

Theorem 1. For ν > 2, the function fν is discontinuous (and consequently not
differentiable) at the rationals, and continuous at the irrationals. With respect to
differentiability, we have:

(a) For every irrational number x with bounded elements in its continued fraction
expansion, fν is differentiable at x.

(b) There exist infinitely many irrational numbers x such that fν is not differen-
tiable at x.

Moreover, the sets of numbers that fulfill (a) and (b) are both uncountable.

Proof. The continuity is treated as in the case ν = 1.

(a) For irrational numbers it is clear that, if fν is differentiable at x, it must be
f ′

ν(x) = 0. Let us see that this occurs for irrational numbers x with bounded
elements. For that, we only need to check that, for every sequence {xn} that
tends to x (and with xn �= x for all n), we have

lim
n

fν(xn) − fν(x)
xn − x

= 0.

Without loss of generality, we can assume that {xn} is a sequence of rationals, say
xn = pn/qn. The first part of Lemma 2 ensures that, for some value of C, we have
|x − pn/qn| ≥ C/q2

n for every n. Then,∣∣∣∣fν(pn/qn) − fν(x)
pn/qn − x

∣∣∣∣ =
∣∣∣∣ 1/qν

n − 0
pn/qn − x

∣∣∣∣ ≤ 1/qν
n

C/q2
n

=
1

Cqν−2
n

,

that tends to 0 when n → ∞, so fν is differentiable at x.

(b) Finally, let us take, in Lemma 1, ϕ(q) = 1/qν+1. Then, for x such that the
inequality |x − p/q| < ϕ(q) has infinitely many solutions, let us take {pn/qn} a
sequence of rationals such that |x − pn/qn| < 1/qν+1

n for every n. In particular,
pn/qn → x and verifies∣∣∣∣fν(pn/qn) − fν(x)

pn/qn − x

∣∣∣∣ =
∣∣∣∣ 1/qν

n − 0
pn/qn − x

∣∣∣∣ >
1/qν

n

1/qν+1
n

= qn,

that tends to ∞ when n → ∞, so fν is not differentiable at x.

That both sets in (a) and (b) are uncountable is clear by construction of the cor-
responding x in Lemmas 2 and 1, respectively. (The usual diagonal argument of
Cantor to show the uncountability can be used.)

In terms of the theory of measure, what is more common for the irrationals: the
differentiability or the non differentiability?

For this purpose, we will use the following result (which is usually known as Khinchin’s
theorem). As usual, ‘almost all x’ means ‘every x except a set of measure zero’.

Lemma 3 ([4, Theorem 32, p. 69]). Suppose that g(t) is a positive continuous
function of a positive variable t such that tg(t) is a non-increasing function. Then,
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the inequality ∣∣∣∣x − p

q

∣∣∣∣ <
g(q)
q

(7)

has, for almost all x, an infinite quantity of rational solutions p/q if, for some
positive s, the integral ∫ ∞

s

g(t) dt (8)

diverges. On the other hand, inequality (7) has, for almost all x, only a finite
quantity of rational solutions p/q if the integral (8) converges.

The second part of this lemma is the main tool to prove the following theorem, that
summarises the pathological behaviour of fν when ν > 2. (Note that a different
proof of the almost everywhere differentiability of fν , that does not use Khinchin’s
result, can be found in [2]. And see [3] for a proof of the density without explicitly
using the measure.)

Theorem 2. For ν > 2, let us denote

Cν = { x ∈ R : fν is continuous at x},

Dν = { x ∈ R : fν is differentiable at x}.

Then, the Lebesgue measure of the sets R \ Cν and R \ Dν is 0, but the four sets
Cν , R \ Cν , Dν , and R \ Dν are dense in R.

Proof. We have Cν = R \ Q (so R \ Cν = Q), and it is well known that Q has
measure 0, and that both the rational and the irrational numbers are dense in the
reals, i.e. Cν = R \ Cν = R. From this, and noticing that R \ Cν ⊂ R \ Dν , also
follows R \ Dν = R.

To compute the measure of R \ Dν , let us take g(t) = 1/(t log2(t + 1)). As∫ ∞
1 1/(t log2(t + 1)) dt < ∞, the second part of Lemma 3 shows that, for almost

all x, the inequality ∣∣∣∣x − p

q

∣∣∣∣ <
1

q2 log2(q + 1)
has only a finite quantity of rational solutions. From here, it is clear that, for each
x, there exists a positive constant C(x) such that∣∣∣∣x − p

q

∣∣∣∣ <
C(x)

q2 log2(q + 1)

has no rational solution. Also, let us note that, as the rationals have measure 0,
the same can be said for almost all irrational x. We claim that fν is differentiable
at these x; consequently, the measure of R \ Dν is 0.

To prove the claim, let us proceed as in (a) of Theorem 1. For every sequence of
rationals pn/qn that tends to the irrational x, we have∣∣∣∣x − pn

qn

∣∣∣∣ ≥ C(x)
q2
n log2(qn + 1)
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for all n. Then,∣∣∣∣fν(pn/qn) − fν(x)
pn/qn − x

∣∣∣∣ ≤ 1/qν
n

C(x)/(q2
n log2(qn + 1))

=
log2(qn + 1)
C(x)qν−2

n

,

which tends to 0 when n → ∞. This proves that fν is differentiable at x.

Finally, the denseness of Dν follows by using that, if a set R \ S has Lebesgue
measure 0, then S is dense in R. The proof of this fact is well known, but we
reproduce it for completeness. The closure of S is a closed set; if there exists a
real number x that does not belong to S, there exists an open interval I around x
such that I ∩ S = ∅, and consequently also I ∩ S = ∅ and so I ⊂ R \ S; but I has
positive measure, which is a contradiction.

Remark 2. In terms of the variation of a function, it seems natural that fν to be
differentiable almost everywhere when ν > 2. Let us recall that, in a closed inter-
val, a real function is differentiable almost everywhere if it is of bounded variation.
In any interval [k, k + 1] (with k ∈ Z), fν has are two jumps of height 1 (in the
extremes), a jump of height 1/2ν (in the middle point), two jumps of height 1/3ν ,
three jumps of height 1/4ν , and so on. Then, the variation of fν in [k, k + 1] is
bounded by

2 +
∞∑

q=2

q − 1
qν

,

which is convergent when ν > 2.

The theorem of Thue–Siegel–Roth revisited

The Thue–Siegel–Roth theorem (also known simply as Roth’s theorem) is a fun-
damental result in the field of approximation by rationals. It was proved by Roth
in 1955 (he received a Fields medal for this result), and it is the final step following
previous efforts by Thue, Siegel, Gelfond and Dyson through the first part of the
20th century. The original paper from Roth is [9]; but see also [5, Chapter 6], for
a detailed proof.

This theorem asserts that, if x is an algebraic number, and we take an arbitrary
α > 0, the inequality ∣∣∣∣x − p

q

∣∣∣∣ <
1

q2+α
(9)

only has finitely many rational solutions p/q. Or, equivalently, if x is an irrational
algebraic number, there exists a positive constant C(x, α) such that∣∣∣∣x − p

q

∣∣∣∣ <
C(x, α)
q2+α

(10)

has no rational solution.

In the practice, this theorem is frequently used as a criterion for transcendence:
if, for some α > 0, the inequality (9) has infinitely many rational solutions, x
must be a transcendental number. This criterion is much more powerful than the
Liouville criterion, that was used by Liouville in 1844 to prove that

∑∞
k=1 10−k! is

a transcendental number, the first number to be proven transcendental.
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Now, we will see that the Thue–Siegel–Roth theorem can be reformulated in terms
of the differentiability of fν .

Firstly, let us use it to prove the following theorem regarding the differentiability
of fν . Actually, this part has been already done in [3] and [7].

Theorem 3. Let ν > 2. If x is an algebraic irrational number, then fν is differ-
entiable at x.

Proof. Let x be an algebraic irrational number and take α = (ν − 2)/2 > 0. To
prove the differentiability of fν at x it is enough to see that, for any sequence of
rationals {pn/qn} that tends to x, we have

lim
n

fν(pn/qn) − fν(x)
pn/qn − x

= 0.

Because (10) does not have rational solutions, we have∣∣∣∣x − pn

qn

∣∣∣∣ ≥ C(x, α)
q2+α
n

for every n, and consequently∣∣∣∣fν(pn/qn) − fν(x)
pn/qn − x

∣∣∣∣ =
∣∣∣∣ 1/qν

n − 0
pn/qn − x

∣∣∣∣ ≤ 1/qν
n

C(x, α)/q2+α
n

=
1

C(x, α)q(ν−2)/2
n

,

that tends to 0 when n → ∞.

Read in a different way, this theorem says that ‘if fν is not differentiable at x, then
x is either a rational number or a transcendental number’. But, as happens with
the Thue–Siegel–Roth criterion, the nondifferentiability at x only serves to detect
a small proportion of the transcendental numbers. There are many transcendental
numbers x for which fν is differentiable at x.

Remark 3. We have proved Theorem 3 by using the Thue–Siegel–Roth theorem.
But we have said that it is a reformulation. So, let us see how to deduce the
Thue–Siegel–Roth theorem from Theorem 3.

Given x algebraic and irrational, and ν > 2, Theorem 3 ensures that fν is differ-
entiable at x, so there exists

lim
y→x

fν(y) − fν(x)
y − x

= f ′
ν(x).

By approximating y → x by irrationals y, it follows that f ′
ν(x) = 0. Consequently,

by approximating y → x by rationals, i.e. y = p/q, we also must have

lim
p/q→x

fν(p/q) − fν(x)
p/q − x

= lim
p/q→x

1/qν

p/q − x
= 0.

Then, for every ε > 0, there exists δ > 0 such that

1
qν

≤ ε

∣∣∣∣pq − x

∣∣∣∣
when p/q ∈ (x − δ, x + δ). From here, it is easy to check that the same happens
for every p/q ∈ Q, perhaps with a greater constant ε′ in the place of ε. Thus, (10)
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with α = ν −2 and some positive constant C(x, α) = 1/ε′ has no rational solution,
and we have obtained the Thue–Siegel–Roth theorem.
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L’Enseignement Mathématique 38, 89–94.
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