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1. Introduction

1.1. Operadic generalization of Lie and Jordan algebras

Lie and Jordan algebras are defined by the polynomial identities of arity n ≤ 3, 4
satisfied by the (anti)commutator in every associative algebra. Lie dialgebras (Leibniz 
algebras) were introduced in the early 1990s [36] together with diassociative algebras and 
the (anti)dicommutator; Jordan dialgebras (quasi-Jordan algebras) appeared 10 years 
later [50]. Dendriform algebras, governed by the Koszul dual of the diassociative operad, 
appeared in the late 1990s [41]; in this case, the (anti)dicommutator produces pre-Lie [25,
51] and pre-Jordan [32] algebras. These constructions stimulated the theory of algebraic 
operads and were reformulated in terms of Manin white and black products. It was then 
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a short step to triassociative and tridendriform algebras, and their Lie analogues: Lie 
trialgebras [20] and post-Lie algebras [48].

In this paper, we investigate the Jordan analogues, and define Jordan trialgebras and 
post-Jordan algebras.1 For X ∈ {Lie, Jordan}, X-trialgebras combine X-algebras and 
X-dialgebras in one structure; post-X algebras combine X-algebras and pre-X algebras 
in one structure. Our methods are primarily computational; we determine the multilinear 
identities of arity ≤ 6 satisfied by the anticommutator and antidicommutator in every 
triassociative and tridendriform algebra. We use combinatorics of trees, linear algebra 
over finite fields, and representation theory of symmetric groups. The identities form the 
nullspace of what we call the expansion matrix, which represents (with respect to ordered 
monomial bases) a morphism from an operad of Jordan type to one of associative type. 
The defining identities have arity ≤ 4 in both cases, and we verify that there are no new 
identities of arity 5 or 6.

1.2. Overview of problems and methods

Table 1 displays the generalizations of associativity underlying our results; the number 
of operations increases from top to bottom. The left column contains operads obtained 
from associative operations (di- and triassociative); the right column contains their 
Koszul duals (dendriform and tridendriform). These operads are nonsymmetric (but 
will be symmetrized); each of them leads to generalizations of Lie and Jordan algebras, 
defined by the polynomial identities of arity ≤ 3, 4 satisfied by the analogues of the 
(anti)commutator and (anti)dicommutator. All the operads we consider are generated 
by binary operations, with or without symmetry.

Our results in this paper depend on three symmetric operads: ΣTriAss, ΣTriDend
and BW; the first two form a Koszul dual pair:

• The symmetric triassociative operad ΣTriAss (the symmetrization of TriAss) which 
is generated by three binary operations �, ⊥, � with no symmetry, satisfying seven 
quadratic relations; see Definition 3.1.

• The symmetric tridendriform operad ΣTriDend (the symmetrization of TriDend) 
which is generated by three binary operations ≺, �, � with no symmetry, satisfying 
11 quadratic relations; see Definition 3.1.

• The free symmetric operad BW generated by two binary operations, one commuta-
tive ◦ and one noncommutative (with no symmetry) •. The operads governing Jordan 
trialgebras and post-Jordan algebras are quotients of BW.

1 One choice of defining relations for post-Jordan algebras appears in Appendix A.5 of the arXiv version 
of Bai et al. [3], where these relations define the trisuccessor of the Jordan operad. That Appendix does 
not appear in the published version of the paper, and in any case, our methods to obtain them are entirely 
different.
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Table 1
Operadic generalizations of associative, Lie, and Jordan algebras.

ASSOCIATIVE ALGEBRAS Self-dual
Operation ab Relation (ab)c ≡ a(bc)

Lie bracket [a, b] = ab − ba Symmetry ab ≡ ba, relation (ab)c ≡ a(bc)
Lie algebras, equation (1) Commutative associative algebras

Jordan product a ◦ b = ab + ba
Jordan algebras, equation (2) No dual, operad is cubic not quadratic

DIASSOCIATIVE ALGEBRAS DENDRIFORM ALGEBRAS
Operations a � b, a � b, Definition 2.9 Operations a ≺ b, a � b, Definition 2.9

Leibniz bracket {a, b} = a � b − b � a
Leibniz algebras, Definition 2.12 Zinbiel algebras, Definition 2.12

Pre-Lie product {a, b} = a ≺ b − b � a
Perm algebras, Definition 2.16 Pre-Lie algebras, Definition 2.16

Jordan diproduct a ◦ b = a � b + b � a
Jordan dialgebras, Definition 2.18 No dual, operad is cubic not quadratic

Pre-Jordan product a • b = a ≺ b + b � a
No dual, operad is cubic not quadratic Pre-Jordan algebras, Definition 2.18

TRIASSOCIATIVE ALGEBRAS TRIDENDRIFORM ALGEBRAS
Operations a � b, a ⊥ b, a � b Operations a ≺ b, a � b, a � b
Definition 3.1 Definition 3.1

Lie bracket [a, b] = a ⊥ b − b ⊥ a
Leibniz bracket {a, b} = a � b − b � a Commutative tridendriform algebras,
Lie trialgebras, Definition 3.5 Definition 3.5

Lie bracket [a, b] = a � b − b � a
Commutative triassociative algebras, Pre-Lie product {a, b} = a ≺ b − b � a
Definition 3.9 Post-Lie algebras, Definition 3.9

Jordan product a ◦ b = a ⊥ b + b ⊥ a
Jordan diproduct a • b = a � b + b � a
Jordan trialgebras, Section 4 No dual, operad is cubic not quadratic

Jordan product a ◦ b = a � b + b � a
Pre-Jordan product a • b = a ≺ b + b � a

No dual, operad is cubic not quadratic Post-Jordan algebras, Section 6

• The expansion map E(n) : BW(n) → ΣTriAss(n) is defined by a ◦ b �→ a ⊥ b + b ⊥ a

and a • b �→ a � b + b � a; its kernel contains the defining identities for Jordan 
trialgebras.

• The expansion map E(n) : BW(n) → ΣTriDend(n) is defined by a ◦ b �→ a � b + b � a

and a • b �→ a ≺ b + b � a; its kernel contains the defining identities for post-Jordan 
algebras.

The standard monograph on the theory of algebraic operads is Loday & Vallette [43].
Most of our results depend on linear algebraic and representation theoretic computa-

tions performed with Maple using arithmetic over Z or Q or a finite field. To save time 
and memory we usually work over a finite prime field Fp, where p is greater than the 
arity n of the identities being considered; this guarantees that the group algebra FpSn

is semisimple. In arity n, both the domain and the codomain of the expansion map are 
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Sn-modules, and so if p > n then semisimplicity of FpSn guarantees that it is isomorphic 
to the direct sum of simple two-sided ideals each of them isomorphic to a full matrix alge-
bra. The coefficients in the formulas for the matrix units in FpSn as linear combinations 
of permutations have denominators which are divisors of n! and hence are well-defined 
modulo p. We are left with the problem of reconstructing correct rational results from 
modular calculations, but in this respect we had very good luck: all matrix entries are in 
{0, ±1}. Using the representation theory of the symmetric group allows us to decompose 
a large matrix into much smaller pieces.

We make some brief comments on terminology and notation. The number of arguments 
in a monomial is often called its degree; here we use arity: for algebraic operads, degree
refers to (homological) degree in a differential graded vector space. From the homological 
point of view, all our vector spaces are graded but concentrated in degree 0 over a base 
field F of characteristic 0, unless otherwise stated. We write VectF for the category of 
vector spaces over F. If X is a set then FX is the vector space2 with basis X. If O is a 
nonsymmetric operad then ΣO denotes its symmetrization.

1.3. Associative, Lie, and Jordan algebras

An associative algebra is a vector space A with a bilinear product m : A × A → A, 
(a, b) �→ ab, satisfying the relation (ab)c − a(bc) ≡ 0 which is nonsymmetric (hence 
multilinear): every term has the identity permutation of the arguments. The symbol ≡
indicates that equality holds for all values of the arguments.

In every associative algebra, the commutator (Lie bracket) [a, b] = ab − ba is antisym-
metric and satisfies the Jacobi identity; these properties define Lie algebras:

[a, a] ≡ 0, [[a, b], c] + [[b, c], a] + [[c, a], b] ≡ 0. (1)

In every associative algebra, the anticommutator (Jordan product) a ◦ b = ab + ba is 
symmetric and satisfies the Jordan identity; these properties define Jordan algebras:

a ◦ b ≡ b ◦ a, ((a ◦ a) ◦ b) ◦ a ≡ (a ◦ a) ◦ (b ◦ a). (2)

Since symmetric operads require multilinear operations, in order to define the Jordan 
operad, we must linearize the Jordan identity of arity 4. For a general discussion of lin-
earization in nonassociative algebras, see [53, Chapter 1]. Since the Jordan identity is 
already linear in b, we replace the three a’s on each side by all permutations of a, c, d; 
since ◦ is commutative and both sides have a ◦ a as left factor, we require only cyclic 
permutations (up to a multiple of 2 so the two identities are not equivalent in charac-
teristic 2):

2 From a categorical perspective, the functor X 	→ FX is left adjoint to the forgetful functor VectF →
Sets; that is, FX is the free vector space over F generated by X.
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((a ◦ c) ◦ b) ◦ d + ((c ◦ d) ◦ b) ◦ a + ((d ◦ a) ◦ b) ◦ c

≡ (a ◦ c) ◦ (b ◦ d) + (c ◦ d) ◦ (b ◦ a) + (d ◦ a) ◦ (b ◦ c).
(3)

This is the linearized form of the Jordan identity.
Let L be a Lie algebra with bracket [−, −], let J be a Jordan algebra with product a ◦b, 

and let X be either L or J . Then X has a universal associative enveloping algebra U(X)
in the following sense: if f : X → A is a linear map to an associative algebra A then there 
is a unique algebra morphism g : U(X) → A such that g ◦ h = f where h : X → U(X)
is the natural map arising as follows. If T (V ) is the tensor algebra with product a · b of 
the vector space V , then U(X) ∼= T (X)/I(X) for the following (two-sided) ideals:

I(L) = 〈 a · b− b · a− [a, b] | a, b ∈ L 〉, I(J) = 〈 a · b + b · a− a ◦ b | a, b ∈ J 〉.

For every Lie algebra L, h is injective; this follows from the Poincaré–Birkhoff–Witt 
theorem and implies that every polynomial identity satisfied by the commutator in every 
associative algebra is a consequence of skewsymmetry and the Jacobi identity. The same 
does not hold for Jordan algebras. A Jordan algebra J is special if it is isomorphic to 
a subalgebra of A+ for some associative algebra A, where A+ is the same vector space 
with the nonassociative product a ◦ b = ab + ba. For a Jordan algebra J , the natural 
map h : J → U(J) is injective if and only if J is special. There are polynomial identities 
satisfied by every special Jordan algebra which are not consequences of symmetry and 
the Jordan identity [27]; the smallest examples are the so-called Glennie identities and 
occur in arity 8. Quotients of special Jordan algebras are not necessarily special [19], so 
special Jordan algebras do not form a variety defined by polynomial identities.

1.4. Results of this paper in context

In later sections, we include concise reviews of analogous structures existing in the 
literature, and their interrelations, in order to identify the gaps which motivated the 
writing of this paper. Table 2 shows the algebraic operads with which we are concerned. 
Our results provide definitions of Jordan trialgebras and post-Jordan algebras which are 
indicated by boxes. (A somewhat similar diagram appears in the lecture notes [34].) The 
dotted straight (resp. curved) up-down arrows indicate the white (resp. black) Manin 
products with the operads Perm and PreLie (resp. ComTriAss and PostLie); see §2.6. 
These procedures may also be described as duplicators and disuccessors (resp. tripli-
cators and trisuccessors); see §4.4, §6.3. Reversing an arrow corresponds to realizing a 
simpler structure as a subalgebra or quotient of a more complex structure. The left–right 
arrows represent morphisms between operads which replace the (generalized) associative 
product by one or two (generalized) Lie brackets or Jordan products. We use the symbols 
[a, b] and/or {a, b} for the Lie case, a ◦ b and/or a • b for Jordan. Reversing a left–right 
arrow represents constructing the universal enveloping algebra of the corresponding Lie 
or Jordan structure. All these operads are binary: the generating operations are bilinear. 
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Table 2
Generalizations of the Lie, associative, and Jordan operads.

In columns 1, 2 the operads are quadratic: the terms of the relations contain two oper-
ations. In column 3, the operads are cubic: the terms contain three operations. Koszul 
duality for quadratic operads can be applied to columns 1, 2 but not 3.

2. Preliminaries on algebraic operads

2.1. Free nonsymmetric binary operads

Let Ω = {�1, . . . , �m} be a finite ordered set of binary operations; let Om be the free 
nonsymmetric operad in VectF generated by FΩ. The underlying vector space of Om

is the direct sum over n ≥ 1 of homogeneous components Om(n) of arity n. We never 
add elements of different arities, so we could replace the direct sum by a disjoint union 
(but then we would leave VectF). The following construction of Om also makes sense 
in the category Set of sets. We define sets X of operations of arity n and then consider 
the vector spaces FX. Disjoint union (resp. direct product) of sets corresponds to direct 
sum (resp. tensor product) of vector spaces. The operad Om in Set may be identified 
with the free magma on one generator with m binary operations.

Definition 2.1. For n ≥ 1, let Pn = {p1, . . . , pc(n)} be the association types of arity n: 
the distinct placements of balanced pairs of parentheses for a single binary operation 
in a sequence of n arguments. If we omit the outermost pair then for n ≥ 2 there are 
n−2 pairs. The size of Pn is the Catalan number c(n) = (2n−2)!/(n!(n−1)!). We write 
P =

⋃
n≥1 Pn; the set P is a basis for O1, the free nonsymmetric operad on one binary 

operation.

Example 2.2. We write x for the arguments and juxtaposition for the operation. For 
n = 1 we have only x, for n = 2 only xx, and for n = 3 only (xx)x, x(xx). For n = 4, 5
we have:
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n = 4 ((xx)x)x, (x(xx))x, (xx)(xx), x((xx)x), x(x(xx)).
n = 5 (((xx)x)x)x, ((x(xx))x)x, ((xx)(xx))x, (x((xx)x))x, (x(x(xx)))x,

((xx)x)(xx), (x(xx))(xx), (xx)((xx)x), (xx)(x(xx)),
x(((xx)x)x), x((x(xx))x), x((xx)(xx)), x(x((xx)x)), x(x(x(xx))).

Definition 2.3. The revdeglex total order ≺ on P is defined as follows. If f ∈ Pn, f ′ ∈ Pn′ , 
n < n′ then f ≺ f ′. If f, f ′ ∈ Pn then we proceed by induction. If n ≤ 2 then |Pn| = 1
and f = f ′. If n ≥ 3 then there are unique factorizations f = gh, f ′ = g′h′; we set f ≺ f ′

if and only if either (i) h ≺ h′, or (ii) h = h′ and g ≺ g′. (This total order was used in 
Example 2.2.)

If m ≥ 2 then we must distinguish the m operation symbols in Ω. An element of Pn

contains n−1 multiplications ordered from left to right, and each may be replaced by 
any element of Ω. We identify the mn−1 possibilities with Ωn−1 whose lex order ≺Ωn−1 is 
induced by Ω: if α, β ∈ Ωn−1 then α ≺Ωn−1 β if and only if αi ≺Ω βi where i is minimal 
for αi �= βi.

Definition 2.4. Operations are independent of association types, and so we identify a basis 
of Om(n) with P (m)

n = Pn ×Ωn−1. The elements of P (m)
n are the skeletons of arity n; each 

skeleton is an n-tuple ( pi; �j1 , . . . , �jn−1 ) which represents the basis element of Om(n)
with association type pi and operations �j1 , . . . , �jn−1 from left to right. The total orders 
on Pn and Ωn−1 extend to P (m)

n : for p, p′ ∈ Pn and α, α′ ∈ Ωn−1 we have (p, α) ≺ (p′, α′)
if and only if either p ≺P p′, or p = p′, α ≺Ωn−1 α′.

Definition 2.5. We denote as usual the substitution maps in Om(n) by a circle with a 
subscript, ◦i : Om(n) ⊗Om(n′) → Om(n+n′−1) for 1 ≤ i ≤ n. For skeletons f ∈ P

(m)
n ⊆

Om(n) and f ′ ∈ P
(m)
n′ ⊆ Om(n′), the skeleton

f ◦i f ′ ∈ P
(m)
n+n′−1 ⊆ Om(n+n′−1),

is obtained by substituting f ′ for the i-th argument of f . These definitions extend bilin-
early to Om, and the resulting substitutions generate all compositions in Om.

Definition 2.6. We may now state precisely that the free nonsymmetric operad with 
m binary operations Ω with no symmetry is the direct sum Om of the finite dimen-
sional vector spaces Om(n) with the compositions generated by the substitutions ◦i of 
Definition 2.5.

2.2. Free symmetric binary operads

The free nonsymmetric operad Om has a basis of skeletons containing parentheses 
and operation symbols; arguments are denoted by x.
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Definition 2.7. A multilinear monomial of arity n is a skeleton s ∈ P
(m)
n in which the 

argument symbols have been replaced by a permutation of x1, . . . , xn. We identify the set 
of such monomials with W (m)

n = P
(m)
n ×Sn where Sn is the symmetric group, and define 

ΣOm(n) to be the vector space with basis W (m)
n on which there is a right Sn-action. 

The direct sum ΣOm of the homogeneous components ΣOm(n) is the symmetrization
of Om. In fact, ΣOm is the (underlying vector space of the) free symmetric operad on 
m binary operations with no symmetry. Definition 2.5 shows how to compose skeletons, 
but in ΣOm we also need to compose monomials: if α, α′ are monomials of arities n, n′

with arguments x1, . . . , xn and x1, . . . , xn′ , then α ◦i α′ (1 ≤ i ≤ n) is a monomial of 
arity n+n′−1 with arguments x1, . . . , xn+n′−1. For further information, see §5.3.4 of [43]
on the partial definition of an operad; for a more recent discussion, see §5.2 of [10]. 
A regular operad is a symmetric operad (free or not) which is the symmetrization of a 
nonsymmetric operad.

2.3. Identical relations and operad ideals

Let P be a free symmetric operad generated by P (2); that is, binary operations with or 
without symmetry. The symmetries of the operations are determined by the S2-module 
structure of P (2), which is the direct sum of S2-modules isomorphic to either the unit 
module [+] (representing commutativity), the sign module [−] (anticommutativity), or 
the group algebra FSn (no symmetry). (Since FSn

∼= [+] ⊕ [−], an operation with no 
symmetry can be polarized into two operations, one commutative and one anticommu-
tative, but this will not concern us.) We impose an S3-module of quadratic relations 
R ⊆ P (3) on the operations generating P .

Definition 2.8. The operad ideal I = 〈R〉 generated by the relations R is the smallest sum ⊕
n≥1 I(n) of Sn-submodules I(n) ⊆ P (n) which is closed under arbitrary compositions 

with elements of P . That is, if f ∈ I(r) and g ∈ P (s) then f ◦i g ∈ I(r+s−1) for 
1 ≤ i ≤ r, and g ◦j f ∈ I(r+s−1) for 1 ≤ j ≤ s. The quotient operad P/I has 
homogeneous components P (n)/I(n) with compositions defined in the natural way.

For given relations R, we construct a set of Sn-module generators of I(n) for all n. 
The S3-module R = I(3) is generated by a finite set of relations. Assume that we have 
already constructed a finite set of Sn-module generators of I(n). If f is such a generator 
then we increment the arity by composing f(x1, . . . , xn) with some g(x1, x2) ∈ P (2). By 
multilinearity, we may assume that g(x1, x2) = x1 � x2 where � is one of the generating 
operations. There are n possibilities for f ◦i g and two for g ◦j f ; since every relation 
must be multilinear, we change subscripts of some arguments:⎧⎪⎨⎪⎩

f ◦i g = f(x1, . . . , xn) ◦i g(x1, x2) = f(x1, . . . , xi−1, xi � xn+1, xi+1, . . . , xn)

g ◦j f = g(x1, x2) ◦j f(x1, . . . , xn) =
{
f(x1, . . . , xn) � xn+1 (j = 1)
xn+1 � f(x1, . . . , xn) (j = 2)

(4)
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As f runs over the set of Sn-module generators of I(n), the elements (4) form a set of 
Sn+1-module generators for I(n+1).

2.4. Koszul duality for quadratic operads

For any category of algebras governed by a quadratic operad, one can construct its 
Koszul dual operad, which governs another category of algebras. For associative algebras, 
the nonsymmetric operad is self-dual: Assoc! ∼= Assoc. The symmetric operads ComAss
for commutative associative algebras and Lie for Lie algebras form a Koszul dual pair: 
ComAss! = Lie, Lie! = ComAss. (If P is a quadratic operad then (P !)! ∼= P .) If we gener-
alize associativity to more than one binary operation (diassociative, triassociative, . . . ), 
the quadratic operads are not self-dual, and define further generalizations of associativity 
(dendriform, tridendriform, . . . ).

In his lecture notes on dialgebras, Loday showed that for an operad (symmetric or 
nonsymmetric) generated by binary operations with no symmetry, the relations defining 
the Koszul dual operad can be obtained from the relations of the original operad using 
elementary linear algebra; see Theorem 8.5 and Proposition B.3 of [39], and the more 
explicit algorithm displayed in Table 2 of [14]. In this paper we give one example, which 
extends the algorithm to operations with symmetry; see Lemma 3.7.

2.5. Diassociative and dendriform algebras

Definition 2.9. ([37,39,41]) A vector space with bilinear operations �, � is a diassociative 
algebra if it satisfies these relations:

• left and right associativity: (a � b) � c ≡ a � (b � c), (a � b) � c ≡ a � (b � c),
• inner associativity: (a � b) � c ≡ a � (b � c),
• left and right bar identities: (a � b) � c ≡ (a � b) � c, a � (b � c) ≡ a � (b � c).

A vector space with bilinear operations ≺, � is a dendriform algebra if it satisfies:

• inner associativity: (a � b) ≺ c ≡ a � (b ≺ c),
• left–right symmetrization: (a ≺ b) ≺ c ≡ a ≺ (b ≺ c) + a ≺ (b � c),
• right–left symmetrization: a � (b � c) ≡ (a � b) � c + (a ≺ b) � c.

Remark 2.10. The diassociative (but not dendriform) relations have the form m1 ≡ m2

for monomials m1, m2. Dendriform algebras are related to Rota–Baxter operators [1,23].

Lemma 2.11. ([39,41]) The operation a · b = a ≺ b + a � b is associative in every 
dendriform algebra. The operads DiAss (ΣDiAss) and Dend (ΣDend) form a Koszul dual 
pair.
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Definition 2.12. ([6,36,38]) A vector space with a bilinear operation {a, b} is a left, re-
spectively right, Leibniz algebra if it satisfies the relation

{a, {b, c}} ≡ {{a, b}, c} + {b, {a, c}}, resp. {{a, b}, c} ≡ {{a, c}, b} + {a, {b, c}}.

A vector space with a bilinear operation a ≺ b (respectively a � b) is a left, respectively 
right, Zinbiel algebra if it satisfies the relation

(a ≺ b) ≺ c ≡ a ≺ (b ≺ c) + a ≺ (c ≺ b), resp. a � (b � c) ≡ (a � b) � c + (b � a) � c.

An algebra is right Leibniz (or Zinbiel) if and only if its opposite is left Leibniz (or 
Zinbiel).

Lemma 2.13. ([37–39]) The operation a � b − b � a satisfies the left Leibniz identity in 
every diassociative algebra. In every Zinbiel algebra the anticommutator a ≺ b + b ≺ a

is commutative and associative. Every Zinbiel algebra becomes a dendriform algebra if 
we define a � b = b ≺ a; conversely, every dendriform algebra which is commutative 
(a ≺ b ≡ b � a) is a Zinbiel algebra. The operads Leib and Zinb form a Koszul dual 
pair.

Remark 2.14. The operation {a, b} = a � b − b � a defines a functor between the 
categories of diassociative and Leibniz algebras; the left adjoint sends a Leibniz algebra 
to its universal enveloping diassociative algebra; see [2,7,28,39].

Problem 2.15. Determine the polynomial identities satisfied by (1) the dicommutator 
and antidicommutator in Leibniz algebras; (2) the dicommutator in Zinbiel algebras.

Definition 2.16. ([15,17,25,51]) A vector space with a bilinear operation {a, b} is a (left)
pre-Lie (or left-symmetric) algebra if it satisfies the relation (a, b, c) ≡ (b, a, c) where the 
associator is (a, b, c) = {{a, b}, c} −{a, {b, c}}. A (right) perm algebra is associative and
right-commutative: abc ≡ acb.

Lemma 2.17. ([5,16,37,39]) In every dendriform algebra the operation a ≺ b − b � a

satisfies the pre-Lie identity. The commutator in a pre-Lie algebra satisfies (anticom-
mutativity and) the Jacobi identity. Every identity for the anticommutator in a pre-Lie 
algebra is a consequence of commutativity. The operads PreLie and Perm form a Koszul 
dual pair.

Definition 2.18. ([9,12,32,33,50]) A (right) Jordan dialgebra is a vector space with a 
bilinear product a • b satisfying the following three relations (one of arity 3 and two of 
arity 4) where (a, b, c) = (a • b) • c − a • (b • c) is the associator:

right commutativity a • (b • c) ≡ a • (c • b)
right quasi-Jordan identity (b • a) • (a • a) ≡ (b • (a • a)) • a
right associator-derivation identity (b, a • a, c) ≡ 2(b, a, c) • a
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A (right) pre-Jordan algebra is a vector space with a bilinear product a • b satisfying 
the following two relations of arity 4, where we write for short a · b = a • b + b • a:

(a · b) • (c • d) + (b · c) • (a • d) + (c · a) • (b • d)
≡ c • ((a · b) • d) + a • ((b · c) • d) + b • ((c · a) • d),

a • (b • (c • d)) + c • (b • (a • d)) + ((a · c) · b) • d
≡ c • ((a · b) • d) + a • ((b · c) • d) + b • ((c · a) • d).

Lemma 2.19. ([9,12,32]) In every diassociative algebra the bilinear operation a � b +b � a

satisfies the identities defining Jordan dialgebras. In every dendriform algebra the bilinear 
operation a ≺ b + b � a satisfies the identities defining pre-Jordan algebras.

2.6. Manin black and white products

We can interpret the vertical arrows in Table 2 using Manin white and black products 
of operads; for details see [4,26,30,43,49]. For these products we use the symbols � and �
following [43, §8.8].

Starting with ΣAssoc in the center of Table 2, we compute the white product 
ΣDiAss ∼= Perm� ΣAssoc to move up in column 2. Similarly, we obtain the Leib-
niz operad Leib ∼= Perm� Lie from the operad Lie, and the di-Jordan operad 
DiJor ∼= Perm� Jor from the Jordan operad Jor. Taking the white product with 
Perm is sometimes called duplication [29,46]; this process has also been called the KP 
algorithm [11]. Starting again from ΣAssoc, we move down by computing the black 
product ΣDend ∼= PreLie�ΣAssoc. Similarly, we obtain PreLie ∼= PreLie� Lie and 
PreJor ∼= PreLie� Jor. Taking the black product with PreLie is sometimes called 
computing the disuccessor [3].

For any finitely generated binary quadratic operads P and Q, Koszul duality inter-
changes Manin black and white products: we have (P �Q)! ∼= P ! �Q!. Therefore, DiAss
and Dend are Koszul dual:

ΣDiAss! ∼= (ΣAssoc� Perm)! ∼= ΣAssoc! � Perm! ∼= ΣAssoc� PreLie ∼= ΣDend.

For the Lie column, the operads Leib and PreLie are not a dual pair, but we have

Leib ∼= Perm� Lie = PreLie! � ComAss! ∼= (PreLie� ComAss)! = Zinb!,

PreLie ∼= PreLie� Lie ∼= Perm! � ComAss! ∼= (Perm� ComAss)! ∼= Perm!.

For the Jordan column, if the Jordan operad had a Koszul dual, then we would obtain:

DiJor ∼= Perm� Jor = PreLie! � (Jor!)! ∼= (PreLie� Jor!)!,
PreJor ∼= PreLie� Jor ∼= Perm! � (Jor!)! ∼= (Perm� Jor!)!.

See §7.1 for one way in which a Koszul dual for the Jordan operad could be defined.
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Similar considerations apply to the top and bottom rows of Table 2. Going from the 
middle to the top corresponds to taking the triplicator of the operad [29,46]; this is the 
white product with the operad ComTriAss (Definition 3.1):

TriLie ∼= ComTriAss� Lie,

ΣTriAss ∼= ComTriAss�ΣAssoc,
TriJor ∼= ComTriAss� Jor.

Going from the middle to the bottom represents taking the trisuccessor of the operad 
[3]: the black product with the operad PostLie (Definition 3.9). The operads ΣTriAss
and ΣTriDend at top and bottom of the associative column are Koszul dual. For the Lie 
column,

TriLie ∼= ComTriAss� Lie ∼= PostLie! � ComAss!

∼= (PostLie� ComAss)! ∼= ComTriDend!,

PostLie ∼= PostLie� Lie ∼= ComTriAss! � ComAss!

∼= (ComTriAss� ComAss)! ∼= ComTriAss!.

3. Triassociative and tridendriform algebras

Definition 3.1. ([42]) A triassociative algebra is a vector space with bilinear operations 
�, ⊥, � satisfying these relations where ∗ ∈ {�, ⊥, �}:

• left, middle, and right associativity: (a ∗ b) ∗ c ≡ a ∗ (b ∗ c),
• bar identities: a � (b � c) ≡ a � (b ∗ c) and (a � b) � c ≡ (a ∗ b) � c,
• inner associativity: if (∗1, ∗2) ∈ {(�, �), (�, ⊥), (⊥, �)} then (a ∗1 b) ∗2 c ≡ a ∗1 (b ∗2 c),
• Loday–Ronco relation: (a � b) ⊥ c ≡ a ⊥ (b � c).

A tridendriform algebra is a vector space with bilinear operations ≺, �, � satisfying:

• middle associativity: (a � b) � c ≡ a � (b � c),
• left to right and right to left expansions:

(a ≺ b) ≺ c ≡ a ≺ (b ≺ c) + a ≺ (b � c) + a ≺ (b � c),
a � (b � c) ≡ (a � b) � c + (a � b) � c + (a ≺ b) � c,

• inner associativity: if (∗1, ∗2) ∈{(�, ≺), (�, �), (�, ≺)} then (a ∗1 b) ∗2 c ≡ a ∗1 (b ∗2 c),
• Loday–Ronco relation: (a ≺ b) � c ≡ a � (b � c).

Definition 3.2. We write BBB for the free nonsymmetric operad generated by three binary 
operations; the ordered set Ω of operations will be either {�, ⊥, �} or {≺, �, �}.

Example 3.3. An ordered basis for BBB(3) consists of the 18 monomials (a ∗1 b) ∗2 c and 
a ∗1 (b ∗2 c) where the pairs of operations (∗1, ∗2) ∈ Ω2 are in lex order.
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Lemma 3.4. ([42]) The operation a · b = a ≺ b + a � b + a � b is associative in every 
tridendriform algebra. The operads TriAss and TriDend are a Koszul dual pair.

Definition 3.5. ([20,40,45,46]) A vector space with bilinear operations ≺, � is a commu-
tative tridendriform algebra if it satisfies these relations:

• middle commutativity and associativity: a � b ≡ b � a, (a � b) � c ≡ a � (b � c),
• middle-left associativity: (a � b) ≺ c ≡ a � (b ≺ c),
• left to right expansion: (a ≺ b) ≺ c ≡ a ≺ (b ≺ c) + a ≺ (b � c) + a ≺ (c ≺ b).

A vector space L with bilinear operations [−, −] and {−, −} is a right (respectively left)
Lie trialgebra if:

• (L, [−, −]) is a Lie algebra,
• (L, {−, −}) is a right (respectively left) Leibniz algebra (Definition 2.12), and
• the operations satisfy {a, [b, c]} ≡ {a, {b, c}} and {[a, b], c} ≡ [{a, c}, b] + [a, {b, c}].

Definition 3.6. We write BW for the free symmetric operad generated by two binary op-
erations, one commutative and one noncommutative. In the next proof, we denote these 
operations by � and ≺, but later we will use the symbols ◦ and •.

Although the next result is well-known, we include a different proof using compu-
tational linear algebra. We do this since we will need to perform similar computations 
later, which involve much larger matrices which cannot be included in the paper. The 
following proof is a relatively small example, for which the matrices may be explicitly 
displayed.

Lemma 3.7. ([20,45,46]) In every triassociative algebra the operations [a, b] = a ⊥ b −
b ⊥ a and {a, b} = a � b − b � a satisfy the identities defining (right) Lie trialgebras. 
The operads TriLie for Lie trialgebras and ComTriDend for commutative tridendriform 
algebras are a Koszul dual pair.

Proof of the second statement in Lemma 3.7. This proof (and that of Lemma 3.4) can 
be reduced to a linear algebra calculation. Lemma 3.4 dealt with nonsymmetric operads, 
but now we have symmetric operads, so for this proof we must include all permutations 
of the arguments. An ordered basis of BW(3) consists of 27 monomials:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(a ≺ b) ≺ c, (a ≺ c) ≺ b, (b ≺ a) ≺ c, (b ≺ c) ≺ a, (c ≺ a) ≺ b, (c ≺ b) ≺ a,

(a ≺ b) � c, (a ≺ c) � b, (b ≺ a) � c, (b ≺ c) � a, (c ≺ a) � b, (c ≺ b) � a,

(a � b) ≺ c, (a � c) ≺ b, (b � c) ≺ a, (a � b) � c, (a � c) � b, (b � c) � a,

a ≺ (b ≺ c), a ≺ (c ≺ b), b ≺ (a ≺ c), b ≺ (c ≺ a), c ≺ (a ≺ b), c ≺ (b ≺ a),
a ≺ (b � c), b ≺ (a � c), c ≺ (a � b).

(5)
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We have already accounted for the commutativity of �. Each (arity 3) relation in Defini-
tion 3.5 has six permutations. Let R be the matrix whose rows are the coefficient vectors 
of these 18 relations with respect to the ordered basis (5).

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . . . . . . . . . . . . . . 1 . −1 . . . . . . . . .

. . . . . . . . . . . . . . . . 1 −1 . . . . . . . . .

. . . . . . . . . . . . . . . 1 −1 . . . . . . . . . .

. . . . . . . . . . . . . . . . −1 1 . . . . . . . . .

. . . . . . . . . . . . . . . −1 1 . . . . . . . . . .

. . . . . . . . . . . . . . . −1 . 1 . . . . . . . . .

. . . . . . . . . −1 . . 1 . . . . . . . . . . . . . .

. . . . . . . . . . . −1 . 1 . . . . . . . . . . . . .

. . . . . . . −1 . . . . 1 . . . . . . . . . . . . . .

. . . . . . . . . . −1 . . . 1 . . . . . . . . . . . .

. . . . . . −1 . . . . . . 1 . . . . . . . . . . . . .

. . . . . . . . −1 . . . . . 1 . . . . . . . . . . . .
1 . . . . . . . . . . . . . . . . . −1 −1 . . . . −1 . .
. 1 . . . . . . . . . . . . . . . . −1 −1 . . . . −1 . .
. . 1 . . . . . . . . . . . . . . . . . −1 −1 . . . −1 .
. . . 1 . . . . . . . . . . . . . . . . −1 −1 . . . −1 .
. . . . 1 . . . . . . . . . . . . . . . . . −1 −1 . . −1
. . . . . 1 . . . . . . . . . . . . . . . . −1 −1 . . −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The row space of R is the S3-submodule of BW(3) generated by the commutative triden-
driform relations. For 1 ≤ i ≤ 27 let σi ∈ S3 be the permutation of the arguments in 
the i-th monomial from (5). Let D be the diagonal matrix whose (i, i) entry is sgn(σi)
if 1 ≤ i ≤ 18 (association type 1) or −sgn(σi) if 19 ≤ i ≤ 27 (association type 2). (This 
generalizes [39] to an operad with a commutative operation.) We set R′ = RD, compute 
RCF(R′), and obtain the matrix S in RCF whose row space is the nullspace of R′:

S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 . . . . . . . . . . . . . . . . . . . . . . −1 . .

. . 1 −1 . . . . . . . . . . . . . . . . . . . . . −1 .

. . . . 1 −1 . . . . . . . . . . . . . . . . . . . . −1

. . . . . . 1 . . . . −1 . −1 . . . . . . . . . . . . .

. . . . . . . 1 . −1 . . −1 . . . . . . . . . . . . . .

. . . . . . . . 1 . −1 . . . −1 . . . . . . . . . . . .

. . . . . . . . . . . . . . . 1 −1 1 . . . . . . . . .

. . . . . . . . . . . . . . . . . . 1 . . . . . −1 . .

. . . . . . . . . . . . . . . . . . . 1 . . . . 1 . .

. . . . . . . . . . . . . . . . . . . . 1 . . . . −1 .

. . . . . . . . . . . . . . . . . . . . . 1 . . . 1 .

. . . . . . . . . . . . . . . . . . . . . . 1 . . . −1

. . . . . . . . . . . . . . . . . . . . . . . 1 . . 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The rows of S are the coefficient vectors of the relations for Lie trialgebras in Defini-

tion 3.5. We replace the symbols �, ≺ in (5) by [−, −], {−, −}; since � is commutative, 
its dual [−, −] is anticommutative. The last 6 rows of S are permutations of {a, [b, c]} ≡
{a, {b, c}}. Row 7 is the Jacobi identity for [−, −]. Rows 4–6 are permutations of the 
statement that {−, −} is a derivation of [−, −], namely {[a, b], c} ≡ [{a, c}, b] +[a, {b, c}]. 
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Applying {a, [b, c]} ≡ {a, {b, c}} to rows 1–3 gives permutations of the Leibniz identity 
for {−, −}. �
Conjecture 3.8. The operations in Lemma 3.7 define a functor F : TriAss → TriLie. 
We believe that F has a left adjoint U which sends a Lie trialgebra L to its universal 
enveloping triassociative algebra U(L), and that the natural map from L to U(L) is 
injective.

Definition 3.9. ([40,48]) A vector space C with bilinear operations �, ⊥ is a commutative 
triassociative algebra if it satisfies these conditions:

• (C, ⊥) is a commutative associative algebra, and (C, �) is a right perm algebra,
• inner associativity: (a ⊥ b) � c ≡ a ⊥ (b � c),
• right bar identity: a � (b ⊥ c) ≡ a � (b � c).

A vector space L with bilinear operations [−, −] and {−, −} is a (right) post-Lie algebra
if it satisfies these conditions:

• (L, [−, −]) is a Lie algebra,
• {−, −} is a right derivation of [−, −], that is, {[a, b], c} ≡ [{a, c}, b] + [a, {b, c}],
• the relation [{{a, b}, c} − {a, {b, c}}] −

[
{{a, c}, b} − {a, {c, b}}

]
≡ {a, [b, c]}.

Lemma 3.10. ([48]) In every tridendriform algebra the operations [a, b] = a �b −b �a and 
{a, b} = a ≺ b −b � a satisfy the identities defining (right) post-Lie algebras. The operads 
PostLie for post-Lie algebras and ComTriAss for commutative triassociative algebras are 
a Koszul dual pair.

Conjecture 3.11. The operations in Lemma 3.10 define a functor F : TriDend →
PostLie. We believe that F has a left adjoint U which sends a post-Lie algebra L to 
its universal enveloping tridendriform algebra U(L), and that the natural map from L to 
U(L) is injective.

4. Jordan trialgebras

In this section we present the first original contribution of this paper: we use com-
puter algebra to determine a set of Sn-module generators for the multilinear polynomial 
identities of arities n = 3, 4 satisfied by the Jordan product a ◦ b = a ⊥ b + b ⊥ a

(commutative) and Jordan diproduct a • b = a � b + b � a (noncommutative) in every 
triassociative algebra. These generators are the identities defining Jordan trialgebras. 
We use representation theory of the symmetric group to show that there are no new 
identities in arities 5 and 6. The Jordan diproduct is the Jordan analogue of the Leibniz 
product (Lie diproduct); see Lemmas 2.13 and 2.19.
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Definition 4.1. We also use ◦, • for the operations in BW; this abuse of notation should 
not cause confusion. The expansion map E(n) : BW(n) → ΣTriAss(n) is defined on basis 
monomials in BW(n) as follows: E(n) is the identity on arguments, and expands every 
operation symbol ◦, • using the expressions in the previous paragraph, to produce a linear 
combination of basis monomials in ΣTriAss(n) with some permutation of the arguments. 
The (nonzero) elements of the kernel of E(n) are the (multilinear) polynomial identities 
of arity n satisfied by the operations ◦, • in every triassociative algebra.

4.1. Relations of arity 3

The calculations required for the proof of the following result are similar to those 
discussed in detail in the Lie trialgebra case in Lemma 3.7.

Lemma 4.2. Over a field F of characteristic 0 or p > 3, every element of the kernel 
of E(3) belongs to the operad ideal (Definition 2.8) generated by the relation a ◦ b − b ◦ a
in arity 2 (representing the commutativity of ◦) and the relation a • (b ◦ c) ≡ a • (b • c)
in arity 3.

Definition 4.3. The relation of arity 3 in Lemma 4.2 is the black right bar identity.

Proof of Lemma 4.2. We first find monomial bases for BW(3) and ΣTriAss(3) so that we 
can represent E(3) by a matrix and compute a basis for its nullspace.

Since TriAss is defined by monomial relations, we find a basis for TriAss(3) as fol-
lows. The triassociative relations generate an equivalence relation ∼ on the set B of 18 
(nonsymmetric) monomials in Example 3.3: we define t1 ∼ t2 if and only if t1 ≡ t2 is 
one of the relations in Definition 3.1. We take the quotient of B by ∼ to obtain a set 
partition B/∼. In each equivalence class we choose, as the normal form of the elements 
in the class, the monomial which is minimal with respect to the total order in the proof 
of Lemma 3.4; we use these representatives as a basis of TriAss(3). We obtain the fol-
lowing normal forms; the first two classes each contain four monomials, and the last five 
each contain two:

(a� b)� c, (a� b)� c, (a⊥ b)⊥ c, (a� b)� c, (a⊥ b)� c, (a� b)⊥ c, (a� b)⊥ c.

To symmetrize, we apply all 6 permutations of a, b, c to the arguments of the normal 
forms, and obtain a basis of 42 monomials for ΣTriAss(3).

Since BW is a symmetric operad, to find an ordered basis for BW(3), we take the 27 
monomials (5) from the proof of Lemma 3.7 and replace the symbols ≺, � by •, ◦.

The columns of the 42 ×27 matrix representing E(3) with these ordered bases are the 
coefficient vectors of the expansions of the basis monomials of BW(3) into ΣTriAss(3); 
we must replace the triassociative monomials by their normal forms. For example,

(a ◦ b) • c �→ (a ⊥ b + b ⊥ a) � c + c � (a ⊥ b + b ⊥ a) expansion map
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= (a ⊥ b) � c + (b ⊥ a) � c + c � (a ⊥ b) + c � (b ⊥ a) bilinearity

= (a ⊥ b) � c + (b ⊥ a) � c + (c � a) ⊥ b + (c � b) ⊥ a normal form

The matrix has rank 21 and nullity 6. We find a basis for the nullspace and write down the 
corresponding identities, which are the 6 permutations of the black right bar identity. �
Remark 4.4. The black right bar identity and the commutativity of ◦ imply right com-
mutativity for • (Definition 2.18): we have a • (b • c) ≡ a • (b ◦ c) ≡ a • (c ◦ b) ≡ a • (c • b).

4.2. The operad BW: skeletons, total order, normal forms

Before studying arities n ≥ 4, we need to understand skeletons in BW; as before, a 
skeleton in arity n is a placement of parentheses and a choice of operation symbols in a 
sequence of n indistinguishable arguments. For the operad BW, their enumeration is not 
trivial due to the commutativity of ◦.

Definition 4.5. It is convenient to consider BW not in the monoidal category VectF with 
tensor product, but in Set with direct product; we call the latter operad BW-Set. (Equiva-
lently, we consider a basis of each BW(n) rather than the entire vector space.) Since BW-Set
is a symmetric operad, we cannot use the symbol x for every argument. But we achieve 
the same goal by considering the free algebra BWS over BW-Set generated by x; this al-
gebra consists of all BW-skeletons. We write BWS(n) for the subset of BWS consisting of 
the elements of arity n; that is, those in which x occurs exactly n times. This device 
allows us to use the symbol x as a placeholder for unspecified arguments in a symmetric 
operad.

Definition 4.6. For n ≥ 1, we inductively define a total order �n on BWS(n):

(1) For n = 1, we have BWS(1) = {x}. In what follows we omit the subscript on �n.
(2) For n ≥ 2, if h ∈ BWS(n) then h = f ◦ g or h = f • g with 1 ≤ arity(f), arity(g) < n.

(a) We set f1 ◦ g1 � f2 • g2 for all f1 ◦ g1, f2 • g2 ∈ BWS(n).
(b) Consider f1 • g1 and f2 • g2. If arity(f1) > arity(f2), or arity(f1) = arity(f2) and 

f1 � f2, or f1 = f2 and g1 � g2, then we set f1 • g1 � f2 • g2.
(c) Consider f1 ◦ g1 and f2 ◦ g2. We may assume arity(fi) ≥ arity(gi) for i = 1, 2.

(i) If arity(f1) > arity(f2) then we set f1 ◦ g1 � f2 ◦ g2.
(ii) If arity(f1) = arity(f2) then we also have arity(g1) = arity(g2).

• Assume arity(f1) > arity(g1). If f1 � f2, or f1 = f2 and g1 � g2, then 
we set f1 ◦ g1 � f2 ◦ g2.

• Assume arity(f1) = arity(g1). In this case, n is even and all four factors 
have arity n/2. By commutativity, fi � gi (or fi = gi) for i = 1, 2. If 
f1 � f2, or f1 = f2 and g1 � g2, then we set f1 ◦ g1 � f2 ◦ g2.
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Example 4.7. The 25 skeletons in BWS(4) in the order of Definition 4.6 are as follows:

((x ◦ x) ◦ x) ◦ x, ((x • x) ◦ x) ◦ x, ((x ◦ x) • x) ◦ x, ((x • x) • x) ◦ x, (x • (x ◦ x)) ◦ x,

(x • (x • x)) ◦ x, (x ◦ x) ◦ (x ◦ x), (x ◦ x) ◦ (x • x), (x • x) ◦ (x • x), ((x ◦ x) ◦ x) • x,
((x • x) ◦ x) • x, ((x ◦ x) • x) • x, ((x • x) • x) • x, (x • (x ◦ x)) • x, (x • (x • x)) • x,
(x ◦ x) • (x ◦ x), (x ◦ x) • (x • x), (x • x) • (x ◦ x), (x • x) • (x • x), x • ((x ◦ x) ◦ x),
x • ((x • x) ◦ x), x • ((x ◦ x) • x), x • ((x • x) • x), x • (x • (x ◦ x)), x • (x • (x • x)).

In order to compute the normal form of a multilinear BW monomial, we apply com-
mutativity of ◦ to straighten first the skeleton and then the arguments; for example, 
c ◦ (b ◦ a) becomes (b ◦ a) ◦ c and then (a ◦ b) ◦ c. Straightening the skeleton is equivalent 
to choosing a unique representative of each equivalence class in BWS(n) with respect to 
commutativity: the skeleton x ◦ (x ◦ x) has representative (x ◦ x) ◦ x. This algorithm is 
necessary when we compute the consequences in arity n+1 of a BW polynomial in ar-
ity n: applying the substitution maps of Definition 2.5 to the set of representatives of 
equivalence classes in BWS(n) does not necessarily produce representatives of equivalence 
classes in BWS(n + 1).

Algorithm 4.8. For n = 1 there is only one multilinear monomial x1 which by definition 
is already in normal form. For n ≥ 2, every multilinear monomial of arity n has the form 
f ◦ g or f • g (we write f ∗ g to cover both cases) where 1 ≤ arity(f), arity(g) < n:

(1) Recursively compute f ′ and g′, the normal forms of f and g.
(2) If arity(f ′) > arity(g′) then return f ′ ∗ g′.
(3) If arity(f ′) < arity(g′) then: if ∗ = ◦ then return g′ ∗ f ′ else return f ′ ∗ g′.
(4) If arity(f ′) = arity(g′) then:

(a) Extract s(f ′) and s(g′), the skeletons of f ′ and g′.
(b) If s(f ′) � s(g′) in the total order on BWS(n/2) then return f ′ ∗ g′.
(c) If s(f ′) � s(g′) then: if ∗ = ◦ then return g′ ∗ f ′ else return f ′ ∗ g′.
(d) If s(g′) = s(f ′) then:

(i) Extract p(f ′) and p(g′), the sequences of subscripts of the arguments of f ′

and g′; as sets, p(f ′) ∩ p(g′) = ∅ and p(f ′) ∪ p(g′) = {1, . . . , n}.
(ii) If p(f ′) precedes p(g′) in lex order then return f ′ ∗ g′, where lex order 

means to compare the leftmost unequal elements.
(iii) If p(g′) precedes p(f ′) in lex order then: if ∗ = ◦ then return g′ ∗ f ′ else 

return f ′ ∗ g′.
(iv) If p(f ′) = p(g′) then return f ′ ∗ g′.

4.3. Relations of arity 4

Theorem 4.9. Over a field F of characteristic 0 or p > 4, every multilinear polynomial 
identity of arity ≤ 4, satisfied by the Jordan product and diproduct in every triassociative 
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algebra, is a consequence of the commutativity of ◦, the black right bar identity, and the 
(linearizations of the) following identities of arity 4:

((a ◦ a) ◦ b) ◦ a ≡ (a ◦ a) ◦ (b ◦ a), (6)

(a • (b • b)) • b ≡ (a • b) • (b • b), (7)

((a • b) • d) • c + ((a • c) • d) • b + a • ((b • c) • d) (8)

≡ (a • (b • c)) • d + (a • (b • d)) • b + (a • (c • d)) • b,

(a ◦ a) ◦ (a • b) ≡ ((a ◦ a) • b) ◦ a, (9)

((a • d) ◦ c) ◦ b + ((b • d) ◦ c) ◦ a + ((a ◦ b) ◦ c) • d (10)

≡ ((a ◦ b) • d) ◦ c + ((a ◦ c) • d) ◦ b + ((b ◦ c) • d) ◦ a,

((a • d) • c) ◦ b + ((b • d) • c) ◦ a + ((a ◦ b) • c) • d (11)

≡ (b • (c • d)) ◦ a + ((a • c) ◦ b) • d + ((a • d) ◦ b) • c,

(a • c) ◦ (b • d) + (a • d) ◦ (b • c) + (a ◦ b) • (c • d) (12)

≡ (b • (c • d)) ◦ a + ((a • c) ◦ b) • d + ((a • d) ◦ b) • c.

Proof. Similar to that of Lemma 4.2, but the matrices are larger, and we must deal with 
the consequences of the black right bar identity of arity 3. We first construct the 135 
basis skeletons in BBB(4), where ∗1, ∗2, ∗3 are chosen freely from {�, ⊥, �}:

((x∗1x)∗2x)∗3x, (x∗1(x∗2x))∗3x, (x∗1x)∗2(x∗3x), x∗1((x∗2x)∗3x), x∗1(x∗2(x∗3x)).

Second, we generate the 165 consequences in arity 4 of the defining relations for TriAss
using (4): each relation f(a, b, c) has 15 consequences where ∗ is chosen from {�, ⊥, �}:

f(a ∗ d, b, c), f(a, b ∗ d, c), f(a, b, c ∗ d), f(a, b, c) ∗ d, d ∗ f(a, b, c).

These consequences generate an equivalence relation on the basis of BBB(4), which has 15 
classes representing a basis of TriAss(4). We choose the minimal element in each class 
as the normal form of the (nonsymmetric) monomials in that class:

((a � b) � c) � d, ((a � b) � c) � d, ((a � b) � c) ⊥ d, ((a � b) � c) � d,

((a � b) � c) ⊥ d, ((a � b) ⊥ c) � d, ((a � b) ⊥ c) ⊥ d, ((a � b) � c) � d,

((a � b) � c) ⊥ d, ((a � b) ⊥ c) � d, ((a � b) ⊥ c) ⊥ d, ((a ⊥ b) � c) � d,

((a ⊥ b) � c) ⊥ d, ((a ⊥ b) ⊥ c) � d, ((a ⊥ b) ⊥ c) ⊥ d.

To construct a monomial basis of the symmetrization, we apply all permutations of 
a, b, c, d; thus ΣTriAss(4), the codomain of E(4), has dimension 360.

The domain of E(4) is the space BW(4). To generate an ordered basis of BW(4), we start 
with the 25 skeletons in Example 4.7. In each skeleton, we replace the four occurrences of 
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the symbol x by all permutations of x1, . . . , x4; for each resulting multilinear monomial we 
compute the normal form with respect to commutativity, and save only those monomials 
which are irreducible (equal to their normal forms). The number of monomials we obtain 
for each skeleton is 4!/2s where s is the number of commutative symmetries in the 
skeleton, where by definition a symmetry is a sub-skeleton of the form f ◦f . For example, 
the skeleton (x ◦ x) ◦ (x ◦ x) has three symmetries: one with f = x ◦ x and two 
with f = x, so it has only three multilinear monomials, corresponding to permutations 
1234, 1324, 1423 of the subscripts. We order these monomials first by skeleton and 
then by permutation. The total number of multilinear monomials over all skeletons is 
dim BW(4) = 405.

With respect to the ordered monomial bases of BW(4) and ΣTriAss(4), the expansion 
map E(4) : BW(4) → ΣTriAss(4) is represented by the 360 × 405 matrix E4. The (i, j)
entry of E4 is the coefficient of the i-th ΣTriAss monomial in the expansion of the 
j-th BW monomial. We must replace each ΣTriAss monomial m in each expansion by 
the equivalent element in the monomial basis for ΣTriAss(4); we replace the TriAss
skeleton of m by the representative of the corresponding equivalence class. For example,

E(4)
(
(a • b) ◦ (c • d)

)
= (a � b) ⊥ (c � d) + (c � d) ⊥ (a � b) + (a � b) ⊥ (d � c) + (d � c) ⊥ (a � b) +

(b � a) ⊥ (c � d) + (c � d) ⊥ (b � a) + (b � a) ⊥ (d � c) + (d � c) ⊥ (b � a)
= ((a � b) ⊥ c) � d + ((c � d) ⊥ a) � b + ((a � b) � d) ⊥ c + ((d � c) ⊥ a) � b +

((b � a) ⊥ c) � d + ((c � d) � b) ⊥ a + ((b � a) � d) ⊥ c + ((d � c) � b) ⊥ a.

In this way, we initialize E4, which has entries in {0, 1}. This matrix is large, so we use 
modular arithmetic (p = 101) to compute its RCF and the corresponding basis for its 
nullspace.

We find that E4 has rank 165 and nullity 240. Its nullspace N(4) ⊆ BW(4) is the 
S4-module which contains the coefficient vectors of the multilinear identities of arity 4 
satisfied by the Jordan product and diproduct in every triassociative algebra. The new 
identities are the (nonzero) elements of the quotient module N(4)/M(4) where M(4) is 
the S4-module generated by the known identities:

(1) Consequences of the (black right) bar identity, f(a, b, c) = a • (b ◦ c) −a • (b • c) ≡ 0, 
generating an S4-module of dimension 180: f(a ◦ d, b, c), f(a, b ◦ d, c), f(a, b, c ◦ d), 
f(a, b, c) ◦ d, f(a • d, b, c), f(a, b • d, c), f(a, b, c • d), f(a, b, c) • d, d • f(a, b, c).

(2) Linearization of the Jordan identity for a ◦ b = a ⊥ b + b ⊥ a. Combining this with 
the previous generators, we obtain an S4-module of dimension 184.

(3) Remark 4.4 shows that we do not need to consider the consequences of right com-
mutativity for •, since they are also consequences of the black right bar identity.

(4) Linearizations of the Jordan dialgebra identities for a • b = a � b + b � a. Combining 
these with the other generators, we obtain the S4-module M(4) of dimension 200.
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We represent M(4) as the row space of a 200 × 405 matrix M4. The quotient module 
N(4)/M(4) of new identities of arity 4 has dimension 40.

From the RCF of E4 we extract a “canonical” basis of N(4) as follows: for each 
standard basis vector v of F240

p , we set the 240 free variables equal to the components 
of v and solve for the leading variables. We put the resulting basis vectors into the rows of 
a 240 ×405 matrix N4 whose row space is N(4). (A canonical basis for N(4) would consist 
of the rows of RCF(N4).) Checking the rows of N4 (all identities) one-by-one against the 
row space of M4 (known identities), we obtain a list of 40 rows which increase the rank. 
Each row contains 6 nonzero entries, representing an identity with 6 terms. The cosets 
of these row vectors form a basis of the quotient module N(4)/M(4).

From this linear basis of 40 vectors, we extract a minimal set of S4-module generators. 
Checking again the rows ρ of N4 against the row space of M4, but now including all 24 
permutations of the identity with coefficient vector ρ, we obtain 5 rows which increase 
the rank to 204, 216, 222, 232, 240. We find that the third row belongs to the submodule 
generated by the others. The remaining four generators are identities (9)–(12). �
Remark 4.10. The operation ◦ satisfies the Jordan identity (14); the operation • satisfies 
the Jordan dialgebra identities (7)–(8); the operations are related by (9)–(12). This 
pattern of identities is similar to Definition 3.5 of Lie trialgebras: [a, b] defines a Lie 
algebra, {a, b} defines a Leibniz algebra, and other identities relate the two operations.

Definition 4.11. Over a field F of characteristic 0 or p > 4, a vector space J with bilinear 
operations ◦ and • is a right (respectively left) Jordan trialgebra if:

• (J, ◦ ) is a Jordan algebra, and (J, • ) is a right (respectively left) Jordan dialgebra, 
and

• the two operations are related by identities (9)–(12) of Proposition 4.9.

The corresponding symmetric operad will be denoted TriJor.

4.4. Triplicators

The operad TriJor governing Jordan trialgebras may also be obtained using the 
techniques of Pei et al. [46]. We start from the linearized Jordan identity, ((ab)d)c +
((ac)d)b + ((bc)d)a − (ab)(cd) − (ac)(bd) − (ad)(bc) ≡ 0, and its representation in terms 
of tree monomials, using · for the operation symbol:
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Let L ⊆ {a, b, c, d} be a nonempty subset of the arguments. For each L we construct a new 
polynomial identity involving operations �1, �2, �3 which we denote simply by 1, 2, 3. We 
apply the following triplicator algorithm to each tree monomial m in the identity above.

Algorithm 4.12. For each x ∈ L, let pm(x) be the unique path from the root of m to the 
leaf x. Let Wm be the set of internal vertices of m, and define tm : L ×Wm → {←, 0, →}:

• If the internal vertex v ∈ Wm does not lie on the path pm(x) then tm(x, v) = 0.
• If v ∈ Wm lies on pm(x) then tm(x, v) =← (resp. →) if pm(x) turns left (resp. right) 

at v.

There are four possibilities for Tm(L, v) = { tm(x, v) | x ∈ L } \ {0}:

• If Tm(L, v) = {←} then the internal vertex v receives the new operation symbol 1.
• If Tm(L, v) = {→} then the internal vertex v receives the new operation symbol 3.
• If Tm(L, v) = {←, →} then the internal vertex v receives the new operation symbol 2.
• If Tm(L, v) = ∅ then none of the paths pm(x) pass through v, and in this case v

receives the symbol ∗ representing the union of the new operation symbols: ∗ =
{1, 2, 3}.

Since the linearized Jordan identity is symmetric in a, b, c it suffices to consider only 
these subsets L: {a}, {d}, {a, b}, {a, d}, {a, b, c}, {a, b, d}, {a, b, c, d}. For example, if 
L = {a, c} then Algorithm 4.12 produces this new identity:

Note that term 5 contains a vertex labeled ∗; it thus produces three new identities after 
we replace ∗ by 1, then 2, then 3. These new operations satisfy symmetries which follow 
from the commutativity of the Jordan product: a �1 b ≡ b �3 a and a �2 b ≡ b �2 a. 
We replace ∗ in term 5 by operation 1, and apply the symmetries of the operations 
to eliminate operation 3 from terms 3 and 6. The final result involves only two new 
operations 1, 2:
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If we replace 2 by ◦, and 1 by •, and rewrite the tree monomials in parenthesized 
form, then we obtain multilinear identities which we can compare directly to those of 
Theorem 4.9.

Definition 4.13. The operad defined by the binary operations ◦ and •, where ◦ is com-
mutative and • has no symmetry, satisfying the multilinear relations resulting from all 
possible applications of Algorithm 4.12 to the linearized Jordan identity, is denoted 
TripJor and is called the triplicator of the Jordan operad Jor.

Proposition 4.14. Let TriJor be the symmetric operad governing Jordan trialgebras, gen-
erated by the operations ◦ (commutative) and • (no symmetry) satisfying the identities 
of Theorem 4.9. Let TripJor be the symmetric operad generated by the same operations 
but satisfying the identities obtained by applying the triplicator Algorithm 4.12 to the 
linearized Jordan identity. These two sets of identities generate the same subquotient of 
the S4-module BW(4), and therefore the two operads are isomorphic: TriJor ∼= TripJor.

4.5. Representation theory of the symmetric group: introduction

We can extend these calculations to arities n ≥ 5, but the matrices become very 
large, and so we use the representation theory of the symmetric group to decompose the 
Sn-modules into isotypic components. For the theoretical background see the survey [13], 
which includes an extensive bibliography. We mention Rutherford’s exposition [47] of 
Young’s work, Hentzel’s implementation [31] on a computer, and the important contri-
butions by his students Bondari [8] and Clifton [18].

For n ≥ 1, over a field F of characteristic 0 or p > n, the group algebra FSn is 
semisimple and hence decomposes as the direct sum of simple two-sided ideals isomorphic 
to full matrix rings. These ideals are in bijection with the partitions of n: for partition λ
we have the matrix ring Mdλ

(F) where the dimension dλ is given by the hook formula. If 
Y (λ) is the Young diagram for λ then dλ is the number of standard tableaux for Y (λ). 
For each λ the projection Rλ : FSn → Mdλ

(F) defines an irreducible representation of Sn; 
we call Rλ(π) the representation matrix of π for partition λ. If we define the action of Sn

on Mdλ
(F) by π ·A = Rλ(π)A for A ∈ Mdλ

(F), then Mdλ
(F) becomes a (left) Sn-module, 

which is the direct sum of dλ isomorphic minimal left ideals in FSn: the column vectors 
in Mdλ

(F). We write [λ] for the isomorphism class of these minimal left ideals; [λ] is 
the irreducible Sn-module for partition λ. Clifton [18] found an efficient algorithm to 
compute Rλ(π).

4.6. All relations: kernel of the expansion map

We show how to compute the kernel of the expansion map E(n) using repre-
sentation theory; recall that E(n) is a linear map from BW(n) to ΣTriAss(n). Let 
BWS(n) = {β1, . . . , βb(n)} be the ordered set of skeletons for BW(n) (Definition 4.5), 
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and let NTA(n) = {τ1, . . . , τt(n)} be the ordered basis for TriAss(n) – the representa-
tives of the equivalence classes in BBB(n) – which are the skeletons for ΣTriAss(n). The 
advantage of representation theory is that we do not need all multilinear monomials, but 
only the skeletons: a much smaller set. For each partition λ of n we compute the matrix 
En,λ, which has b(n) rows and t(n) + b(n) columns of dλ × dλ blocks.

En,λ =

⎡⎢⎢⎢⎢⎢⎣
Rλ(X1,1) Rλ(X1,2) · · · Rλ(X1,t(n)) Idλ

0 · · · 0
Rλ(X2,1) Rλ(X2,2) · · · Rλ(X2,t(n)) 0 Idλ

· · · 0
...

...
. . .

...
...

...
. . .

...
Rλ(Xb(n),1) Rλ(Xb(n),2) · · · Rλ(Xb(n),t(n)) 0 0 · · · Idλ

⎤⎥⎥⎥⎥⎥⎦ (13)

For 1 ≤ i ≤ b(n) and 1 ≤ j ≤ t(n), position (i, j) contains the representation matrix 
Rλ(Xi,j) where Xi,j ∈ FSn is determined as follows:

(i) Start with the i-th skeleton βi from BWS(n).
(ii) Replace the n occurrences of the symbol x in βi by the identity permutation 

x1, . . . , xn of n indeterminates to obtain the multilinear basis monomial μi for BW(n).
(iii) Apply E(n) to μi, obtaining Xi = E(n)(μi) ∈ TriAss(n). The terms of the 

expansion E(n)(μi) belong to the symmetrization of BBB(n), so we replace each 
BBB skeleton by the representative of its triassociative equivalence class; see the 
proofs of Lemma 4.2 and Proposition 4.9. After this normalization of the skeletons, 
Xi ∈ ΣTriAss(n).

(iv) Decompose Xi = Xi,1+· · ·+Xi,t(n) as a sum of t(n) components where Xi,j consists 
of the terms of Xi with triassociative skeleton τj .

(v) In Xi,j every term has skeleton τj ; the only differences are in the coefficients and the 
permutations. Thus Xi,j is a linear combination of permutations of n, so Xi,j ∈ FSn.

(vi) Compute Rλ(Xi,j), the representation matrix of Xi,j and store it in block (i, j)
of En,λ.

(vii) Finally compute the row canonical form of En,λ.

Remark 4.15. The skeletons in TriAss(n) are in bijection with the equivalence classes of 
skeletons in BBB(n): equivalence is determined by the (consequences of the) triassociative 
relations. Computing this equivalence relation is only practical in low arities. In general, 
we use the explicit description of the free trioid on one generator [42].

Definition 4.16. The toprank of RCF(En,λ) is the number top(n, λ) of rows with lead-
ing 1s to the left of the vertical line in (13). That is, top(n, λ) is the largest i such that 
the leading 1 of row i is in column j ≤ t(n)dλ. Every row i′ > i has only 0s to the left of 
the vertical line. The allrank of RCF(En,λ) is the number all(n, λ) = b(n)dλ − top(n, λ)
of rows with leading 1s to the right of the vertical line.
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Lemma 4.17. The last all(n, λ) rows of RCF(En,λ) are independent Sn-module generators 
for the isotypic component of partition λ in the kernel of E(n): the sum of all irreducible 
submodules of kernel(E(n)) isomorphic to [λ].

Definition 4.18. ALL(n, λ), the matrix of all identities for arity n, partition λ, is the 
lower right block of RCF(En,λ), with upper left corner in row top(n, λ) + 1 and column 
t(n)dλ + 1.

4.7. Old relations; symmetries of the skeletons

For each partition λ of n, the nullspace of En,λ contains all polynomial identities in the 
isotypic component for λ which are satisfied by the Jordan product ◦ and diproduct •
in every triassociative algebra. In general, many of these are consequences of known 
identities of lower arity.

We must also consider the symmetries of the skeletons in BWS(n). If n is small, we can 
compute a monomial basis and avoid representation theory: to each skeleton, we apply 
all permutations of the n variables, and retain a monomial only if it equals its normal 
form. For example, let n = 3 and consider (x ◦ x) • x: commutativity of ◦ implies that 
the six permutations of a, b, c produce only three normal forms: (a ◦ b) • c, (a ◦ c) • b, 
(b ◦ c) • a. If n is large, so that it is not practical to compute a monomial basis, then 
we use representation theory, and so we must encode the symmetries in some other way. 
For a small example, from the skeleton (x ◦ x) • x we construct a multilinear identity 
which can be processed using representation theory: (x1 ◦ x2) • x3 − (x2 ◦ x1) • x3 ≡ 0.

Definition 4.19. We call the identities of this form the symmetries of the skeletons. In 
arity n, each symmetry has the form m1 − m2 ≡ 0, where m1, m2 are monomials of 
arity n with the same skeleton; m1 has the identity permutation of the variables, and 
m2 has a permutation of order 2; and the commutativity of ◦ implies that m1 = m2.

Lemma 4.20. The relation between multilinear monomials, the skeletons, and their sym-
metries, is given by this equation, where s(β) is the number of symmetries of skeleton β:

dim BW(n) =
∑

β ∈ BWS(n)

n!
2s(β)

Definition 4.21. Recall that b(n) is the size of BWS(n): the total number of BW skeletons in 
arity n. Let sym(n) be the total number of symmetries over all skeletons in arity n. Let 
con(n) be the total number of consequences in arity n of the known identities of lower 
arities. Let Kn,λ be the matrix of size (sym(n)+con(n))dλ×b(n)dλ, consisting of dλ×dλ
blocks; the block in position (i, j) is Rλ(Yi,j) where Yi,j is the component of symmetry i

in skeleton j for i = 1, . . . , sym(n), and Ysym(n)+i,j is the component of consequence i in 
skeleton j for i = 1, . . . , con(n). The matrix of old identities for arity n and partition λ

is defined by OLD(n, λ) = RCF(Kn,λ).



386 F. Bagherzadeh et al. / Journal of Algebra 486 (2017) 360–395
4.8. Relations of arity ≥ 5: a result, a problem, and two conjectures

Proposition 4.22. Every multilinear polynomial identity of arity ≤ 6 relating the Jordan 
product and diproduct in every triassociative algebra is a consequence of the defining 
identities for Jordan trialgebras (Definition 4.11).

Proof. For n = 5, 6 and all partitions λ of n, we computed ALL(n, λ) and OLD(n, λ), 
which are both in row canonical form, and found that they were equal in every case. �
Problem 4.23. Determine whether or not special identities of arity 8 exist for the Jordan 
diproduct in the free diassociative algebra; such identities (if they exist) are called spe-
cial identities for Jordan dialgebras. The existence of such identities for the pre-Jordan 
product in the free dendriform algebra has been established [12].

Conjecture 4.24. Over a field F of characteristic 0 or p > 7, every multilinear polynomial 
identity of arity ≤ 7 satisfied by the Jordan product and diproduct in every triassociative 
algebra is a consequence of the defining identities for Jordan trialgebras.

Conjecture 4.25. There exist identities of arity 8 for the Jordan product and right (re-
spectively left) Jordan diproduct in every triassociative algebra which do not belong to 
the operad ideal generated by the identities defining right (respectively left) Jordan tri-
algebras, the (linearizations of) the Glennie identities for Jordan algebras [27], and the 
multilinear special identities of arity 8 for right (respectively left) Jordan dialgebras (if 
they exist).

5. Enumeration of association types and skeletons

We consider two integer sequences: the number of skeletons of arity n in the symmetric 
operad BW generated by two binary operations, one commutative, one noncommutative; 
the number of multilinear monomials of arity n in BW, which is dim BW(n).

5.1. One commutative operation

The number of association types is sequence A001190 in the OEIS (oeis.org), the 
Wedderburn–Etherington numbers [24,52]:

1, 1, 1, 2, 3, 6, 11, 23, 46, 98, 207, 451, 983, 2179, 4850, 10905, 24631, 56011, . . .

This sequence also enumerates complete rooted binary trees with n leaves, up to abstract 
graph isomorphism, so that (for example) the two trees with three (unlabeled) leaves 
are isomorphic. The corresponding number of multilinear monomials is A001147, the 
double factorial of odd numbers: (2n−1)!! = 1 · 3 · 5 · · · (2n−1). This is also the number 
of complete rooted binary trees with leaf labels 1, . . . , n up to abstract isomorphism.

http://oeis.org
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5.2. One noncommutative operation

The number of association types is the (shifted) Catalan number C(n−1) where 
C(n) = (2n)!/(n!(n+1)!). (The shift is required since n in C(n) is the number of opera-
tions but for us n is the number of arguments.) This sequence A000108 also enumerates 
complete rooted binary plane trees with n leaves, so that the two trees with three (un-
labeled) leaves are not isomorphic. In this case, the operation has no symmetry, so the 
number of multilinear monomials is simply n!C(n−1) = (2n−2)!/(n−1)!, which is the 
quadruple factorial (4n−2)!!!! = 2 · 6 · 10 · · · (4n − 2).

5.3. Two operations: one commutative, one noncommutative

Computational enumeration of the skeletons produced the following sequence, 
A276277 in the OEIS:

1, 2, 6, 25, 111, 540, 2736, 14396, 77649, 427608, 2392866, 13570386, 77815161, . . .

The number of multilinear monomials is the sextuple factorial, sequence A011781:

(6n−3)!!!!!! =
n−1∏
k=1

(6k − 3) =⇒ 1, 3, 27, 405, 8505, 229635, 7577955, 295540245, . . .

Problem 5.1. For p, q ≥ 1 let BWp,q be the free symmetric operad generated by p com-
mutative and q noncommutative binary operations. For n ≥ 1 determine the number of 
skeletons and the number of multilinear monomials in BWp,q(n).

6. Post-Jordan algebras

In this section we determine the multilinear polynomial identities of arity ≤ 6 satisfied 
by the Jordan and pre-Jordan products a ◦ b = a �b +b �a and a •b = a ≺ b +b � a in the 
free tridendriform algebra. In addition to the commutativity of ◦, there are no new identi-
ties in arity 3, a nonzero S4-module of new identities in arity 4 for which we find a minimal 
set of generators, and no new identities in arities 5 and 6. The commutativity of ◦, to-
gether with the new identities in arity 4, defines post-Jordan algebras. The pre-Jordan 
product is the Jordan analogue of the pre-Lie diproduct; see Lemmas 2.17 and 2.19.

6.1. Gröbner–Shirshov basis for the tridendriform operad

The computations for post-Jordan algebras are very similar to those for Jordan 
trialgebras; in particular, the domain BW(n) of the expansion map E(n) is the same. 
However, the codomain of the expansion map is no longer ΣTriAss but its Koszul dual 
ΣTriDend ∼= ΣTriAss!. The defining relations for TriAss are monomial relations (Def-
inition 3.1): this allows us to compute normal forms in TriAss very simply in terms of 
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equivalence relations on BBB monomials. On the other hand, not all the defining relations 
for TriDend are monomial relations (Definition 3.1). Hence computing normal forms in 
TriDend requires first determining a Gröbner–Shirshov (GS) basis from the defining 
relations, and this requires fixing a total order on the operations. Checking all six pos-
sibilities, we find that the smallest GS basis for TriDend comes from the order �, ≺, �
where the commutative operation comes first. This GS basis for TriDend is almost the 
same as the original defining relations, except that the relations appear in a different 
order, as do the terms within each relation.

Lemma 6.1. Starting with the relations in Definition 3.1, and assuming the order of 
operations �, ≺, �, we obtain the following Gröbner–Shirshov basis for TriDend:

(a ≺ b) ≺ c− a ≺ (b � c) − a ≺ (b ≺ c) − a ≺ (b � c), (a � b) ≺ c− a � (b ≺ c),
(a � b) � c + (a ≺ b) � c + (a � b) � c− a � (b � c), (a � b) � c− a � (b � c),
(a ≺ b) � c− a � (b � c), (a � b) ≺ c− a � (b ≺ c), (a � b) � c− a � (b � c).

Proof. Gröbner bases for operads were introduced in [21]; the special case of nonsym-
metric operads appears in [22]. Similar computations are explained in detail in [44]. �

We use this GS basis for TriDend to compute normal forms of nonsymmetric triden-
driform polynomials. This also applies in the symmetric case, since ΣTriDend is the sym-
metrization of TriDend. A monomial m ∈ ΣTriDend(n) has a skeleton s ∈ TriDend(n)
and a permutation p ∈ Sn of the arguments x1, . . . , xn. To find the normal form of m, 
we compute the normal form of s, and then replace the arguments xp(1), . . . , xp(n). For 
details on nonsymmetric operads and their Gröbner bases, see [10].

6.2. Relations of arity ≤ 4

The calculations required for the proof of the following result are similar to those 
discussed in the post-Lie algebra case; see Lemma 3.10.

Lemma 6.2. Every multilinear polynomial identity of arity 3 for the Jordan and pre-
Jordan products ◦, • in the free tridendriform algebra is a consequence of the commuta-
tivity of ◦.

Proof. The expansion matrix E3 has size 66 × 27: see Table 3, where the matrix is split 
into top and bottom halves. Following the proof of Lemma 4.2, the columns correspond 
to the ordered monomial basis of the domain BW(3) of the expansion map E(3); see 
the proof of Lemma 3.7 where the symbols �, ≺ are used instead of ◦, •. As for the 
codomain, since dim BBB(3) = 18, and the GS basis of Lemma 6.1 has 7 elements, there 
are 7 leading monomials which are linear combinations of the other 11 monomials, so 
dim TriDend(3) = 11. To each nonsymmetric basis monomial we apply all 6 permutations 
of the arguments; this gives the ordered monomial basis of ΣTriDend(3) corresponding 
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Table 3
Top and bottom of the post-Jordan expansion matrix in arity 3.

to the 66 rows of E3. An easy calculation shows that E3 has full rank and so its nullspace 
is 0. �
Theorem 6.3. Over a field F of characteristic 0 or p > 4, every multilinear polynomial 
identity of arity ≤ 4 satisfied by the Jordan and pre-Jordan products in the free triden-
driform algebra is a consequence of the commutativity of ◦ and the (linearizations of the) 
following 7 identities of arity 4 (there are no new identities of arity 3):

((a ◦ a) ◦ b) ◦ a ≡ (a ◦ a) ◦ (b ◦ a), (14)

((c • a) ◦ b) ◦ d + ((d • a) ◦ b) ◦ c− ((b ◦ c) • a) ◦ d− ((b ◦ d) • a) ◦ c (15)

− ((c ◦ d) • a) ◦ b + ((c ◦ d) ◦ b) • a ≡ 0,

((b ◦ c) • a) ◦ d + ((b ◦ d) • a) ◦ c + ((c ◦ d) • a) ◦ b− (b ◦ c) ◦ (d • a) (16)

− (b ◦ d) ◦ (c • a) − (c ◦ d) ◦ (b • a) ≡ 0,

((c • a) • b) ◦ d + ((d • a) • b) ◦ c− (d • (a ◦ b)) ◦ c− (d • (a • b)) ◦ c (17)

− (d • (b • a)) ◦ c− ((c • a) ◦ d) • b− ((c • b) ◦ d) • a + ((c ◦ d) • b) • a ≡ 0,

(d • (a ◦ b)) ◦ c + (d • (a • b)) ◦ c + (d • (b • a)) ◦ c− (c • a) ◦ (d • b) (18)

− (c • b) ◦ (d • a) + ((c • a) ◦ d) • b + ((c • b) ◦ d) • a− (c ◦ d) • (a ◦ b)

− (c ◦ d) • (a • b) − (c ◦ d) • (b • a) ≡ 0,

(d • (a ◦ b)) • c + (d • (a ◦ c)) • b + (d • (b ◦ c)) • a + (d • (a • b)) • c (19)

+ (d • (a • c)) • b + (d • (b • a)) • c + (d • (b • c)) • a + (d • (c • a)) • b

+ (d • (c • b)) • a− (d • a) • (b ◦ c) − (d • b) • (a ◦ c) − (d • c) • (a ◦ b)
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− (d • a) • (b • c) − (d • a) • (c • b) − (d • b) • (a • c) − (d • b) • (c • a)

− (d • c) • (a • b) − (d • c) • (b • a) ≡ 0,

((d • a) • c) • b + ((d • b) • c) • a− (d • (a ◦ b)) • c− (d • (a ◦ c)) • b (20)

− (d • (b ◦ c)) • a− (d • (a • b)) • c− (d • (a • c)) • b− (d • (b • a)) • c

− (d • (b • c)) • a− (d • (c • a)) • b− (d • (c • b)) • a + d • ((a ◦ b) ◦ c)

+ d • ((a • b) ◦ c) + d • ((b • a) ◦ c) + d • ((a ◦ b) • c) + d • ((a • b) • c)

+ d • ((b • a) • c) + d • (c • (a ◦ b)) + d • (c • (a • b)) + d • (c • (b • a)) ≡ 0.

Proof. All the techniques have already been discussed, so we will be very brief. The 
expansion matrix E4 has size 1080 ×405 and rank 345; its nullity is 60, and every nonzero 
vector in the nullspace is a new identity, since there are no consequences from arity 3. We 
extract the canonical basis vectors for the nullspace and sort the identities by increasing 
number of terms. We find a subset of seven identities which generates the nullspace as an 
S4-module; none belongs to the S4-module generated by the others. These identities have 
6, 6, 6, 8, 10, 18, 20 terms. The first is the linearized Jordan identity which contains only 
the operation ◦. Every other identity contains both operations. If we remove every term 
containing ◦ from these seven identities, then the first five identities become 0, and the 
last two identities become the defining identities in arity 4 for pre-Jordan algebras. �
Remark 6.4. In a Jordan trialgebra, the Jordan product ◦ is commutative and satisfies 
the Jordan identity; the Jordan diproduct • satisfies the defining relations for Jordan 
dialgebras. Thus a Jordan trialgebra is a sum or split extension (roughly speaking) of a 
Jordan algebra by a Jordan dialgebra. In a post-Jordan algebra, the Jordan product ◦
is commutative and satisfies the Jordan identity; however, the pre-Jordan product •
does not satisfy the defining identities for pre-Jordan algebras. In order to obtain the 
pre-Jordan identities, we must set the Jordan product to zero: remove every term con-
taining ◦. Thus a post-Jordan algebra is a non-split extension of a Jordan algebra by a 
pre-Jordan algebra.

Definition 6.5. Over a field F of characteristic 0 or p > 4, a vector space J with bilinear 
operations ◦ and • is a post-Jordan algebra if ◦ is commutative and ◦, • together satisfy 
the multilinear polynomial identities of Theorem 6.3. In particular, (J, ◦ ) is a Jordan 
algebra. The corresponding symmetric operad is denoted PostJor.

6.3. Trisuccessors

The operad PostJor governing post-Jordan algebras may be obtained using the tech-
niques of [46]. As in §4.4, we start from the linearized Jordan identity represented in 
terms of tree monomials. We apply Algorithm 4.12 but with the difference that ∗ no 
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longer represents the union {�1, �2, �3} but the sum �1 + �2 + �3. As before, we consider 
the example L = {a, c}. In the resulting tree polynomial, term 5 has a vertex labeled ∗, 
which is now replaced by the sum of three terms 5′, 5′′, 5′′′ obtained by substituting 
(operations) 1, 2, 3 for ∗; the result is a tree polynomial with eight terms. As in §4.4, 
the three new operations satisfy symmetries: a �1 b ≡ b �3 a and a �2 b ≡ b �2 a. These 
allow us to rewrite the tree polynomial using only two operations:

We replace operation 2 by ◦, and 1 by •, and convert the tree monomials to parentheses 
and permutations. We perform this calculation for all nonempty L ⊆ {a, b, c, d} and 
obtain multilinear identities which can be compared directly to those of Theorem 6.3.

Definition 6.6. The operad defined by the binary operations ◦ and •, where ◦ is com-
mutative and • has no symmetry, satisfying the multilinear relations obtained from all 
possible applications of the trisuccessor algorithm to the linearized Jordan identity, is 
denoted TriSucJor and is called the trisuccessor of the Jordan operad Jor.

Proposition 6.7. Let PostJor be the symmetric operad governing post-Jordan algebras, 
generated by the binary operations ◦ (commutative) and • (no symmetry) satisfying the 
multilinear identities of Theorem 6.3. Let TriSucJor be the symmetric operad gener-
ated by the same operations but satisfying the multilinear identities obtained by applying 
the trisuccessor algorithm to the linearized Jordan identity. These two sets of identi-
ties generate the same subquotient S4-module of BW(4), and hence the two operads are 
isomorphic.

6.4. Relations of arity ≥ 5: a result and two conjectures

Proposition 6.8. Every multilinear polynomial identity of arity ≤ 6 relating the Jordan 
and pre-Jordan products in every tridendriform algebra is a consequence of the defining 
identities for post-Jordan algebras.

Proof. Similar to the proof of Proposition 4.22. �
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Conjecture 6.9. Over a field F of characteristic 0 or p > 7, every multilinear polynomial 
identity of arity ≤ 7 satisfied by the Jordan and pre-Jordan products in every tridendri-
form algebra is a consequence of the defining identities for post-Jordan algebras.

Conjecture 6.10. There exist identities of arity 8 which are not consequences of the defin-
ing identities for post-Jordan algebras, the Glennie identities for Jordan algebras [27], 
and the special identities of arity 8 for pre-Jordan algebras [12].

7. Concluding remarks

7.1. Koszul duality for nonquadratic operads

Koszul duality for associative algebras has been extended [22] from the quadratic case 
(n = 2) to the n-homogeneous case (n > 2). If a similar extension exists of Koszul 
duality for operads, it could be applied to the operads governing the Jordan structures 
studied in this paper. There is another approach: introduce a new ternary operation 
to lower the weight of the relations. Consider an operad generated by a commutative 
binary operation ab. If we define a new ternary operation by (a, b, c) = (ab)c then every 
binary monomial of weight 2 equals a ternary monomial of weight 1, and every binary 
monomial of weight 3 equals a binary–ternary monomial of weight 2. Any cubic relation 
in the binary operation can be rewritten as a quadratic relation in both operations. For 
example, consider the linearized Jordan identity stated at the start of §4.4. We replace 
monomials of the forms ((wx)y)z and (wx)(yz) by (wx, y, z) and (w, x, yz) respectively:

(ab, d, c) + (ac, d, b) + (bc, d, a) − (a, b, cd) − (a, c, bd) − (b, c, ad) ≡ 0.

This relation is quadratic: each term involves one binary operation and one ternary 
operation. However, we must also include the relation (a, b, c) − (ab)c ≡ 0, which is 
homogeneous in the arity, but inhomogeneous in the weight. To go further, we need the 
theory of inhomogeneous Koszul duality for operads [43]. The Koszul dual cooperad will 
be a differential graded cooperad with a nonzero differential.

7.2. A commutative diagram: isomorphism of reconfigured operads

A conjecture relating the polynomial identities produced by the KP algorithm (dupli-
cators) to those satisfied by the operations produced by the BSO algorithm (diproducts) 
was stated in [11]; a year later the conjecture was reformulated and proved by [35]. Those 
papers deal exclusively with dialgebras, duplicators, and diproducts; there should be a 
generalization to trialgebras, and then to pre-algebras and post-algebras. The general-
ized conjecture would state, roughly speaking, that Table 2 is a commutative diagram 
of morphisms between operads. We attempt to state the generalization as precisely as 
possible.
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Conjecture 7.1. The following diagram of morphisms between operads commutes:

P Ω−−−−−−−−→ PΩ
∼=−−−−−−−−−−−−−−−−→P ′

Ω′⏐⏐⏐⏐�̂ �����̂ ⏐⏐⏐⏐�̂ ⏐⏐⏐⏐�̂
P̂ Ω̂−−−−−−−−→ P̂Ω̂

∼=−−−−−−−−−→ P̂ ′
Ω̂′

?= P̂ ′
Ω′

(21)

The symbols in this diagram are defined as follows:

(1) We start by considering operads defined in terms of operations in an operad P.
(a) Let P be symmetric, not necessarily binary or quadratic, and in the category 

VectF.
(b) Let A be the category of P-algebras.
(c) Let ωi ∈ P(ni) for 1 ≤ i ≤ m be (multilinear) operations in P, which we regard 

as new operations defined on the underlying vector spaces of the P-algebras 
in A.

(d) For example, if m = 1, n1 = 2 then ω1 could be the Lie bracket ab − ba or the 
Jordan product ab + ba, both of which have (skew-)symmetry.

(e) Let Ω = {ω1, . . . , ωm} and let PΩ be the suboperad of P generated by Ω.
(f) Let R be the set of all relations satisfied by the operations Ω in P. That is, 

R consists of the polynomial identities satisfied by the operations Ω in every 
P-algebra.

(g) To separate PΩ from its embedding into P, we make a copy, Ω′ = {ω′
1, . . . , ω

′
m}: 

symbols representing abstract multilinear operations of arities n1, . . . , nm.
(h) By definition, the operad Q = P ′

Ω′ has generators Ω′ with the same symmetries 
as those of Ω, satisfying relations R′ which are copies of the relations R.

(i) For example, if m = 1, n1 = 2, ω1 = ab − ba then Q = P ′
Ω′ is the Lie operad, 

since every identity satisfied by the Lie bracket in every associative algebra is a 
consequence of anticommutativity and the Jacobi identity.

(j) On the other hand, if m = 1, n1 = 2, ω1 = ab + ba then Q = P ′
Ω′ is not 

the Jordan operad: the Glennie identities are satisfied by the Jordan product 
in every associative algebra but are not consequences of commutativity and the 
Jordan identity.

(k) For an integer d ≥ 1, the operad Qd = P ′
Ω′,d is defined as Q = P ′

Ω′ except that 
R′ includes only (copies of) the relations in R of arity ≤ d.

(l) If m = 1, n1 = 2, ω1 = ab + ba, 4 ≤ d ≤ 7 then Qd = P ′
Ω′,d is the Jordan 

operad.
(2) Next, we assume that we have an algorithm which takes as input an operad P, 

and produces as output a “reconfigured” operad P̂. For example, the KP algorithm 
produces, from a given category of algebras, the corresponding category of dialgebras. 
In terms of operads, this is the Manin white product with Perm.
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(3) Finally, we assume that we have a corresponding algorithm for operations, also de-
noted by hat, which constructs k(i) “reconfigured” operations ω̂i,j1 , . . . , ̂ωi,jk(i) from 
each ωi. For simplicity, we assume that k(i) equals the arity of ωi. For example, if 
ωi is the Lie bracket then the BSO algorithm produces two “reconfigured” operations, 
the left and right Leibniz products, ωi,1 = a � b − b � a and ωi,2 = a � b − b � a.

The conjecture amounts briefly to the statement that the “hat” and the “prime” commute.
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