
Copyright © IFAC Real Time Programming,
Gramado, RS, Brazil, 1997

MODELLING AND ADA IMPLEMENTATION OF REAL-TIME
SYSTEMS USING TIME PETRI NETS

F. J. Garcia Izquierdo· and J.L. Villarroel Salcedo t

• Universidad de La Rioja, Dpto. Matematicas y Computacion, C/ Luis de Ulloa s.n., 26004 Logroiio, Spain
t CPS, Universidad de Zaragoza, Dpto. de Informatica e Ing. de Sistemas, C/ Maria de Luna 9, 50015

Zaragoza , Spain

Abstract. Time Petri Nets are used as the formalism for the developing of the whole
life cycle of real-time systems. We comment on how to model real-time systems using this
formalism and we focus our work on the automatic code generation for these systems. We
present a technique for the automatic generation of the code skeleton (control part). Finaly
we assess the performance of the implementation.

Keywords. Time Petri Nets, Automatic Code Generation, Ada Tasking, Real-Time.

1. INTRODUCTION

The difficulty for analysing and building up real-time
systems is well-known. Moreover, in many real-time
systems both software and hardware reliability are
critical aspects due to the possible catastrophic effects
that a failure can produce. Focusing on software
as our main aim, the use of an automatic tool in
the coding phase of the life cycle will prevent us
from making coding mistakes, it will simplify the
development of the system and , therefore, reduce
significantly its cost . Moreover, the use of formal
methods in the whole development cycle can fulfil the
previously mentioned reliability requirement , since
these kinds of methods can allow the verification of
functional and temporal requirements.

Petri Nets have been widely used for modelling and
analysing discrete event systems because of features
like the possibility of modelling concurrence, resource
sharing, synchronizations , ... Moreover Petri Nets
have a strong mathematical foundation which allows
the validation and verification of a wide set of
correctness and liveness properties. In this paper we
assume that the reader knows the basic concepts of
Petri Nets (see Murata, 1989 for a survey). However,
classical Pet ri Nets are not suitable either for the
modelling or t he analysis of real-time systems, due
to the impossibility of including time features and
constraints in the model. To avoid these problems
many authors have proposed extensions which add
time characteristics to the basic Petri Nets. The first
of these extensions, Timed Petri Nets (Rarnchandani,
1973), considers a deterministic and fixed time value
associated to each transition in the net , modelling

127

the duration of the firing of the transition , which can
be seen, as an initial approach , as the duration of
some activity. This kind of nets does not consider
the fact that the duration of some tasks in real-time
systems is not fixed , and depending on the system
or environment state takes different values. One
way for the modelling of this feature is to associate
a random duration (sometimes called delay) with
some probabilistic distribution, for the firing time of
the transitions. This leads to the Stochastic Petri
Nets. These nets have been commonly used for
performance evaluation, analysis of parameters such
as throughput, service time, number of tasks in the
system, ... All of them are mean values of the
parameters.

Nevertheless an stochastic treatment for a real-time
system is highly unadvisible since it is impossible to
guaranty absolute time properties. To avoid these
problems Time Petri Nets (Merlin and Faber, 1976;
Berthomieu and Diaz , 1991) were proposed. In Time
Petri Nets an interval specifying an upper and a
lower bound for the duration of the task is associated
to each transition . This approach is more general
than Timed Petri Nets, since these can be modelled
using a Time Petri Net, but the opposite is not
true. The bounds associated to a transition can be
used to verify time properties and constraints. Time
Petri Nets were initially defined by Merlin and Faber,
1976, and other authors have proposed different
forms to integrate temporal intervals in the Petri
Nets formalism: . Place/Transition Nets with Timed
Arcs (H anisch , 1993); High-Level Timed Petri Ne ts
(Felder , Ghezzi and Piezze, 1993); Interval Timed
Coloured Petri Nets (van der Aalst , 1993). The latter

considers tokens of different colours (representing
different kinds of resources, tasks , ...) and with
an associated timestamp (time when the token
was generated) which is considered while studying
the enabling of the transitions. Considering only
temporal aspects, we have chosen Time Petri Nets
(hereafter TPN) due to its expressive power being
equal to or greater than the rest of the extensions
of Petri Nets and, from our point of view, it is
more intuitive and suitable for the specification of the
systems which are the object of our study. In no case
do we consider using High Level Petri nets in these
fisrt stages of the research project.

TPNs are useful in order to develop reliable real-time
software due to the possibility of modelling timeouts,
periodical activities , synchronizations, concurrency,

Using the same formalism along the life cycle
will allow the detection of bad properties and
malfunctions in the early stages of the cycle. The use
of a formalism like TPNs allows us not to restrict the
structure of systems in order to analize their temporal
constraints. In this sense, the design flexibility is
increased with respect to the use of classical analytic
techniques such as Rate or Deadline Monotonic
Analysis. In these approaches, for example, in order
to allow the analysis, the communications between
the periodical tasks must take place through an
intermediate server with no guarded entry. The use of
TPNs for the analysis of real-time systems eliminate
these kinds of restrictions. Moreover, the use of
this formal method will allow us the automatic code
generation (as it will be seen in this paper) , and,
therefore, the avoidance of making mistakes during
the codification stage.

This paper is the first of a set whose mam alm
is the automatic code generation for Real-Time
systems. The scope of this paper is limited to
the modelling and the implementation of real-time
systems. A software implementation of a system is a
program that satisfies every functional requirement
of the system. With reference to Petri Nets, an
implementation is a program which simulates the
firing of the net transitions, observing the marking
evolution rules. The system is modelled using a
TPN and latter implemented. An adaptation of
classical Petri Net implementation techniques, which
adds time information to the net transitions, is
used. As for classical implementation techniques
(Colom, Silva and Villarroel, 1986) we can distinguish
between compiled and interpreted, with the compiled
implementations being divided into centralized and
distributed. The former use a single coordinator
process responsible for the control and evolution of
the net. There exist several techniques like guards,
representing places or enabled transitions. The
distributed implementations split the control between
several processes, each one implementing a subnet . In
this paper we only consider monoprocessor systems
and our implementation will be a modification
of the centralized representing places and enabled
transitions techniques. Ada 95 is used as the language
for the implementation code.

128

This paper is organized as follows: section 2 shows
how to model real-time systems using TPNs. In
section 3 we present the implementation technique.
Section 4 shows some conclusions and outlines future
work.

2. MODELLING REAL-TIME SYSTEMS USING
TIME PETRI NETS

We use TPNs to model systems consisting of a set
of concurrent activities with temporal constraints,
i.e. real-time systems. We can model periodic
or aperiodic processes, which communicate with
each other, with synchronizations (rendezvous, ...) ,
timeouts, exceptions, ... We can see TPNs as Petri
Nets with labels: two time values (ai , 13i) associated
to transitions. The first time value represents
the static Earliest Firing Time (static EFT), the
minimum time, starting from t (time at which ti
is enabled) , that a transition has to wait until it
can be fired, and the second is the static Latest
Firing Time (static LFT), the maximum time that
a transition can be enabled without firing . Assuming
that transition ti was enabled at time t , and is being
continuously enabled, these two time values allow the
calculation of a firing interval for each transition ti in
the Net. The firing of ti must occur in the interval
(t + ai , t + f3i) . Once the transition is to be fired , the
firing is instantaneous. For a formal description about
Time Petri Nets see for example Berthomieu and
Diaz , 1991. Unfortunately there are still few results
applicable to TPNs. Analysis of TPNs mainly uses
enumerative methods which involve the computation
of the reachability graph (see Berthomieu and Diaz ,
1991; Popova, 1991).

Figure 1: Example of model

loop
CODE;
select

Process_B. entry_A;

Box B

Box C

or
delay 10.0;

end select;
delay until lext;
lext := lext + 100.0;

end loop;

-- Box A

For example, in fig.I. we can see a TPN model
of a periodic process that executes a piece of code
and communicates with another process. This
communication has an associated timeout. Three
elements in fig.1 have been highlighted (a piece of Ada
code with the same behaviour of the TPN model is
provided for a better understanding of the model):

· Box B shows an action, i.e. code, to be executed by
the process. The execution starts when the input
place becomes marked. The execution must finish
at a time between (60,75), i.e. the computation
time of the code is between (60,75) time units.
When the execution ends, the transition is fired .

· Box A models the periodic activation of the process.
Every 100 time units the transition fires and
promotes the execution of the process.

· Box C shows a timeout in a communication with
another process. Let us suppose that the place is
marked at time t. If the transition labelled with
entryJ. does not fire (starts the communication)

· before t+10 (expiration time of the timeout), then
transition (10,10) will fire, aborting the starting of
the communication.

Transitions in Merlin's model are all of the same type.
They all have the same functionality. But in a real
time system there are different situations that are
suitable to be modelled as a transition. In order
to highlight in our models the different roles that a
transition can play and with the aim of implementing
the model we distinguish three kinds of transitions:

· CODE-Transitions (CODE-T). One of these
transitions, together with its input place, represents
the code associated to one activity. This activity
starts its execution when the enabling of the
transition is detected. These transitions are tagged
with two time values (a, P), in accordance with
TPN fashion. In the model, the meaning of these
time values is associated to the execution time of
the activity. At best, the code execution will have
finished at time a, and at worst the execution
will last p. Thus, the execution takes a time
between (a, P). The finalization is represented by
the transition firing. We draw a CODE-T as a thick
segment.

· TIME- Transitions (TIME-T) are transitions with
an associated time event, e.g. a timeout or the next
periodical activation of a process. These transitions
also have associated time information, described
with an interval (a,a) , where a represents the
event time. The firing of this kind of transitions
represents the occurrence of the event, which causes
control actions to take place on the system. If a

129

timeout related to an action occurs, the action must
be aborted and the resources used by it released.
If a periodic activation event occurs, the related
periodic process must start its execution again. We
draw a TIME-T as an empty thick segment.

· SYCO- Transitions (SYCO-T) are transitions with
no temporal meaning. They are used to perform
synchronizations (SY) and control (CO) tasks. The
firing of a transition of this kind leads to plain state
changes or synchronizations among activities. We
draw a SYCO-T as a thin segment.

We also need to impose several structural restrictions
to the net, so that it can model an actual situation:

· Each place may have simultaneously, at most,
a CODE-T, a TIME-T and several SYCO-Ts
as output transitions. In this way, we avoid
conflicts between CODE-Ts or TIME-Ts (since this
situation has no meaning in this field) . Conflicts
may appear between SYCO-Ts.

· Each CODE-T has a single input place, making
up a functional unit of code. This place must be
1- bounded, because we only consider sequential
processes without replication capabilities.

· The time values associated tC' TIME-Ts must be
the same, i.e. (a,a). These time values represent
the time occurrence of an event. An interval like
(a,13) has no meaning in this context.

· SYCO-Ts have no time meaning and, therefore,
they have no associated time interval, according to
the TPNs formalism.

Figure 2: Example of N periodical process

As a simple example (which we will consider in the
test of the performance of the implementation) we
can present in Fig. 2 the model of a real-time system
made up of several periodical processes, with no
communication between them. The net shows a set
of marked places {Pi} joined to a corresponding set
of TIM E-Ts {PAd, which model a set of periodical
activations of processes. Note that the time tags are
(Ti, Ti), i.e., the period of each process. The task
performed by the processes is modelled with places
Ei and ECi, representing the execution code of the
process. This code has a minimum duration ai and
will last at most until the next periodical activation
Ti, i.e ., the deadline is equal to the period. Every Ti

time units a new mark representing a new periodical
activation of the process is generated by P Ai.

3. THE IMPLEMENTATION

An implementation is a program which simulates the
firing of the net transitions, observing the marking
evolution rules. We attempt the implementation of
the system modelled using a TPN. We use centralized
techniques. It is assumed that a scheduling for the
processes in the real-time system has been computed
off-line. This scheduling guarantees that all processes
in the system finish their execution before their
deadlines. The effect of the scheduling is to assign
a static priority to each transition in the net. These
priorities are taken into account in two different ways.
The first is to assign static priorities to the Ada
tasks which represent the firing of the transitions
which have an associated code. These priorities are
used by the Ada-Kernel to schedule the different
tasks. The second is used by the net coordinator to
solve the conflicts among transitions. The highest
priority transition will always be chosen to fire. We
use Ada 95 as the implementation language and the
preemptive mechanism provided by the Ada Kernel.

As in any centralized implementation, we consider
two types of processes (hereinafter we will talk about
Ada-tasks when we refer to a process):

. Each unit {place + CODE-Transition}, which
represents each code execution of the net, will be
implemented as an Ada-task, called CODE task.
In this way we maintain the concurrency of the
model in the implementation. Each CODE task
will execute the code associated to the unit. This
code must be developed separately, and later linked
together .

. Control and timing supervision will be performed
by another task called coordinator. Every CODE
task communicates with the coordinator, which
is responsible for taking decisions as to when a
transition must fire. It will be the highest priority
task in the system, since control and timing actions
must be performed immediately. We can see the
coordinator as the kernel of an operating system,
and the CODE tasks as the processes managed and
executed in it.

The remaining transitions of the net (TIME-Ts and
SYCO-Ts) are considered by the coordinator to
perform the control of the net implementation. In this
way, the operational part of the system is performed
by the CODE tasks and the control part, by the
coordinator.

Several choices related to the firing of transitions in
conflict must be made for the implementation. A
place may have at most, one CODE-T, one TIME
T , and several SYCO-Ts output transitions. If there
is a conflict situation, i.e. several output transitions
of the same place are enabled, we choose one SYCO
Ts to be fired, since they represent control actions in

l30

the net and they must take place immediately. In this
choice the transition priority is considered. If there
is no enabled SYCO-T we will execute the associated
CODE task and record the time of the event modelled
with the TIME-T, if it exists. A race policy is adopted
to decide which is the actual transition selected to
fire ; e.g. : if the event (TIME-T) expires before the
execution of the CODE task ends, the TIME-T must
be fired and the code execution must be aborted. This
models the occurrence of a timeout . The opposite
case is also possible.

To describe the working of the implementation we
only show the behaviour of the coordinator. The
control structure of the coordinator is based on the
execution of an infinite loop. In this loop, the
coordinator performs several actions related to the
net control and time monitoring. At each execution
of the loop the coordinator examines every transition
of the net and determines if it is enabled, proceeding
to its firing or to the performance of the requiered
actions. SYCO-Ts are tested firstly. TIME-Ts are
tested secondly and the associated events recorded
in an event list. CODE-Ts are finally tested and,
if enabled, the start rendezvous with the associated
CODE task is accepted, allowing the CODE task to
begin execution. The actual firing of TIME-Ts and
CODE-Ts is postponed. Once the coordinator has
fired every firable SYCO-T, has registered every time
event and has accepted every CODE task start, the
coordinator must wait for the end of a CODE task or
the expiration of an event. When a CODE task ends
or an event expires, then the corresponding CODE-T
or TIME-T must be fired. If a CODE task ends the
coordinator must accept an end rendezvous with it.
When a transition is fired, the marking of the net is
updated. This leads to new enabled transitions and
must provoke reexecution of the coordinator loop, and
so on.

We have implemented the nets using two centralized
techniques: the representing places technique and the
enabled transitions technique. They differ from each
other in the way in which they evaluate the enabling
of a transition. We give a brief explanation of both
techniques (for further details refer to (Colom, Silva
and Villarroel, 1986». The former chooses one of the
input places of every transition as its representing
place, in such a way that only transitions whose
representing place is marked are taken into account
for the enabling test. The latter uses a counter
for every transition whose value is the number of
unmarked input places of the transition. In this
way, a transition is marked if the value of its counter
is zero. This treatment simplifies the enabling test
causing the performance of the enabled transitions
technique to be better than the other. Therefore we
will deal with it during the rest of the paper.

Several data structures are necessary for the enabled
transitions implementation: Net...5Ts, Net_TTs and
Net_eTs, which record for each kind of transition
(STs, Syco; TTs, Time; CTs, Code) the
characteristics of every transition of the net: number
of input places, a list of transitions of each type in

conflict with it, a list of descending transitions of each
type (that may be enabled by means of the firing
of the present one), temporal bounds (EFT,LFT) for
CODE-Ts, firing time (FT) for TIME-Ts, and priority
for SYCO and CODE transitions. Three arrays
containing the counters for every transition in the
net are also needed . They represent the marking of
the net . One stack containing the enabled transitions
is provided for each kind of transitions: SYCO..PL,
TIME..PL and CODE..PL, where PL means processing list.

An implementation of a TPN can provoke the
appearance of an accumulative temporal shifting
due to the difference in time between the time
when a transition gets enabled and the time when
the coordinator realizes the transition is enabled.
This problem has been solved using a time variable
(Last_Update) to record the time when the last
marking update was produced. Doing this we can
avoid having to associate a timestamp to the tokens,
as in other proposed models (van der Aalst, 1993;
Felder, Ghezzi, Piezze, 1993) .

With these comments we can present the code of the
coordinator for the enabled transitions technique:

task body Coordinator is
-- declaration of variables and subprograas

begin
accept Coordinator_Start ;
Last_Update := CLOCl ;
loop

-- Study enabled SYCO-T and start firing
while not Empty(SYCO_PL) loop

if Enabled_STS(Top(SYCO_PL» = 0 then
Demark_In_Ps_ST(Top(SYCO_PL» ;

end if;
Pop(SYCO_PL) ;

end loop;
-- Study enabled TIftE-T . Recod events

while not Empty(TIftE_PL) loop
if Enabled_TTS(Top(TIftE_PL» = 0 then
Record_Event(Top(TIKE_PL). Last_Update

+ let_TTS(Top(TlKE_PL» .FT) ;
end if ;
Pop(TIftE_PL);

end loop;
-- Study enabled CODE-T . Start execution

while not Empty(CODE_PL) loop
if Enabled_CTS(Top(CODE_PL» = 0 then
accept Start(Top(CODE_PL»;

end if ;
Pop(CODE_PL);

end loop;

loop
select
accept End_Task(T in CT) do

-- CODE-T firing
Last_Update := CLOCl ;
Demark_In_Ps_CT(T) ;
ftark_Out_Ps_CT(T) ;

end End_Task;
or

when not Event_List .Empty =>
delay until Urgent_Event_T ;

Last_Update : = Urgent_Event_T ;
loop
if Urgent_Event_Is_Time then

-- TIftE-T firing

131

Demark_In_Ps_TT(TT_Urgent_Event);
Mark_Out_Ps_TT(TT_Urgent_Event) ;

else
-- finish SYCO-T firing

ftark_Out_Ps_ST(ST_Urgent_Event) ;
end if ;
Pop_Event ;
exit when Event_List .Empty or else

Urgent_Event_T /= Last_Update ;
end loop ;

end select;
exit when End_Task'COUlT /= 0 ;

end loop;
end loop ;

end Coordinator ;

Tasks Transitions execute their associate code after
a start rendezvous with the coordinator and, when
finishing, another end rendezvous.

task body CODE_Task is
Ident : CT ;

begin
-- Initialization

loop
Coordinator. Start (Ident);
Code (Ident);
Coordinator.End (Ident) ;

end loop ;
end CODE_Task;

Demark..ln..Ps_?? and Mark-Out..Ps_?? are procedures
which update the marking of the net, i.e. update
the counters of the descending transitions of the
fired transition , and abort the possible transitions in
conflict with the fired transition.

3.1 Performance evaluation

Every control and timing action that the system
must accomplish is performed by the coordinator.
Each time a transition is fired , i.e. a code is
executed or an event is expired, the coordinator
acts and promotes the firing of the remainder of the
net. So the coordinator introduces an overload into
the system which reduces the maximum schedulable
utilization (U) . In order to evaluate the impact of the
coordinator we have run an experiment consisting in
the implementation of net modelling a system made
up of N periodical tasks, all of them of the same
period. Theoretically, the schedulable utilization
must be 100%, but if we consider factors such as
the operating system, the delay accuracy, the context
switching and other factors due to the Ada kernel,
this limit is actually reduced to 94% in the worst
case . We vary the number of processes (from 5 to
30) and their period (from 1 to 0.2 seconds) and
register the maximum schedulable utilization for each
case. This leads us to the following table. The figures
have been calculated for the SPARC CPU -5V with
the microSPARC-II processor, G NAT 3.03 Ada95 for
Solaris compiler; similar results have been obtained
for other platforms. The figures include t he overload
due to the coordinator and to the Ada kernel.

IIM�...------------------,

----- -- -~ - -- -- ~-- ------- .--- '- .. - -..... - -' .-:--..... - -::

10 ... ".

1111 ~ ;,~ • . ~" ,:,:._ ._- .-.-.~. -•••• .; ••••• • ; • • •••• : ••• • •• ; •• • ••

20... , . .•

70:2Sc .>~ ... ~ :_ :_ : : :_
3q. ... :

6U , ~ ... : .•..• ~ - •••.•.•• •.. ... • - •••••

~17-~~-~-~~~~-~-~-~~~
0.2 0.3 0.4 O.S 0.6 0.7 O.R 0.9

Figure 3: Schedulable utilization U(%)

Table1. U(%) function of period and n. of tasks

1 0.8 0.6 0.4 0.2
5 96.92 96.17 95.17 92 .60 85.02

10 95.83 94.75 93 .11 89.81 80.59
15 95.03 93.55 90.93 86.80 75.28
20 93.90 91.69 89.60 83.61 70.00
25 92.05 90.16 87.67 81.18 64.53
30 91.02 89.51 85.65 78.28 58.41

4. CONCLUSIONS AND FUTURE WORK

We have proposed the use of a formalism for the
whole life cycle of real-time systems, which allows
the modelling of all the situations appearing in these
systems: Time Petri Nets. This bring us the following
advantages: in the first place it is a formalism that
allows an unambiguos system specification and easy
to understand due to its graphical nature; its use will
help us during the development of the system since it
allows the verification and validation of the correction
of the system in the early stages of the cycle; the
analysis capabilities of Time Petri Nets allows a
high modelling flexibility, since it will no longer be
necesary to impose restrictions on the system in
order to analyze the temporal behaviour and verify
the timing constraints ; moreover, this formalism is
executable , and therefore it allows the prototyping
and simulation of systems.

We have also proposed an automatic code generation
technique, for systems modelled with the chosen
formalism. We can automatize the coding
phase, preventing us from making coding mistakes,
simplifying this stage, and so, reducing the cost of
the system. It is an interpreted technique, so it allows
us to modifify with ease the control structure of the
system without changing the application tasks.

However, we have detected some problems. The
presence of the coordinator introduces an overload
into the system which reduces the maximum
schedulable utilization , as we have commented
before. On the other hand , we are dealing with a
centralized technique. This means that the produced
implementation is sensitive to faults , since if the
coordinator fails the whole system fails.

132

In future works we will try to evaluate the overload
introduced by the coordinator for different net
topologies and classes, and deduce what is the
topology and class for which the implemetation works
better. We will also develop distributed techniques
for the implementation, which avoid the use of
the coordinator, eliminating the above mentioned
overload and making the system more fault tolerable,
since the control tasks are split between several
processes, one of which can fail without implying the
total in availability of the system.

ACKN OWLEDG EMENTS

This work has been supported in part by project
TAP94-0390 from the Comisi6n Interministerial de
Ciencia y Tecnologia of Spain and project PIT-11/93
from the Gobierno de Arag6n.

REFERENCES

Berthomieu, B. and M. Diaz (1991) . Modeling
and Verification of time dependent systems
using time petri nets. IEEE transacctions
on Software Engineering, 17(3):259-273, March
1991.

Colom, J .M., M. Silva, J .1. Villarroel (1986). On
software implementation of petri nets and
colored petri nets using high-level concurrent
languajes. In Proc of 7th European Workshop
on Application and Theory of Petri Nets, pages
207-241 , Oxford , July 1986.

Felder, M., C. Ghezzi, and N. Piezze (1993).
High-Level Timed Petri Nets as a Kernel for
Executable Specifications. Real-Time Systems,
5,235-248.

Hanisch, H.-M. (1993) . Analysis of Place/Transition
Nets with Timed Arcs and its Application
to Batch Process ControL In: Proc.
of Applications and Theory of Petri Nets,
Chicago, Illinois, USA, June 1993 (Marco
Ajmone Marsan (Ed.)). pp. 282- 299Springer
Verlag

Merlin , P. and D.J. Faber (1976). Recoverability of
communication protocols. IEEE transactions
on Communication, 24(9), September 1976.

Murata, T . (1989) . Petri Nets: Properties, Analysis
and Applications. In Proc. of the IEEE, vol.
77 , N. 4, pp. 541-580, Apr.1989 .

Popova, 1. (1991) . On Time Petri Nets. J . Inform.
Process. Cybern., vol ElK 27, N. 4, pp. 227-
244.

Ramchandani, C. (1973). Performance Evaluation
of Asynchronuos Concurrent Systems by Timed
Petri Ntes, PhD thesis, Massachusetts Institute
of Technologiy, Cambridge 1973.

van der Aalst, W.M .P. (1993) . Interval Timed
Coloured Petri Nets and their Analysis.ln
Applications and Theory of pet ri Nets ,
Chicago, 1993, M. Ajmone Marsan , eds, pp.
451-472 , Springer-Verlag, Berlin.

