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ABSTRACT

We find the atomic decomposition of functions in the weighted Besov spaces under certain factorization
conditions on the weight.

Introduction

Following the achievement establishing the atomic decomposition of Hardy
spaces (see [8, 22, 33]), many other function spaces have been shown to admit similar
decompositions. We mention the decomposition of BMO (see [32, 25]), Bergman
spaces (see [9, 24]), the predual of Bloch space (see [12]), Besov spaces (see [15, 5,10]),
Lipschitz spaces (see [18]), Triebel-Lizorkin spaces (see [16, 31]).

They are obtained by quite different methods, but there is a unified and beautiful
approach to get the decomposition for most of the spaces. This is the use of a formula
due to A. P. Calderon (see [6, 7]). The reader is referred to the book by M. Frazier,
B. Jawerth and G. Weiss [18] for a compilation of spaces where Calderon's formula
produces the atomic decomposition, as well as applications of it.

Atomic decompositions of weighted versions of different spaces have been also
considered in the literature (see [27] for weighted Hardy spaces, [4] for Lipschitz
spaces, and so on).

In this paper we shall be concerned with weighted Besov spaces 2?£;*. We shall find
some conditions on the weights which are necessary for atomic decomposition on the
spaces.

We refer the reader to [19, 29,18] for general notions and applications of atomic
decomposition and to [1, 23, 30] for different formulations and properties of Besov
classes.

The classes of weights where the results are achieved consist of those which
factorize through powers of Dini and b1 weights. Our arguments for the cases
1 <p,q < oo will be based upon two main points: Calderon's formula and a quite
simple Schur Lemma. To obtain the extreme cases p,qe{\, oo} we need some new
results on the classes of weights which enable us to apply the same procedure as in the
previous cases. The reader should be aware that the case 1 < q < oo could have been
shown by interpolation with the extreme cases, but a direct proof is presented in the
paper.

Throughout the paper a weight w: U+ -*• U+ is a measurable function w > 0 a.e.,
with 1 ^p,q^ oo and p\q' stand for the conjugate exponents; Sf denotes the
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Schwartz class of test functions on R", 9" the space of tempered distributions, Sf0 the
set of functions in $f with mean zero and ,9% its topological dual. We denote by Q)
the collection of dyadic cubes Q in Un, that is,

Q = Qjz = {xeUn: 2jzt < xt ^ 2j(zt+ 1)} for zeZ"JeZ.

As usual |(?|, l(Q) stand for the volume and the side length of the cube Q, respectively.
We shall write T(Q) for Q x (\l(Q), l(Q)] e R?+1 and cQ for a cube with the same centre
as Q but with side length equal cl(Q).

Given a weight w,<f>eSf0 and 1 ̂ p, q ^ oo we shall denote by Bf^ the space
functions / : Un -> C with / e L\Un, dx/{\ + \x\)n+1) such that

or
| | / | |B , . . = inf{C > 0: | | 0 ( * / | | p ^ Cw(0a.e. / > 0} < oo for q = GO,

where <f>t(x) = (\/tn)fi(x/t).

To state the results of the paper, let us first recall the following notions.
A weight w is said to satisfy DM condition if there exists C > 0 such that

dt^Cw(s) a . e . s>0 .
'0 l

A weight w is said to be a bx-weight if there exists C > 0 such that

^ * < C ^ a.e.,>0.
2

We shall denote by ̂  x the space of ^^weights which satisfy Dini condition. We
use the notation s^ for the class of functions 0 e ^ such that

(a) J0
r o(to))2W0=lfor/#0,

(b) 0 radial and real,
(c) supp le {|x| ^ 1},
(d) jun xt <fi(x) dx = 0 for / = 1 , . . . , n.

We refer the reader to Section 1 for the notion of the (v4,/?)-atom and the
unexplained notations. The aim of the paper is to prove the following theorem.

MAIN THEOREM. Let 1 ̂  p, q ^ oo, <f> e s&\ and w be a weight that can be factored
as w(t) = kllq\t)irll9{rx\ where X,fieiT0<v Then if

HQ) dtVlQ'

«!f 7
1(0)12 L I

we havefeB%% if and only if there exist A > 0, {sQ}Q69 and (A,p)-atoms {aQ}Qe2 such
that/= YjOe®sQao {convergence in Sf'o) and

J —00

r. P\Q/P\1/Q

< OO.
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Moreover

L I
p\Q/p\l/q

•f=

(with the obvious modifications for the case when p and q are infinite).

This can be understood as a generalization of the cases proved in [15, 5,10]
corresponding to w(t) = f.

The paper is divided into three sections. Section 1 has a preliminary character and
it is devoted to introducing the notation and the main lemmas to be used later on. In
Section 2 we get the atomic decomposition for the spaces in the case 1 ̂  p < oo and
1 < q < oo and we postpone the remaining cases to the last section.

1. Preliminaries and basic lemmas

Let us recall some notions on weights that we shall need later.

DEFINITION 1.1. Let e,SeU and w be a weight, then w is said to be a d-weight
if there exists C > 0 such that

fw(t)-^ CsEw(s) a.e.5>0, (1.1)
0 '

and w is said to be a bs-weight if there exists C > 0 such that

a.e.5>0. (1.2)f
J s

ts t

If (dE) (respectively (bd)) denotes the class of d£-weights (respectively ^-weights) we
write

REMARK 1.1. The main examples of such weights are given by

*«.,(/) = / " ( I + |logf|)'.

It is left to the reader to show that wa p^iVES for any S > a and e > —a.

Let us collect some elementary properties to be used in the sequel:
(1.3) we(dB)=> we(dE>) for any e' > e;
(1.4) let w(t) = w^-1), then we(be)owe(de);
(1.5) weife3=> w(t) ^ Cmin(re, t6).
The following properties on weights belonging to Wo 1 are needed for some results

later on.

LEMMA 1.1. Let e ^ 0, S ^ 0 and weWeS. Then

dt C inf ifw(u), (1.6)
0 l s/2 s? u < oo

;C inf ^$. (1.60
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Proof. From (1.4) it is enough to prove (1.6). Let u ^ s. From (1.1)

Cs dt Cu dt
tew(t)~ ^ C tew(t) — ^ Cuew(u).

Jo ' Jo *
If we integrate this inequality in [s, 2s] against the weight \/u1+e+s we have

, , du

Hence, if s/2 ^ v ^ s, we have

and, finally,
dt C ve+<5 2e+6C

COROLLARY 1.1. Let i v e ^ , . Then for any s > 0 we have

f00 A \ rfr
min -,1 w(/)-<C inf w(u). (1.7)

Jo \^ / * s/2<«<s

The next result was pointed out to the authors by F. Ruiz and J. Bastero, who
showed us the proof we present here.

LEMMA 1.2. Let we(de) (respectively, we(bs)). Then there exists p > 0 such that
we(dE_p) (respectively, we(bs_p)).

Proof From (1.4) it is enough to consider we(de). Write X(t) — fw(t). Clearly
Xe(d0). Let us define the operator

H(X)(t)= \^ds for/>0.
Jo s

Since H(X) ^ CX then Hn(X) < CnX. Applying Fubini's theorem and an easy
induction one gets

Take p > 0 such that pC<\, then ZZiPn~lHn(X) ^ (C/(\ -pC))X. Hence

Finally this gives

ds C
ss~pw(s)— ^

s !
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DEFINITION 1.2. Let 1 ̂  p ̂  oo and A > 0. A differentiable function aQ is called
an (A,p)-smooth atom if

suppaQ c 3Q for some Qe2, (1.8)

(1.9)

(1.10)

= x4 ae(x) dx = 0 for / = 1,2,..., n,

for i= 1,2,...,«.
/(G)n/p+l

Let us now establish one of the main lemmas to be used later on. This result is
closely related with Calderon's reproducing formula, and gives a procedure to
decompose functions in L\Mn,dx/(\+\x\)n+1).

LEMMA A (see [6, 18]). Let ft L\Rn, dx/(\ + \x\)n+1) and<j>e stfx. Given l^p^oo,
, define

T(Q)

«oC/)(*) = <l>t(x-y)<i>t*Ay)dy—.

Then the aJJ) are (A,p)-smooth atoms for

and

f= 2>e(/K(/)= lim I
Qe3> M->ao,N->ao k—

for i= !,...,«}

sQ{f)aJJ) in #>'«.

LEMMA 1.3. Let 1 oo^ej^/eL^Or^x/O+M)"*1)- '/we write

sQ(f) = \Q\-1/P'
T(«)

then for any jeZ we have

'v dt
(1.11)

Proof. Assume that p < oo (the case p = oo is similar), then

/ \1/P

( E I^COI'] = sup

= sup

sup

E

E2
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LEMMA 1.4. Let 1 ̂ p ^ oo,A > 0,{aQ}Qe3 s C and {aQ}Qe2 satisfies (1.8) and
(1.10) for A and p. Then for t > 0 andjel. we have

E ,aea<; E . K
1/p

2, ^•aiSPt <Cmin(f/2U) E
I/P

(1.12)

(1.13)

Proof. First observe that E K O - ^ C ^ Q
 n a s on^y a finite number of non-zero

terms since there are a finite number of overlapping cubes of the form {3Q}. Hence

E «««<;
l(Q)

1/p

Use the previous estimate (1.12) and Young's inequality to get

E a«(& E « I r la lp

On the other hand, assume that l(Q) = 2j and t < 2}. Note that x$ 5Q and ye 3(2
implies that |(JC—;>)//| > 1 a n ^ so $((x—y)/t)aQ(y) = 0. Hence supp0t*aQ c 5g.
Moreover

|flQW-fl«WI < C SUp |V

Therefore, using the fact that J 0t = 0, we have

CA

KQ)n/p+l

We have proved that |0( * aQ(x)| ^ C /p+1/5Q. Hence

L la< •5 1 J « J ' •

LEMMA 1.5. Let 1 ^/? ^ °05{^Q}Q6S — ^ a«^/ let {aQ}QeS! be {A,p)-smooth atoms.
Then there exist {cQ}QeS ^ C with cQ # 0 for finitely many QeS> such that for p < oo
and p = oo respectively, we have

Un

i / p

(i
Cminf 1,^1 sup \aQ\.

Proof. Let

flQ(0) if l(Q) > 1 and 30 n 5(0, /(0) # 0 ,
0 otherwise.

(1.14)

(1.14')
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For j < 0 we have cQ = 0 and then we simply use the estimate

133

ocQ(aQ(x)-cQ)
UQ)=2j

Holder's inequality gives

R n

K\\Q\-llpxtQ(x).

2-. l
«<Q)-2>

For 7 ̂  0 we argue as follows. Note that, for fixed j , there exist a finite number,
independent of/, of dyadic cubes of length 2j such that 3Qf] B(0,1{Q)) # 0 . Call such
a family ^ and denote by £, = \JQep3Q-

In the same way as in the case j < 0 we have

I aQ«<
\x\ > 2*

-ia+n/p)

For QeJ^ and *^£ , we use the simple estimate \aQ(x) — CQ\ < 2̂ 42 jn/p. Hence

i
1/P

Finally, we observe that it follows from the mean value theorem and (1.10) that
there exists C > 0 such that

It is clear that if xeE} then there exist K, independent of j , such that |x| ^ K23.
Therefore

,
^

n+1 rfx E |<x<

A2~jnlp~1

1/P

Combining the previous estimates we have (1.14) and (1.14').
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Observe that a net {0JieA converges to 0 in «S^ if there exist {c(}ieA <= C such that
0< — c{ converges to <fi in 5". Using this it is elementary to prove the following lemma.

LEMMA 1.6. Let {fj}jeI be measurable functions defined in Un such that there exist
real numbers {Cj}jeZ with

Then ^ieZf} converges in Sf'o to some function feL1(Un,dx/(\ + |x|n+1)).

2. Atomic decompositions for B^^for 1 ^p < oo and 1 < q < oo.

Let us first state a version of the Schur Lemma that will be useful for our purposes
and whose proof follows easily from Holder's inequality.

LEMMA B. Let 1 < q < oo and \/q+l/q' = 1. Let ( Q ^ I ^ / ^ ) and (Q2,£2,/*2) be
two o-finite measure spaces, let K: Q1 x Q2 —• (R+ £e a measurable function and write
TK(f)for

If there exist C > 0 and measurable functions ht: Qt -> R+ (/or / = 1,2)

A>2)^Ch\(Wl) fr-a.e. (2.2)

Then TK defines a bounded operator from L9(Ql,/x1) into Lc(Q2,//2).

THEOREM 2.1. Let 1 ^p < oo, 1 < q < oo ,0e j^ , w(t) = Xllq\t)^'"{r1), where
^>1. Setting

rUQ)

have feB^ if and only if there exist A > 0,{sQ}QeS) ^ C am/ (A,p)-smooth atoms

)Q^ SUch thatf= Y,Qe3SQaQ in ^

E E , ^ < « . (2.3)
i=-oo \«(g)=2^ \WQJ /

Moreover

E E J ^ :/= E sta
Proof Assume that / e ££;} and write
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The atomic decomposition is obtained from Lemma A. The only thing to prove is the
estimate (2.3). Using (1.11) we have

Hence from duality and Holder's inequality it follows that

sup V /?

j—aa w,

Conversely, let us assume t h a t / = YjQes>sQaQ where {sQ}QeS) satisfies (2.3). We
now use (1.14) in Lemma 1.5 and Lemma 1.6 to prove that YuQemsQaQ c o n "
verges in S/"Q to a function feL\Un,dx/((\ + |x|)n+1)). It suffices to prove that
w}min(\,2-})elg.(I.). We have

f2' / w dt r°° / ivdt
wf min(l,2-09' ^ C E w«(t)mm 1,- - ^ C w°Xt)mm( 1,- -

/ 8 ( 1 )

Using (1.5) we have //(5) ^ min(l, J). Hence

£ <min(l,2-y < cf f^)v+ P°
ie2 VJo ' J l

Since | |0£*/ | | p =̂  TJiei\\LuQ)-2'SQ((/>t*aQ)\\p we can use (1.13) in Lemma 1.4toget

Let us write (QpS^^) = ( N , ^ ^ ) , ^ ) , where v denotes the counting measure,
and (C22,L2,//2) = ((0, +oo),^((0, +co)), dt/t) and consider the following kernel

Take

a j = I ^(0—) mf ^(0 a n ^

Clearly we have
\t) w(t) = /l(/). (2.4)

On the other hand w, ̂  (]$-*X(t)dt/t)w(irift-j<t<2-i+i/j(t))-1'q. This implies that

w, inf MO^o?, w,<< I
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Hence from (2.4), Corollary 1.1 and (2.5)

dt

f . /2
= w, //m mm — ,

JO \ s

^ Cw, inf fi(t) ^ Ca?.
2-;'<^2-;'+1

On the other hand, applying (2.4) and (2.5),

Hence, by Lemma B,

\\h*f\l
w(t)

P\l/P

Lq(dt/t)

< oo.

3. Atomic decompositions for B°?;* 2??\°° fl«i/ 5?',!,

THEOREM 3.1. Let 1 ̂ p< oo, w e f j 1 5 0 G J ^ . ThenfeB*\f if and only if there
exist A > 0,{sQ}QeS £ C a«^/ (A,p)-smooth atoms {aQ}Qe9 such that f = YaQ^sqao. in

Sf"n and
l /P

Moreover

inf

j-i /

\pYlp

(3.1)

sup-

w(0y
~\ -J ~ ZJ '
at QEQ

Proof. Assume that fe Bl^. Apply Lemma A and Lemma 1.3 to obtain (3.1).
Conversely assume that {sQ}Qe2 satisfies (3.1). Invoking Lemmas 1.5 and 1.6 we

can see that Y,QeQsQ{aQ-cQ) converges in 5 ^ to a function/GL1(Rn,d.x/(l + M)n+1)
as soon as we notice that min(l,2~')J*(-iw(0T6'i(2)- Then

£min(l,2-o
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oo

Note that 0<*/= £ £ sQ((pt*aQ) in S/"Q. Hence

137

j = -

\\h*f\\P< £
j—co

£ sQ(<j>t*aQ)
KQ)-2}

(3.2)

Applying (3.2) and (1.13) in Lemma 1.4 we have

ds_
s

THEOREM 3.2. Le/ \ ^p < co,<j)Es^, w a weight such that w^t) = \v~\t)'1 eH^ v

Set w} = sup{w(/);2i"1 < / ^ 2j} and wQ = wHQ). Then fe Bv^\ if and only if there exist
A > 0,{sQ}Qe3> c C and (A,p)-atoms {aQ}Qe3) such

hen fe B^\
that f = Y, sQaQ in <f"Q and

Qe9sQaQ

llp

Moreover

{}—<x,\l(Q)-2>\WQ

Proof Assume that feB%^. Once more use Lemma A and (1.11) to obtain

Adding them up we get

p\l/p

1

Conversely take {sQ}QeSl satisfying (3.3). As in Theorem 2.1 we shall prove that
YjQe®sQaQ converges in S'o to a function/eL1(IRn,i/x/(l + |x|)n+1). It then suffices to
prove that wjmin(l,2~0e/oo(Z), which easily follows from (1.5).

As in Theorem 2.1 we apply (1.13) to get

j=-00

sQ((f>t*aQ)
l / p

Therefore

M+

dt

UQ)-2

1/P / foO

1/30

ds

From Corollary 1.1 we can estimate that

min ,-,iKwf inf C-.
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This shows that

Analysing the previous proofs one realise that the only difficulty in extending to
the case p = oo comes from the failure of (1.14), which in this case can be replaced
by (1.14'). This problem can be overcome by using Lemma 1.2.

THEOREM 3.3. Let 1 ̂  q ^ ao, </>es/ltw(t) = XllQ\t)^r1"1{rl), where k,
Setting

nQ) , dt\llQ'
^ ( 0 - forq>l,l 1

or
wQ = sup{w(O;|/(0 < t ̂  l(Q)} forq=U

we have feB^ if and only if there exist A > 0, {sQ}Qe3l £ C and (A,p)-smooth atoms
YjQeSSQaQ in &"o a n d

sup | ^ | <oo. (2.8)

Moreover,

inf^JI £ s u p . — . . .j-^tQVQi-
j—oo l(Q)~^ V Q/ ) QsQ

{the obvious modifications for q = oo).

Proof. Set

"

or

Using Lemma 1.2, it follows that n, X e (bE) for some 0 < £ < 1 and this is enough
to show that wjmm(\,\j\/2j)el9'(I).

Indeed, for q = oo we have w(t) = X(t) and v^min(l,[/|/20 ^ C^min(l, l/2ei).
From this

(

For q = 1 we have w(t) = /T1^'1) and using (1.5) we have

w^minf 1 , ^ | ^ C— — minf 1,—V^ C < oo,
1 \ 2j) inf^<t<a-m/i(0 V 2;J

where C is independent of j .
For 1 < q < oo take 0 < a < 1 such that q'{\ — a) = 1 — e and use
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Therefore
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