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Abstract-computer algebra systems are developing very fast and it is now possible to use new 
computational power very efficiently to analytically integrate dynamical systems. However, the task 
of producing an appropriate program is time consuming and requires a considerable amount of skill 
and practice. Here the merits of numerical versus computer algebraic approaches are compared in 
the context of a specific problem. @ 2004 Elsevier Ltd. All rights reserved. 
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1. INTRODUCTION 

From time to time, there appear debates about the convenience of using either numerical com- 
putations or analytical theories to describe dynamical systems: usually the positions taken are 
quite radical. On the one hand, partisans of numerical integrations claim there are many effi- 
cient numerical methods, even with dense output, and since computers are becoming faster and 
cheaper, they do not see a particular reason for using analytical theories that usually give a less 
accurate solution due to truncation of expansions at finite order. On the other hand, people 
in favor of analytical methods advance almost the same arguments to defend their use; there 
are many commercial software packages that allow the construction of approximate analytical 
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theories which give results of order high enough, are much less time computing, and so make 
analytical theories competitive with purely numerical methods, as it was shown in [l]. 

While the example provided in [l] is indeed competitive with respect to numerical integration 
(in the sense that the formulas there obtained are simple and give similar precision to well-tested 
numerical methods and even better behavior for long time integration), one may, nevertheless, 
extract erroneous conclusions; in fact, the example used to illustrate their conclusions is quite 
simple-an equatorial orbit under the 52 perturbation (the second term in the Legendre poly- 
nomial expansion of the Earth’s gravity field [2])-i.e., a problem that is integrable in terms of 
elliptic functions. In general, in artificial satellite theory (AST) one has to cope with significantly 
more involved situations, handling huge amount of terms and particular objects like the so-called 
Poisson series. All of this makes general purpose “off the shelf” algebraic manipulators ineffective 
and it becomes necessary to create a specific computer algebra system (CAS) to handle these 
types of objects in an efficient way. 

In this letter, we illustrate the difficulties one can expect in obtaining a theory of high order in 
the main problem of the AST, which may require months of effort by trained people to develop the 
necessary purpose built symbolic algebraic routines. However, once one has obtained the desired 
formulas, the evaluation is very fast, and the results are reliable and comparable in precision with 
efficient numerical methods. Besides, and this is usually not emphasized sufficiently, they can be 
used to obtain a deeper insight into the qualitative problem [3], by determining the phase flow 
evolution, equilibria, bifurcations, etc. 

2. THE MAIN PROBLEM IN AST 
Celestial mechanics provides ample problems for use as work benches for both numerical meth- 

ods and algebraic manipulators. The orbital motion of a particle under the attraction of the 
Earth is one of the most deeply studied due to its practical importance. 

One of the most common ways to represent how Earth’s gravity field acts on the motion of a 
satellite is (see [2]) by a finite sum of spherical harmonics. Assuming a symmetrical Earth, the 
potential function is 

v=-;-f~Jn(pJn(;), (1) 
7x22 

where a: stands for the mean radius of the equator of the Earth, p is the Gaussian constant, P, is 
the Legendre polynomial of degree n, T is the radial distance, and z is the third component of 
the position vector of the satellite. The coefficients J, are constants representing the shape of 
the Earth and are called tonal harmonics. When only the coefficient 52 is taken into account, 
we have the main problem, that is routinely used in the first steps in mission analysis. Thus, this 
potential is a perturbation on the pure Keplerian motion, and since 52 z 0.001, it is taken as a 
small parameter E. 

In AST, the Hamiltonian formalism is preferred to Newton’s equations, and thus, Cartesian 
coordinates and velocities are abandoned in favor of appropriate sets of canonical variables (x, X) 
that satisfy the following first-order system of ODE (Hamilton equations): 

dx t&V dX .a’FI -=-- 
dt=dX’ dt dx’ 

where x(x, X) is a scalar function known as the Hamiltonian and that is made of the sum of the 
kinetic and potential energies. Usually, these equations cannot be solved in closed form. Ideally, 
analytical theories hope to obtain new sets of canonical variables (y,Y) such that Hamilton’s 
equations in the new variables can be solved in a simple way. Unfortunately, this situation rarely 
happens, and an alternative approach consists of trying to find new equations that are somehow 
simpler than the old ones, e.g., the famous planetary or lunar theories in the lgth century, and 
methods like the ones of Poincard, von Zeipel, and the more recent based on Lie series [4]. 
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A Lie transformation may be defined as an infinitesimal contact transformation ‘p : (y, Y; E) H 
(x,X), such that x(y, Y; s) and X(y, Y; E) satisfy 

dx dW dX 8W -=- -- 
d& 8X’ dE= dx’ 

with initial conditions x(y, Y; 0) = y and X(y, Y; 0) = Y. Th e f unction W(x, X) is the generator 
of the transformation. 

Let us now consider a Hamiltonian expanded in series of a small parameter E, 

H(x, x; El = c ~fL,o(x, X); 
7QO 

then, find W(x, X; E) = C,,O(~n/n!)W,+l(~, X), th e g enerating function of a Lie transformation 
such that the new Hamiltoman K (itself a power series in s) 

K(Y,Y;E) = c $n(y, Y) = c $o,n(y, y) 
?I20 n>O 

(3) 

satisfies some prefixed conditions depending on the type of transformation sought; usually it is 
required that K belongs to the kernel of the Lie derivative of the unperturbed term Hc,c. 

Deprit [4] gives a method to build the transformation term by term in a recursive way by 
means of the Lie triangle 

Hi,j = Hi+l,j-1 + with i > 0, j 2 1, (4 

where { -; -} stands for the Poisson bracket. Note that an attendant problem with this approach 
is that there appear many intermediate terms Hi,j which must be computed and stored. 

For the zonal problem in ATS, and in particular for the main problem, there are three outstand- 
ing and extant Lie transformations, namely, the elimination of the parallax [5], the elimination 
of the perigee [6], and the Delaunay normalization [7], that are applied in a cascade. To describe 
them in detail is a task beyond the scope of this letter; the reader who is interested in them (if 
any) is referred to the original papers where they were developed. We just mention that the first 
two transformations are really simplifications, that is to say, they only reduce the Hamiltonian to 
a simpler form which reduces the complexity of high order computations (see [8] for details). In 
contrast, the Delaunay normalization eliminates (in a sense averages over) certain coordinates, 
and the resulting differential system may be solved directly by quadratures. 

We have performed the above three transformations for the zonal problem up to order 7 in 
the perturbation; the number of terms 3-1 c,i of the resulting new Hamiltonian and Wi of the 
generating function are given in Table 1. The result is a quite large number of terms, but 
they are still manageable. However, to obtain the final Hamiltonians and the generators, many 
additional terms are necessary, since we use the Lie triangle (4), and in this case, the number 
of terms appearing in the intermediate Hamiltonians ‘Mi,j is huge, as can be seen from Figure 1: 
the elimination of the parallax produces 67215 terms; 1170399 result from the elimination of 
the perigee; 670499 terms come from the Delaunay normalization, which makes a grand total 
of 1908113 terms. Clearly, all of this requires a significant amount of computer power, and 
the skills to handle it. In our case, it is done automatically by ATESAT (automatization of 
theories and ephemeris in artificial satellite theory), a piece of interactive software developed by 
us [9,10], that automatically generates the Lie transformation chosen and produces a FORTRAN 
or C-code for computing the ephemeris thus obtained [ll]. This software is currently used by 
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Table 1. Number of terms of the new Hamiltonians and generators for several orders 
and transformations. 

After elimination of the parallax xi 
I After elimination of the neriaee I 

(4 (b) 

20 696 820 

35 4630 5881 6142 5940 
36 26728 52132 63561 65770 25616 6 

23808 156393 215155 237817 241702 21590 \ ip’ 106 

68 20400 27792 29502 30006 28877 6 

i 70 j 40434 35181 95146 97665 98587 91482 \ j 

(4 (4 
Figure 1. Number of terms of the intermediate ‘Hi,j generated in the Lie triangle (a) 
in the three transformations, elimination of the parallax (b) and elimination of the 
perigee (c) and Delaunay normalization (d). 

several laboratories, and the code for computing the ephemeris has been recently included in 
MSLIB, the mathematical routines of the French Centre National d’&udes Spatiales. 

To give an indication on the performance of ATESAT, let us mention that working on a PC 
Pentium II at 233 MHz, under Linux, the automatic generation of the C program for computing 
the ephemeris takes less than one minute for orders one, two, and three; orders four, five, and six 
take 10, 170, and 930 minutes, respectively. Once the C program ephemeris is given, computing 
of the position and velocity at any instant is fast, taking less than five seconds in theories up 
to fourth order, although it increases to 10 and 23 seconds for the fifth and sixth orders. The 
numerical precision of ATESAT ephemeris depends, logically, on the order of the theory used 
and the size of the small parameter E; roughly, we can say that a fourth order gives machine 
precision. Thus, we agree with Garcia et al. that symbolic integration is competitive with respect 
to numerical integration provided the final formula obtained with analytical methods is already 
known. Otherwise, one must counterbalance the effort to produce a symbolic integration, which 
as in the case presented here, may be considerable. 
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Our conclusion is that numerical and analytical methods both have their uses. For problems 
which require repetitive computations, as in AST, then the generation of a symbblic formula may 
well be worth the investment of time and effort needed to produce it. 
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