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PROBLEMS

11040. Proposed by Yongge Tian, Queen’s University, Kingston, Canada. Let A and B
be n × n complex matrices such that A = A2 = A∗ and B = B2 = B∗. That is, A and
B are both idempotent and Hermitian. Show that

range[(AB)2 − (B A)2] = range(AB A − B AB) = range(AB − B A).

11041. Proposed by Oscar Ciaurri, Universidad de La Rioja, La Rioja, Spain. Let w

be a real number with −1 < w < 1. Let

α(2m + 1) =
∞∑

n=0

1

(2n + 1)2m+1
, β(2m) =

∞∑
n=0

(−1)n

(2n + 1)2m
,

and

g1(w) =
∞∑

m=1

α(2m + 1)w2m , g2(w) =
∞∑

m=1

β(2m)w2m−1 .

Show that
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and
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.

11042. Proposed by M. N. Deshpande, Institute of Science, Nagpur, India, and Kavita
Laghate, S.N.D.T. Women’s University, Mumbai, India. Let n and k be positive integers
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