Singular Measures and Convolution Operators

J. M. ALDAZ Juan L. VARONA ${ }^{1)}$
Departamento de Matemáticas y Computación, Universidad de La Rioja, 26004 Logroño, Spain
E-mail: aldaz@dmc.unirioja.es jvarona@dmc.unirioja.es

Abstract

We show that in the study of certain convolution operators, functions can be replaced by measures without changing the size of the constants appearing in weak type $(1,1)$ inequalities. As an application, we prove that the best constants for the centered Hardy-Littlewood maximal operator associated with parallelotopes do not decrease with the dimension.

Keywords Hardy-Littlewood maximal function, Weak type inequalities, Singular measures, Convolution operators
MR(2000) Subject Classification 42A99

1 Introduction

The method of discretization for convolution operators, due to de Guzmán (cf. [1], Theorem 4.1.1), and further developed by Menárguez and Soria (cf. Theorem 1 of [2]) consists in replacing functions by finite sums of Dirac deltas in the study of the operator. So far, the main applications of these theorems have been related to the Hardy-Littlewood maximal function, and more precisely, to the determination of bounds for the best constants c_{d} appearing in the weak type (1,1) inequalities (cf. [2], [3], [4], and [5] for the one-dimensional case, and for higher dimensions, [2] and [6]). In this paper we complement de Guzmán's theorem by proving that one can consider arbitrary measures instead of finite discrete measures, and the same conclusions still hold (Theorem 1). A special case of our theorem (where the space is the real line and the convolution operator is precisely the Hardy-Littlewood maximal function) appears in [5] (see Theorem 2).

Regarding upper bounds for c_{d}, Stein and Strömberg (see [7]) showed that the constants grow at most like $O(d \log d)$ for arbitrary balls, and like $O(d)$ in the case of euclidean balls. With respect to lower bounds for the maximal function associated with cubes, it is shown in [2], Theorem 6, that $c_{d} \geq\left(\frac{1+2^{1 / d}}{2}\right)^{d}$. These bounds decrease with the dimension to $\sqrt{2}$. Increasing lower bounds are given in Proposition 1.4 of [6], where in particular it is proven that $\lim _{\inf }^{d}$ $c_{d} \geq \frac{47 \sqrt{2}}{36}$. But since the best constants are not known, there still is left open the possibility that the c_{d} would form a decreasing sequence; here (see Theorem 2) we show that, for cubes, the inequality $c_{d} \leq c_{d+1}$ holds in every dimension d (not only for the usual maximal function, but also for lacunary versions of it). In dimensions 1 and 2 the stronger result $c_{1}<c_{2}$ is known, thanks to the recent determination by Antonios Melas of the exact value of c_{1} as $\frac{11+\sqrt{61}}{12}$ (Corollary 1 of [5]). Since $c_{2} \geq \sqrt{\frac{3}{2}}+\frac{3-\sqrt{2}}{4}$, by Proposition 1.4 of [6], Melas's result entails that the first inequality is strict.

Finally, we note that the original question of Stein and Strömberg (see also [8], Problem 7.74 c , proposed by Carbery), as to whether $\lim _{d} c_{d}<\infty$ or $\lim _{d} c_{d}=\infty$, remains open.

[^0]
2 Convolution Operators and Measures

We shall state the main theorem of this note in terms of a locally compact group X. Denote by $C(X)$ the family of all continuous functions $g: X \rightarrow \mathbb{R}$, by $C_{c}(X)$ the continuous functions with compact support, and by λ the left Haar measure on X. If $X=\mathbb{R}^{d}, \lambda^{d}$ will stand for the d-dimensional Lebesgue measure. As usual, we shall write $d x$ instead of $d \lambda(x)$. A finite real-valued Borel measure μ on X is Radon if $|\mu|$ is inner regular with respect to the compact sets. It is well known that if X is a locally compact separable metric space, then every finite Borel measure is automatically Radon. Let \mathscr{N} be a neighborhood base at 0 such that each element of \mathscr{N} has compact closure, and let $\left\{h_{U}: U \in \mathscr{N}\right\}$ be an approximate identity, i.e., a family of nonnegative Borel functions such that for every $U \in \mathscr{N}$, supp $h_{U} \subset U$ and $\left\|h_{U}\right\|_{1}=1$. Furthermore, since for every neighborhood U of 0 there is a continuous function g_{U} with values in $[0,1], g_{U}(0)=1$, and $\operatorname{supp} g_{U} \subset U$, we may assume that each function in the approximate identity is continuous (obtain h_{U} by normalizing g_{U}). Let μ be a finite, nonnegative Radon measure on X. Recall that $h * f(x)=\int f\left(y^{-1} x\right) h(y) d y$ and $\mu * f(x)=\int f\left(y^{-1} x\right) d \mu(y)$. Let $g \in C_{c}(X)$; we shall utilize the following well-known results: $\mu *\left(h_{U} * g\right)=\left(\mu * h_{U}\right) * g$, and $h_{U} * g \rightarrow g$ uniformly as $U \downarrow 0$. The idea of the proof below consists simply in replacing the measure μ with the continuous function $\mu * h_{U}$, using the fact that $\left\|\mu * h_{U}\right\|_{1}=\mu(X)$.

The L_{1} norm refers always in this paper to the Haar measure.
Lemma 1 Let $\left\{k_{\beta}\right\}$ be a family of nonnegative lower semicontinuous real-valued functions, defined on X. Set $k^{*} v:=\sup _{\beta}\left|v * k_{\beta}\right|$, where v is either a function or a measure. Then, for every finite real-valued Radon measure μ on X, and every $\alpha>0$,

$$
\lambda^{d}\left\{k^{*} \mu>\alpha\right\} \leq \sup \left\{\lambda^{d}\left\{k^{*} f>\alpha\right\}:\|f\|_{1}=|\mu|(X)\right\} .
$$

The same result holds if $\left\{k_{n}\right\}$ is a sequence of nonnegative real-valued Borel functions.
Proof Consider first the case where $\left\{k_{\beta}\right\}$ is a family of lower semicontinuous functions. We shall assume that functions and measures are nonnegative. There is no loss of generality in doing so since $k^{*} f \leq k^{*}|f|$ and $k^{*} \mu \leq k^{*}|\mu|$ always. Also, by lower semicontinuity, $\int k_{\beta} d \mu=$ $\sup \left\{\int g_{\gamma, \beta} d \mu: 0 \leq g_{\gamma, \beta} \leq k_{\beta}, g_{\gamma, \beta} \in C_{c}(X)\right\}$ (Corollary 7.13 of [9]). It follows that for every x, $\sup _{\beta} \mu * k_{\beta}(x)=\sup _{\gamma, \beta}\left\{\mu * g_{\gamma, \beta}(x): 0 \leq g_{\gamma, \beta} \leq k_{\beta}, g_{\gamma, \beta} \in C_{c}(X)\right\}$. Therefore we may assume that the family $\left\{k_{\beta}\right\}$ consists of nonnegative continuous functions with compact support.

Next, let $\left\{h_{U}: U \in \mathscr{N}\right\}$ be an approximate identity as above, with each h_{U} continuous, and let $C \subset\left\{k^{*} \mu>\alpha\right\}$ be a compact set. It suffices to show that there exists a function f with $\|f\|_{1}=\mu(X)$ and $C \subset\left\{k^{*} f>\alpha\right\}$. We shall take f to be $\mu * h_{U_{0}}$, for a suitably chosen neighborhood U_{0}. Since $\left\{k^{*} \mu>\alpha\right\}=\cup_{\beta}\left\{\mu * k_{\beta}>\alpha\right\}$ and each $\mu * k_{\beta}$ is continuous, there exists a finite subcollection of indices $\left\{\beta_{1}, \ldots, \beta_{\ell}\right\}$ with $C \subset \cup_{1}^{\ell}\left\{\mu * k_{\beta_{i}}>\alpha\right\}$, so the continuous function $\max _{1 \leq i \leq \ell} \mu * k_{\beta_{i}}$ attains a minimum value $\alpha+a$ on C, with a strictly positive. Because μ is a finite measure and $h_{U} * k_{\beta_{i}}$ converges uniformly to $k_{\beta_{i}}$ as $U \rightarrow 0, \mu * h_{U} * k_{\beta_{i}}$ also converges uniformly to $\mu * k_{\beta_{i}}$. Hence, there exists a $U_{0} \in \mathscr{N}$ such that for every $V \subset U_{0}, V \in \mathscr{N}$, and every $i \in\{1, \ldots, \ell\},\left\|\mu * k_{\beta_{i}}-\mu * h_{V} * k_{\beta_{i}}\right\|_{\infty}<a / 2$. In particular, it follows that

$$
C \subset\left\{\max _{1 \leq i \leq \ell} \mu * h_{U_{0}} * k_{\beta_{i}}>\alpha\right\} \subset\left\{k^{*}\left(\mu * h_{U_{0}}\right)>\alpha\right\}
$$

The case where $\left\{k_{n}\right\}$ is a sequence of nonnegative bounded Borel functions can be proved by reduction to the previous one. Choose a finite Radon measure μ and fix $\alpha>0$. Given $\varepsilon \in(0,1)$, for every n let $g_{n} \geq k_{n}$ be a bounded, lower semicontinuous function with $\left\|g_{n}-k_{n}\right\|_{1}<\frac{\varepsilon^{2}}{2^{n+1} \mu(X)}$ (cf. Proposition 7.14 of [9]). Then, for any $f \in L_{1}(\lambda)$, using the Fubini-Tonelli theorem and left invariance we have

$$
\begin{aligned}
\left\|g^{*} f-k^{*} f\right\|_{1} & =\left\|\sup _{n} \int g_{n}\left(y^{-1} x\right) f(y) d y-\sup _{n} \int k_{n}\left(y^{-1} x\right) f(y) d y\right\|_{1} \\
& \leq \sum_{n} \iint\left(g_{n}\left(y^{-1} x\right)-k_{n}\left(y^{-1} x\right)\right)|f(y)| d y d x
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{n} \int|f(y)| \int\left(g_{n}\left(y^{-1} x\right)-k_{n}\left(y^{-1} x\right)\right) d x d y \\
& =\sum_{n}\|f\|_{1}\left\|g_{n}-k_{n}\right\|_{1}<\|f\|_{1} \varepsilon^{2}(\mu(X))^{-1} .
\end{aligned}
$$

In particular, if $\|f\|_{1}=\mu(X)$, we have that $\left\|g^{*} f-k^{*} f\right\|_{1}<\varepsilon^{2}$, from which $\lambda\left\{g^{*} f-k^{*} f \geq \varepsilon\right\} \leq$ $\frac{\left\|g^{*} f-k^{*} f\right\|_{1}}{\varepsilon}<\varepsilon$ follows. Now $\left\{g^{*} f>\alpha+\varepsilon\right\} \subset\left\{k^{*} f>\alpha\right\} \cup\left\{g^{*} f-k^{*} f>\varepsilon\right\}$, so

$$
\begin{aligned}
(\alpha+\varepsilon) \lambda\left\{k^{*} \mu>\alpha+\varepsilon\right\} & \leq(\alpha+\varepsilon) \lambda\left\{g^{*} \mu>\alpha+\varepsilon\right\} \\
& \leq(\alpha+\varepsilon) \sup \left\{\lambda\left\{g^{*} f>\alpha+\varepsilon\right\}:\|f\|_{1}=\mu(X)\right\} \\
& \leq(\alpha+\varepsilon)\left(\sup \left\{\lambda\left\{k^{*} f>\alpha\right\}:\|f\|_{1}=\mu(X)\right\}+\varepsilon\right)
\end{aligned}
$$

and the result is obtained by letting $\varepsilon \downarrow 0$.
Theorem 1 Let $\left\{k_{\beta}\right\}$ be a family of nonnegative lower semicontinuous real-valued functions, defined on X, and let $c>0$ be a fixed constant. Then the following are equivalent:
(i) For every function $f \in L_{1}(\lambda)$, and every $\alpha>0, \alpha \lambda\left\{k^{*} f>\alpha\right\} \leq c\|f\|_{1}$.
(ii) For every finite real-valued Radon measure μ on X, and every $\alpha>0, \alpha \lambda\left\{k^{*} \mu>\alpha\right\} \leq$ $c^{\mid}|\mu|(X)$.
The same result holds if $\left\{k_{n}\right\}$ is a sequence of nonnegative real-valued Borel functions.
Proof (i) is the special case of (ii) where $d \mu(y)=f(y) d y$. For the other direction, by Lemma 1 and part (i) we have $\alpha \lambda\left\{k^{*} \mu>\alpha\right\} \leq \alpha \sup \left\{\lambda\left\{k^{*} f>\alpha\right\}:\|f\|_{1}=|\mu|(X)\right\} \leq c|\mu|(X)$.
Remark 1 By the discretization theorem of de Guzmán (see [1], Theorem 4.1.1), further refined by Menárguez and Soria (Theorem 1 of [2]), in \mathbb{R}^{d} conditions (i) and (ii) of Theorem 1 are both equivalent to
(iii) For every finite collection $\left\{\delta_{x_{1}}, \ldots, \delta_{x_{N}}\right\}$ of Dirac deltas on X, and every $\alpha>0$, $\alpha \lambda\left\{k^{*} \sum_{1}^{N} \delta_{x_{i}}>\alpha\right\} \leq c N$.

From the viewpoint of obtaining lower bounds, the usefulness of (ii) is due to the fact that it allows us to choose among a wider class of potential examples than just finite sums of Dirac deltas. Both (ii) and (iii) will be utilized in the sext section.

3 Behavior of Constants for the Hardy-Littlewood Maximal Operator

Let $B \subset \mathbb{R}^{d}$ be an open, bounded, convex set, symmetric about zero. We shall call B a ball, since each norm on \mathbb{R}^{d} yields sets of this type, and each bounded B, convex and symmetric about zero, defines a norm. The (centered) Hardy-Littlewood maximal operator associated with B is defined for locally integrable functions $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ as $M_{d, B} f(x):=\sup _{r>0} \frac{\chi_{r B}}{r^{d} \lambda^{d}(B)} *|f|(x)$. We denote by $c_{d, B}$ the best constant in the weak type (1,1) inequality $\alpha \lambda^{d}\left\{M_{d, B} f>\alpha\right\} \leq c\|f\|_{1}$, where c is independent of $f \in L^{1}\left(\mathbb{R}^{n}\right)$ and $\alpha>0$. Let $s:=\left\{r_{n}\right\}_{-\infty}^{\infty}$ be a lacunary (bi)sequence (i.e., a sequence that satisfies $r_{n+1} / r_{n} \geq c$ for some fixed constant $c>1$ and every $n \in \mathbb{Z}$). Then the associated maximal operator is defined via $M_{s, d, B} f(x):=\sup _{n \in \mathbb{Z}} \frac{\chi_{r_{n} B}^{d}}{r_{n}^{d} \lambda^{d}(B)} *|f|(x)$. The arguments given below are applicable to both the maximal function and to lacunary versions of it, so we shall not introduce a different notation for the best constants in the lacunary case. In particular, Lemma 2 and Theorem 2 refer to all of these maximal operators, but only the usual maximal operator shall be mentioned in the proofs.

Given a finite sum $\mu=\sum_{1}^{k} \delta_{x_{i}}$ of Dirac deltas, where the x_{i} 's need not be all different, let $\sharp(x+B)$ be the number of point masses from μ contained in $x+B$.
Lemma 2 Let B be a ball in \mathbb{R}^{d}. Then for every linear transformation $T: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ with $\operatorname{det} T \neq 0, c_{d, B}=c_{d, T(B)}$.
Proof Given $\mu:=\sum_{1}^{k} \delta_{x_{i}}$ and $T \mu:=\sum_{1}^{k} \delta_{T\left(x_{i}\right)}$, we have that

$$
M_{d, B} \mu(x):=\sup _{r>0} \frac{\sharp(x+r B)}{r^{d} \lambda^{d}(B)} \text { and } M_{d, T(B)} T \mu(x):=\sup _{r>0} \frac{\sharp(x+r T(B))}{r^{d} \lambda^{d}(T(B))} .
$$

Then $x \in\left\{M_{d, B} \mu>\alpha\right\}$ iff $T(x) \in\left\{M_{d, T(B)} T \mu>(\alpha /|\operatorname{det} T|)\right\}$. Since

$$
|\operatorname{det} T| \lambda^{d}\left\{M_{d, B} \mu>\alpha\right\}=\lambda^{d}\left\{M_{d, T(B)} T \mu>(\alpha /|\operatorname{det} T|)\right\}
$$

we have $\alpha \lambda^{d}\left\{M_{d, B} \mu>\alpha\right\}=(\alpha /|\operatorname{det} T|) \lambda^{d}\left\{M_{d, T(B)} T \mu>(\alpha /|\operatorname{det} T|)\right\}$, and the result follows.
Theorem 2 For each $d \in \mathbb{N} \backslash\{0\}$ let B_{d} be a d-dimensional parallelotope centered at zero. Then $c_{d, B_{d}} \leq c_{d+1, B_{d+1}}$ for both the maximal operator and for lacunary operators.
Proof Since every such B_{d} is the image under a nonsingular linear transformation of the d dimensional cube Q_{d} centered at zero with sides parallel to the axes and volume 1 , we may assume that in fact $B_{d}=Q_{d}$. With the convex bodies fixed, we will write c_{d} and M_{d} rather than $c_{d, B_{d}}$ and $M_{d, B_{d}}$. Given $\alpha>0, \mu_{d}=\sum_{1}^{k} \delta_{x_{i}}$ on \mathbb{R}^{d} and a constant $c>0$ such that $\alpha \lambda^{d}\left\{M_{d} \mu_{d}>\right.$ $\alpha\}>c \mu_{d}\left(\mathbb{R}^{d}\right)$, we want to find a measure μ_{d+1} on \mathbb{R}^{d+1} such that $\alpha \lambda^{d+1}\left\{M_{d+1} \mu_{d+1}>\alpha\right\}>$ $c \mu_{d+1}\left(\mathbb{R}^{d+1}\right)$. This will imply that $c_{d} \leq c_{d+1}$. Let $L:=(k / \alpha)^{1 / d}$. Note that if $r \geq L$, then for every $x \in \mathbb{R}^{d}, \frac{\sharp\left(x+r Q_{d}\right)}{r^{d}} \leq \alpha$. Choose $N \gg L$ such that $\alpha \frac{N-L}{N} \lambda^{d}\left\{M_{d} \mu_{d}>\alpha\right\}>c k$, and let $\mu_{d+1}:=\mu_{d} \times \lambda_{[-N, N]}$, where $\lambda_{[-N, N]}$ stands for the restriction of linear Lebesgue measure to the interval $[-N, N]$. We claim that $\left\{M_{d} \mu_{d}>\alpha\right\} \times[-N+L, N-L] \subset\left\{M_{d+1} \mu_{d+1}>\alpha\right\}$. In order to establish the claim, the following notation shall be used: If $x=\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}$, by $\left(x, x_{d+1}\right)$ we denote the point $\left(x_{1}, \ldots, x_{d}, x_{d+1}\right) \in \mathbb{R}^{d+1}$. Now if $x \in\left\{M_{d} \mu_{d}>\alpha\right\}$, then there exists an $r(x) \in(0, L)$ such that $r(x)^{-d} \mu_{d}\left(x+r(x) Q_{d}\right)>\alpha$, so for every $y \in[-N+L, N-L]$,

$$
\begin{aligned}
r(x)^{-d-1} \mu_{d+1}\left((x, y)+r(x) Q_{d+1}\right) & =r(x)^{-d-1}\left(\mu_{d}\left(x+r(x) Q_{d}\right) \times \lambda_{[-N, N]}\left(\left[y-\frac{r(x)}{2}, y+\frac{r(x)}{2}\right]\right)\right. \\
& =r(x)^{-d} \mu_{d}\left(x+r(x) Q_{d}\right)>\alpha,
\end{aligned}
$$

as desired. But now

$$
\begin{aligned}
\alpha \lambda^{d+1}\left\{M_{d+1} \mu_{d+1}>\alpha\right\} & \geq 2 \alpha(N-L) \lambda^{d}\left\{M_{d} \mu_{d}>\alpha\right\}=2 \alpha N \frac{N-L}{N} \lambda^{d}\left\{M_{d} \mu_{d}>\alpha\right\} \\
& >2 N c k=c \mu_{d+1}\left(\mathbb{R}^{d+1}\right)
\end{aligned}
$$

Remark 2 Recall from the Introduction that, for the ℓ_{∞} balls (i.e., cubes with sides parallel to the axes), $c_{1}<c_{2}$. Since the ℓ_{1} unit ball in dimension 2 is a square, it follows from Lemma 2 that the best constant in dimension 2 is equal for the ℓ_{1} and the ℓ_{∞} norms. It follows that $c_{1}<c_{2}$ in the ℓ_{1} case also. It would be interesting to know whether or not the best constants associated with the ℓ_{p} balls are all the same. Note that establishing bounds of the type $a^{-1} c_{d, 2} \leq$ $c_{d, p} \leq a c_{d, 2}$ (where the constant $a \geq 1$ is independent of the dimension d and $c_{d, p}$ denotes the best constant associated with the $\bar{\ell}_{p}$ ball) would show that the bounds $O(d)$ (which hold for Euclidean balls by [7]) extend to ℓ_{p} balls.

References

[1] Guzmán, M. de,: "Real variable methods in Fourier analysis," North-Holland Mathematics Studies, 46. Notas de Matemática [Mathematical Notes], 75. North-Holland Publishing Co., Amsterdam-New York, 1981
[2] Menárguez, M. T., Soria, F.: Weak type $(1,1)$ inequalities for maximal convolution operators. Rend. Circ. Mat. Palermo, 41(2), 342-352 (1992)
[3] Aldaz, J. M.: Remarks on the Hardy-Littlewood maximal function. Proc. Roy. Soc. Edinburgh Sect. A, 128, 1-9 (1998)
[4] Melas, A. D.: On the centered Hardy-Littlewood maximal operator. Trans. Amer. Math. Soc., 354, 3263-3273 (2002)
[5] Melas, A. D.: The best constant for the centered Hardy-Littlewood maximal inequality. Ann. of Math. (2), 157, 647-688 (2003)
[6] Aldaz, J. M.: A remark on the centered n-dimensional Hardy-Littlewood maximal function. Czech. Math. J., 50(125), 103-112 (2000)
[7] Stein, E. M., Strömberg, J. O.: Behaviour of maximal functions in \mathbb{R}^{n} for large n. Ark. Mat., 21, 259-269 (1983)
[8] Brannan, D. A., Hayman, W. K.: Research problems in complex analysis. Bull. London Math. Soc., 21, 1-35 (1989)
[9] Folland, G. B.: "Real Analysis. Modern Techniques and Their Applications", Pure and Applied Mathematics, John Wiley and Sons, New York, 1984

[^0]: Received April 14, 2004, Accepted August 25, 2004
 Research supported by Grant BFM2003-06335-C03-03 of the DGI
 ${ }^{1)}$ Corresponding author: Juan L. Varona

