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Let T' be the circumcircle of
ANAEF. By the Tangent-Chord The-
orem, we see that DF is tangent to T
at F and that DFE is tangent to I at
E. Let A’ be the second point of in-
tersection of DA with T'. Applying the
above lemma to T, we obtain

2 1 1
P — paTpa O
Llet r = DB = DFE = DF.
Then DA’ - DA = r2. Since we are

given that AD = +/3r, we deduce that
DA’ = r/+/3. From (3), we have

2 _ V3 1
DP ~ r V3r |
Therefore, DP = (v/3/2)r = ; DA, which means that P is the mid-point
of AD.

[ Ed.: By refining the argument at the end of the proof, one can show
that AD = \/TgBC if and only if P is the mid-point of AD.

The above proof assumes that AABC is acute-angled. However, if
there is an obtuse angle at B or at C, the result is still valid. The above
proof extends to this case by simply modifying the argument used to show
that DE and DF are tangent to I'.]

NN —

3137. [2006 : 173, 176] Proposed by Tina Balfour and Edward T.H. Wang,
Wilfrid Laurier University, Waterloo, ON.

Find all solutions in non-negative integers to the following Diophantine
equations:

(@) 5™+ 3™ =2F; (b) % 5™ + 3™ =2k,

(a) Composite of similar solutions by Brian D. Beasley, Presbyterian College,
Clinton, SC, USA; and David E. Manes, SUNY at Oneonta, Oneonta, NY,
USA.

Note first that there are no solutions when k& = 0. It is also clear that
(m,k) = (0,1) and (1, 3) are solutions. We now show that there are no
other solutions.

Suppose m > 2. Then k > 6. Since 2 = 0 (mod 16) for k& > 4, we
have 5™ + 3™ = 0 (mod 16).

However, the least non-negative residues of 5™ modulo 16 for m > 1
are 5, 9, 13, and 1, which repeat in cycles of length 4, while those of 3™
are 3, 9, 11, and 1, which also repeat in cycles of length 4. Consequently,
5™ 4+ 3™ = 8 (mod 16) or 5™ 4+ 3™ = 2 (mod 16), and our claim follows.
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(b) Solution by Mercedes Sanchez Benito, Universidad Complutense, Madrid,
Spain, Oscar Ciaurri Ramirez, Universidad de La Rioja, Logrofio, Spain, and
Manuel Benito Mufioz and Emilio Fernandez Moral, 1ES Sagasta, Logrofio,
Spain, modified by the editor.

If n is even, we have 5™ 4+ 3™ = 1™ + (—1)" = 2 (mod 4). Since
2k = 2 (mod 4) if and only if K = 1, the unique solution for n even is
m=n=0and k = 1.

Let n be odd. For m = 0, we have to find solutions to 1 + 3™ = 2.
However, Leo Hebreus (or Levi ben Gerson, 14t™ century) proved that for all
n > 2, the integer 3™ & 1 has an odd divisor; hence, the unique solution of
1+3"=2Fform=0andnoddisn=1and k = 2.

Now we assume that m > 0. By considering the equation modulo 3,
we obtain (—1)™ = (—1)* (mod 3), which implies that m and k have the
same parity. On the other hand, by examining the equation modulo 5, we
get

2k = (=2)" = —2" = +2 (mod 5) ,

since n is odd. This implies that k is odd (and then so is m).

Now suppose that m > 3 and n > 3 (which means that & > 7). Setting
A = 22276800 = 26.32.52.7.13.17, we checked by a computer program
that there are no solutions of 5™ + 3™ = 2* modulo A for odd exponents
m >3, n > 3,and k > 7 (the checking is a “finite” problem, since 5%! = 53
(mod A), 3243 = 3% (mod A), and 227 = 27 (mod A)). Therefore, we
must have either m = 1 orn = 1.

Letn = 1. We must look for solutions of 5™ 43 = 2% (this problem was
proposed on the XXII Spanish Mathematical Olympiad). Using the modulus
B = 65792 = 28 . 257, we again used a computer to search for solutions
modulo B (again the checking is a “finite” problem, since 52°¢ = 1 (mod B)
and 225 = 2° (mod B); furthermore, 9 is the smallest power of 2 where the
remainders modulo B begin to repeat). The computer program yielded the
following four cases for n = 1 and m > 0:

(m, k) € {(1,3),(3,7)}.

Since the values for k lie in the non-periodic set of remainders of powers
of 2 modulo B, we see that Kk = 1 or kK = 7. This gives us the solutions
(m,n,k) = (1,1,3) and (m,n, k) = (3,1,7). Furthermore, any other so-
lutions must have m =1 (mod B) or m = 3 (mod B). Since the smallest
values for m other than 1 or 3 are significantly too large to have a solution,
these are the only solutions for n = 1.

Lastly, we will examine m = 1 and n > 3. This time, we use the mod-
ulus C = 26.34.17 for our computer check. Once more this becomes a finite
problem since 32! = 3° (mod C) and 22?2 = 27 (mod C); furthermore, 5
and 7 are the smallest powers of 3 and 2, respectively, where the remainders
begin to repeat. The only solution modulo C that the program generated
was (n, k) = (3,5). This yields the solution (m,n, k) = (1, 3,5). Since the
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powers on both 2 and 3 are in the non-periodic set of remainders of their
respective powers, there are no further solutions.
In conclusion, there are exactly five solutions to 5™ 4 3™ = 2, namely:

(m,n,k) € {(0,0,1), (0,1,2), (1,1,3), (3,1,7), (1,3,5)} .

Part (a) also solved by MICHEL BATAILLE, Rouen, France; ROY BARBARA, Lebanese
University, Fana/r, Lebanon; MERCE[)ES SANCHEZ BENITO, Universidad Complutense,
Madrid, Spain, OSCAR CIAURRI RAMIREZ, Universidad de La Rioja, Logroio, Spain, and
MANUEL BENITO MUNOZ and EMILIO FERNANDEZ MORAL, IES Sagasta, Logrofio, Spain;
CHIP CURTIS, Missouri Southern State University, Joplin, MO, USA; RICHARD 1. HESS,
Rancho Palos Verdes, CA, USA; WALTHER JANOUS, Ursulinengymnasium, Innsbruck, Austria;
JOEL SCHLOSBERG, Bayside, NY, USA; L1 ZHOU, Polk Community College, Winter Haven, FL,
USA; and the proposer.

Beasley conjectured that the equation in part (b) has exactly the five solutions which are
determined above.

The reason for the late featuring of this solution is that we wanted to have the computer
solution properly analyzed. We apologize for this delay. We would appreciate if our readers
could find a proof for the result which is independent of computer verification.
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3139. [2006 : 238, 240; 2007 : 242] Proposed by Michel Bataille, Rouen,
France.

2 2
Let € be the ellipse % + 12—2 —1 = 0. Two parallel tangents to ¢ intersect
a third tangent at M; (1, y1) and Mz(x2,y2). Show that the value of

v\ (L v
a2 b2 a? b2

is independent of the chosen tangents.

I1. Solution by ]J.A. Thas, Ghent University, Ghent, Belgium.

The desired result is a consequence of properties of projective coor-
dinates interpreted in the affine plane. Our conic defines a scalar product
between the points M; = (x1,y1) and M2 = (xz2,y2) by

T1T2 Yi1Yy2

(M, M) = o2 + b2 -1

There is likewise a scalar product defined by the dual conic (composed of the
tangents to the conic) between pairs of lines: if L; = [u;, v;, w;] represent
the lines u;x + v;y + w; = 0for i =1 and z = 2, then

[Ll, Lz] = a2u1u2 + b2’1)1'1)2 — wiwWws .

A pair of points or a pair of lines are conjugate if and only if their scalar
product is zero. One easily shows that the line joining M; to M, is tangent
to the conic if and only if

(My, My)(Ms, Ma) — (M1, M2)* = 0. M





