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Abstract. Time Petri Nets are used as the formalism for the developing of the whole 
life cycle of real-time systems. We comment on how to model real-time systems using this 
formalism and we focus our work on the automatic code generation for these systems. We 
present a technique for the automatic generation of the code skeleton (control part). Finaly 
we assess the performance of the implementation. 
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1. INTRODUCTION 

The difficulty for analysing and building up real-time 
systems is well-known. Moreover, in many real-time 
systems both software and hardware reliability are 
critical aspects due to the possible catastrophic effects 
that a failure can produce. Focusing on software 
as our main aim, the use of an automatic tool in 
the coding phase of the life cycle will prevent us 
from making coding mistakes, it will simplify the 
development of the system and , therefore, reduce 
significantly its cost . Moreover, the use of formal 
methods in the whole development cycle can fulfil the 
previously mentioned reliability requirement , since 
these kinds of methods can allow the verification of 
functional and temporal requirements. 

Petri Nets have been widely used for modelling and 
analysing discrete event systems because of features 
like the possibility of modelling concurrence, resource 
sharing, synchronizations , ... Moreover Petri Nets 
have a strong mathematical foundation which allows 
the validation and verification of a wide set of 
correctness and liveness properties. In this paper we 
assume that the reader knows the basic concepts of 
Petri Nets (see Murata, 1989 for a survey). However, 
classical Pet ri Nets are not suitable either for the 
modelling or t he analysis of real-time systems, due 
to the impossibility of including time features and 
constraints in the model. To avoid these problems 
many authors have proposed extensions which add 
time characteristics to the basic Petri Nets. The first 
of these extensions, Timed Petri Nets (Rarnchandani, 
1973 ), considers a deterministic and fixed time value 
associated to each transition in the net , modelling 
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the duration of the firing of the transition , which can 
be seen, as an initial approach , as the duration of 
some activity. This kind of nets does not consider 
the fact that the duration of some tasks in real-time 
systems is not fixed , and depending on the system 
or environment state takes different values. One 
way for the modelling of this feature is to associate 
a random duration (sometimes called delay) with 
some probabilistic distribution, for the firing time of 
the transitions. This leads to the Stochastic Petri 
Nets. These nets have been commonly used for 
performance evaluation, analysis of parameters such 
as throughput, service time, number of tasks in the 
system, ... All of them are mean values of the 
parameters. 

Nevertheless an stochastic treatment for a real-time 
system is highly unadvisible since it is impossible to 
guaranty absolute time properties. To avoid these 
problems Time Petri Nets (Merlin and Faber, 1976; 
Berthomieu and Diaz , 1991) were proposed. In Time 
Petri Nets an interval specifying an upper and a 
lower bound for the duration of the task is associated 
to each transition . This approach is more general 
than Timed Petri Nets, since these can be modelled 
using a Time Petri Net, but the opposite is not 
true. The bounds associated to a transition can be 
used to verify time properties and constraints. Time 
Petri Nets were initially defined by Merlin and Faber, 
1976, and other authors have proposed different 
forms to integrate temporal intervals in the Petri 
Nets formalism: . Place/Transition Nets with Timed 
Arcs (H anisch , 1993); High-Level Timed Petri Ne ts 
(Felder , Ghezzi and Piezze, 1993); Interval Timed 
Coloured Petri Nets (van der Aalst , 1993). The latter 



considers tokens of different colours (representing 
different kinds of resources, tasks , ... ) and with 
an associated timestamp (time when the token 
was generated) which is considered while studying 
the enabling of the transitions. Considering only 
temporal aspects, we have chosen Time Petri Nets 
(hereafter TPN) due to its expressive power being 
equal to or greater than the rest of the extensions 
of Petri Nets and, from our point of view, it is 
more intuitive and suitable for the specification of the 
systems which are the object of our study. In no case 
do we consider using High Level Petri nets in these 
fisrt stages of the research project. 

TPNs are useful in order to develop reliable real-time 
software due to the possibility of modelling timeouts, 
periodical activities , synchronizations, concurrency, 

Using the same formalism along the life cycle 
will allow the detection of bad properties and 
malfunctions in the early stages of the cycle. The use 
of a formalism like TPNs allows us not to restrict the 
structure of systems in order to analize their temporal 
constraints. In this sense, the design flexibility is 
increased with respect to the use of classical analytic 
techniques such as Rate or Deadline Monotonic 
Analysis. In these approaches, for example, in order 
to allow the analysis, the communications between 
the periodical tasks must take place through an 
intermediate server with no guarded entry. The use of 
TPNs for the analysis of real-time systems eliminate 
these kinds of restrictions. Moreover, the use of 
this formal method will allow us the automatic code 
generation (as it will be seen in this paper) , and, 
therefore, the avoidance of making mistakes during 
the codification stage. 

This paper is the first of a set whose mam alm 
is the automatic code generation for Real-Time 
systems. The scope of this paper is limited to 
the modelling and the implementation of real-time 
systems. A software implementation of a system is a 
program that satisfies every functional requirement 
of the system. With reference to Petri Nets, an 
implementation is a program which simulates the 
firing of the net transitions, observing the marking 
evolution rules. The system is modelled using a 
TPN and latter implemented. An adaptation of 
classical Petri Net implementation techniques, which 
adds time information to the net transitions, is 
used. As for classical implementation techniques 
(Colom, Silva and Villarroel, 1986) we can distinguish 
between compiled and interpreted, with the compiled 
implementations being divided into centralized and 
distributed. The former use a single coordinator 
process responsible for the control and evolution of 
the net. There exist several techniques like guards, 
representing places or enabled transitions. The 
distributed implementations split the control between 
several processes, each one implementing a subnet . In 
this paper we only consider monoprocessor systems 
and our implementation will be a modification 
of the centralized representing places and enabled 
transitions techniques. Ada 95 is used as the language 
for the implementation code. 

128 

This paper is organized as follows: section 2 shows 
how to model real-time systems using TPNs. In 
section 3 we present the implementation technique. 
Section 4 shows some conclusions and outlines future 
work. 

2. MODELLING REAL-TIME SYSTEMS USING 
TIME PETRI NETS 

We use TPNs to model systems consisting of a set 
of concurrent activities with temporal constraints, 
i.e. real-time systems. We can model periodic 
or aperiodic processes, which communicate with 
each other, with synchronizations (rendezvous, ... ) , 
timeouts, exceptions, ... We can see TPNs as Petri 
Nets with labels: two time values (ai , 13i) associated 
to transitions. The first time value represents 
the static Earliest Firing Time (static EFT), the 
minimum time, starting from t (time at which ti 
is enabled) , that a transition has to wait until it 
can be fired, and the second is the static Latest 
Firing Time (static LFT), the maximum time that 
a transition can be enabled without firing . Assuming 
that transition ti was enabled at time t , and is being 
continuously enabled, these two time values allow the 
calculation of a firing interval for each transition ti in 
the Net. The firing of ti must occur in the interval 
(t + ai , t + f3i) . Once the transition is to be fired , the 
firing is instantaneous. For a formal description about 
Time Petri Nets see for example Berthomieu and 
Diaz , 1991. Unfortunately there are still few results 
applicable to TPNs. Analysis of TPNs mainly uses 
enumerative methods which involve the computation 
of the reachability graph (see Berthomieu and Diaz , 
1991; Popova, 1991). 

Figure 1: Example of model 

loop 
CODE; 
select 

Process_B. entry_A; 

Box B 

Box C 



or 
delay 10.0; 

end select; 
delay until lext; 
lext := lext + 100.0; 

end loop; 

-- Box A 

For example, in fig.I. we can see a TPN model 
of a periodic process that executes a piece of code 
and communicates with another process. This 
communication has an associated timeout. Three 
elements in fig.1 have been highlighted (a piece of Ada 
code with the same behaviour of the TPN model is 
provided for a better understanding of the model): 

· Box B shows an action, i.e. code, to be executed by 
the process. The execution starts when the input 
place becomes marked. The execution must finish 
at a time between (60,75), i.e. the computation 
time of the code is between (60,75) time units. 
When the execution ends, the transition is fired . 

· Box A models the periodic activation of the process. 
Every 100 time units the transition fires and 
promotes the execution of the process. 

· Box C shows a timeout in a communication with 
another process. Let us suppose that the place is 
marked at time t. If the transition labelled with 
entryJ. does not fire (starts the communication) 

· before t+10 (expiration time of the timeout), then 
transition (10,10) will fire, aborting the starting of 
the communication. 

Transitions in Merlin's model are all of the same type. 
They all have the same functionality. But in a real
time system there are different situations that are 
suitable to be modelled as a transition. In order 
to highlight in our models the different roles that a 
transition can play and with the aim of implementing 
the model we distinguish three kinds of transitions: 

· CODE-Transitions (CODE-T). One of these 
transitions, together with its input place, represents 
the code associated to one activity. This activity 
starts its execution when the enabling of the 
transition is detected. These transitions are tagged 
with two time values (a, P), in accordance with 
TPN fashion. In the model, the meaning of these 
time values is associated to the execution time of 
the activity. At best, the code execution will have 
finished at time a, and at worst the execution 
will last p. Thus, the execution takes a time 
between (a, P). The finalization is represented by 
the transition firing. We draw a CODE-T as a thick 
segment. 

· TIME- Transitions (TIME-T) are transitions with 
an associated time event, e.g. a timeout or the next 
periodical activation of a process. These transitions 
also have associated time information, described 
with an interval (a,a) , where a represents the 
event time. The firing of this kind of transitions 
represents the occurrence of the event, which causes 
control actions to take place on the system. If a 
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timeout related to an action occurs, the action must 
be aborted and the resources used by it released. 
If a periodic activation event occurs, the related 
periodic process must start its execution again. We 
draw a TIME-T as an empty thick segment. 

· SYCO- Transitions (SYCO-T) are transitions with 
no temporal meaning. They are used to perform 
synchronizations (SY) and control (CO) tasks. The 
firing of a transition of this kind leads to plain state 
changes or synchronizations among activities. We 
draw a SYCO-T as a thin segment. 

We also need to impose several structural restrictions 
to the net, so that it can model an actual situation: 

· Each place may have simultaneously, at most, 
a CODE-T, a TIME-T and several SYCO-Ts 
as output transitions. In this way, we avoid 
conflicts between CODE-Ts or TIME-Ts (since this 
situation has no meaning in this field) . Conflicts 
may appear between SYCO-Ts. 

· Each CODE-T has a single input place, making 
up a functional unit of code. This place must be 
1- bounded, because we only consider sequential 
processes without replication capabilities. 

· The time values associated tC' TIME-Ts must be 
the same, i.e. (a,a). These time values represent 
the time occurrence of an event. An interval like 
(a,13) has no meaning in this context. 

· SYCO-Ts have no time meaning and, therefore, 
they have no associated time interval, according to 
the TPNs formalism. 

Figure 2: Example of N periodical process 

As a simple example (which we will consider in the 
test of the performance of the implementation) we 
can present in Fig. 2 the model of a real-time system 
made up of several periodical processes, with no 
communication between them. The net shows a set 
of marked places {Pi} joined to a corresponding set 
of TIM E-Ts {PAd, which model a set of periodical 
activations of processes. Note that the time tags are 
(Ti, Ti), i.e., the period of each process. The task 
performed by the processes is modelled with places 
Ei and ECi, representing the execution code of the 
process. This code has a minimum duration ai and 
will last at most until the next periodical activation 
Ti, i.e ., the deadline is equal to the period. Every Ti 



time units a new mark representing a new periodical 
activation of the process is generated by P Ai. 

3. THE IMPLEMENTATION 

An implementation is a program which simulates the 
firing of the net transitions, observing the marking 
evolution rules. We attempt the implementation of 
the system modelled using a TPN. We use centralized 
techniques. It is assumed that a scheduling for the 
processes in the real-time system has been computed 
off-line. This scheduling guarantees that all processes 
in the system finish their execution before their 
deadlines. The effect of the scheduling is to assign 
a static priority to each transition in the net. These 
priorities are taken into account in two different ways. 
The first is to assign static priorities to the Ada
tasks which represent the firing of the transitions 
which have an associated code. These priorities are 
used by the Ada-Kernel to schedule the different 
tasks. The second is used by the net coordinator to 
solve the conflicts among transitions. The highest 
priority transition will always be chosen to fire. We 
use Ada 95 as the implementation language and the 
preemptive mechanism provided by the Ada Kernel. 

As in any centralized implementation, we consider 
two types of processes (hereinafter we will talk about 
Ada-tasks when we refer to a process): 

. Each unit {place + CODE-Transition}, which 
represents each code execution of the net, will be 
implemented as an Ada-task, called CODE task. 
In this way we maintain the concurrency of the 
model in the implementation. Each CODE task 
will execute the code associated to the unit. This 
code must be developed separately, and later linked 
together . 

. Control and timing supervision will be performed 
by another task called coordinator. Every CODE 
task communicates with the coordinator, which 
is responsible for taking decisions as to when a 
transition must fire. It will be the highest priority 
task in the system, since control and timing actions 
must be performed immediately. We can see the 
coordinator as the kernel of an operating system, 
and the CODE tasks as the processes managed and 
executed in it. 

The remaining transitions of the net (TIME-Ts and 
SYCO-Ts) are considered by the coordinator to 
perform the control of the net implementation. In this 
way, the operational part of the system is performed 
by the CODE tasks and the control part, by the 
coordinator. 

Several choices related to the firing of transitions in 
conflict must be made for the implementation. A 
place may have at most, one CODE-T, one TIME
T , and several SYCO-Ts output transitions. If there 
is a conflict situation, i.e. several output transitions 
of the same place are enabled, we choose one SYCO
Ts to be fired, since they represent control actions in 
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the net and they must take place immediately. In this 
choice the transition priority is considered. If there 
is no enabled SYCO-T we will execute the associated 
CODE task and record the time of the event modelled 
with the TIME-T, if it exists. A race policy is adopted 
to decide which is the actual transition selected to 
fire ; e.g. : if the event (TIME-T) expires before the 
execution of the CODE task ends, the TIME-T must 
be fired and the code execution must be aborted. This 
models the occurrence of a timeout . The opposite 
case is also possible. 

To describe the working of the implementation we 
only show the behaviour of the coordinator. The 
control structure of the coordinator is based on the 
execution of an infinite loop. In this loop, the 
coordinator performs several actions related to the 
net control and time monitoring. At each execution 
of the loop the coordinator examines every transition 
of the net and determines if it is enabled, proceeding 
to its firing or to the performance of the requiered 
actions. SYCO-Ts are tested firstly. TIME-Ts are 
tested secondly and the associated events recorded 
in an event list. CODE-Ts are finally tested and, 
if enabled, the start rendezvous with the associated 
CODE task is accepted, allowing the CODE task to 
begin execution. The actual firing of TIME-Ts and 
CODE-Ts is postponed. Once the coordinator has 
fired every firable SYCO-T, has registered every time 
event and has accepted every CODE task start, the 
coordinator must wait for the end of a CODE task or 
the expiration of an event. When a CODE task ends 
or an event expires, then the corresponding CODE-T 
or TIME-T must be fired. If a CODE task ends the 
coordinator must accept an end rendezvous with it. 
When a transition is fired, the marking of the net is 
updated. This leads to new enabled transitions and 
must provoke reexecution of the coordinator loop, and 
so on. 

We have implemented the nets using two centralized 
techniques: the representing places technique and the 
enabled transitions technique. They differ from each 
other in the way in which they evaluate the enabling 
of a transition. We give a brief explanation of both 
techniques (for further details refer to (Colom, Silva 
and Villarroel, 1986». The former chooses one of the 
input places of every transition as its representing 
place, in such a way that only transitions whose 
representing place is marked are taken into account 
for the enabling test. The latter uses a counter 
for every transition whose value is the number of 
unmarked input places of the transition. In this 
way, a transition is marked if the value of its counter 
is zero. This treatment simplifies the enabling test 
causing the performance of the enabled transitions 
technique to be better than the other. Therefore we 
will deal with it during the rest of the paper. 

Several data structures are necessary for the enabled 
transitions implementation: Net...5Ts, Net_TTs and 
Net_eTs, which record for each kind of transition 
(STs, Syco; TTs, Time; CTs, Code) the 
characteristics of every transition of the net: number 
of input places, a list of transitions of each type in 



conflict with it, a list of descending transitions of each 
type (that may be enabled by means of the firing 
of the present one), temporal bounds (EFT,LFT) for 
CODE-Ts, firing time (FT) for TIME-Ts, and priority 
for SYCO and CODE transitions. Three arrays 
containing the counters for every transition in the 
net are also needed . They represent the marking of 
the net . One stack containing the enabled transitions 
is provided for each kind of transitions: SYCO..PL, 
TIME..PL and CODE..PL, where PL means processing list. 

An implementation of a TPN can provoke the 
appearance of an accumulative temporal shifting 
due to the difference in time between the time 
when a transition gets enabled and the time when 
the coordinator realizes the transition is enabled. 
This problem has been solved using a time variable 
(Last_Update) to record the time when the last 
marking update was produced. Doing this we can 
avoid having to associate a timestamp to the tokens, 
as in other proposed models (van der Aalst, 1993; 
Felder, Ghezzi, Piezze, 1993) . 

With these comments we can present the code of the 
coordinator for the enabled transitions technique: 

task body Coordinator is 
-- declaration of variables and subprograas 

begin 
accept Coordinator_Start ; 
Last_Update := CLOCl ; 
loop 

-- Study enabled SYCO-T and start firing 
while not Empty(SYCO_PL) loop 

if Enabled_STS(Top(SYCO_PL» = 0 then 
Demark_In_Ps_ST(Top(SYCO_PL» ; 

end if; 
Pop(SYCO_PL) ; 

end loop; 
-- Study enabled TIftE-T . Recod events 

while not Empty(TIftE_PL) loop 
if Enabled_TTS(Top(TIftE_PL» = 0 then 
Record_Event(Top(TIKE_PL). Last_Update 

+ let_TTS(Top(TlKE_PL» .FT) ; 
end if ; 
Pop(TIftE_PL); 

end loop; 
-- Study enabled CODE-T . Start execution 

while not Empty(CODE_PL) loop 
if Enabled_CTS(Top(CODE_PL» = 0 then 
accept Start(Top(CODE_PL»; 

end if ; 
Pop(CODE_PL); 

end loop; 

loop 
select 
accept End_Task( T in CT ) do 

-- CODE-T firing 
Last_Update := CLOCl ; 
Demark_In_Ps_CT( T ) ; 
ftark_Out_Ps_CT( T ) ; 

end End_Task; 
or 

when not Event_List .Empty => 
delay until Urgent_Event_T ; 

Last_Update : = Urgent_Event_T ; 
loop 
if Urgent_Event_Is_Time then 

-- TIftE-T firing 
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Demark_In_Ps_TT(TT_Urgent_Event); 
Mark_Out_Ps_TT(TT_Urgent_Event) ; 

else 
-- finish SYCO-T firing 

ftark_Out_Ps_ST(ST_Urgent_Event) ; 
end if ; 
Pop_Event ; 
exit when Event_List .Empty or else 

Urgent_Event_T /= Last_Update ; 
end loop ; 

end select; 
exit when End_Task'COUlT /= 0 ; 

end loop; 
end loop ; 

end Coordinator ; 

Tasks Transitions execute their associate code after 
a start rendezvous with the coordinator and, when 
finishing, another end rendezvous. 

task body CODE_Task is 
Ident : CT ; 

begin 
-- Initialization 

loop 
Coordinator. Start (Ident); 
Code (Ident); 
Coordinator.End (Ident) ; 

end loop ; 
end CODE_Task; 

Demark..ln..Ps_?? and Mark-Out..Ps_?? are procedures 
which update the marking of the net, i.e. update 
the counters of the descending transitions of the 
fired transition , and abort the possible transitions in 
conflict with the fired transition. 

3.1 Performance evaluation 

Every control and timing action that the system 
must accomplish is performed by the coordinator. 
Each time a transition is fired , i.e. a code is 
executed or an event is expired, the coordinator 
acts and promotes the firing of the remainder of the 
net. So the coordinator introduces an overload into 
the system which reduces the maximum schedulable 
utilization (U) . In order to evaluate the impact of the 
coordinator we have run an experiment consisting in 
the implementation of net modelling a system made 
up of N periodical tasks, all of them of the same 
period. Theoretically, the schedulable utilization 
must be 100%, but if we consider factors such as 
the operating system, the delay accuracy, the context 
switching and other factors due to the Ada kernel, 
this limit is actually reduced to 94% in the worst 
case . We vary the number of processes (from 5 to 
30) and their period (from 1 to 0.2 seconds) and 
register the maximum schedulable utilization for each 
case. This leads us to the following table. The figures 
have been calculated for the SPARC CPU -5V with 
the microSPARC-II processor, G NAT 3.03 Ada95 for 
Solaris compiler; similar results have been obtained 
for other platforms. The figures include t he overload 
due to the coordinator and to the Ada kernel. 
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Figure 3: Schedulable utilization U(%) 

Table1. U(%) function of period and n. of tasks 

1 0.8 0.6 0.4 0.2 
5 96.92 96.17 95.17 92 .60 85.02 

10 95.83 94.75 93 .11 89.81 80.59 
15 95.03 93.55 90.93 86.80 75.28 
20 93.90 91.69 89.60 83.61 70.00 
25 92.05 90.16 87.67 81.18 64.53 
30 91.02 89.51 85.65 78.28 58.41 

4. CONCLUSIONS AND FUTURE WORK 

We have proposed the use of a formalism for the 
whole life cycle of real-time systems, which allows 
the modelling of all the situations appearing in these 
systems: Time Petri Nets. This bring us the following 
advantages: in the first place it is a formalism that 
allows an unambiguos system specification and easy 
to understand due to its graphical nature; its use will 
help us during the development of the system since it 
allows the verification and validation of the correction 
of the system in the early stages of the cycle; the 
analysis capabilities of Time Petri Nets allows a 
high modelling flexibility, since it will no longer be 
necesary to impose restrictions on the system in 
order to analyze the temporal behaviour and verify 
the timing constraints ; moreover, this formalism is 
executable , and therefore it allows the prototyping 
and simulation of systems. 

We have also proposed an automatic code generation 
technique, for systems modelled with the chosen 
formalism. We can automatize the coding 
phase, preventing us from making coding mistakes, 
simplifying this stage, and so, reducing the cost of 
the system. It is an interpreted technique, so it allows 
us to modifify with ease the control structure of the 
system without changing the application tasks. 

However, we have detected some problems. The 
presence of the coordinator introduces an overload 
into the system which reduces the maximum 
schedulable utilization , as we have commented 
before. On the other hand , we are dealing with a 
centralized technique. This means that the produced 
implementation is sensitive to faults , since if the 
coordinator fails the whole system fails. 
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In future works we will try to evaluate the overload 
introduced by the coordinator for different net 
topologies and classes, and deduce what is the 
topology and class for which the implemetation works 
better. We will also develop distributed techniques 
for the implementation, which avoid the use of 
the coordinator, eliminating the above mentioned 
overload and making the system more fault tolerable, 
since the control tasks are split between several 
processes, one of which can fail without implying the 
total in availability of the system. 
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