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Abstract We show that in the study of certain convolution operators, functions can be replaced

by measures without changing the size of the constants appearing in weak type (1, 1) inequalities. As

an application, we prove that the best constants for the centered Hardy–Littlewood maximal operator

associated with parallelotopes do not decrease with the dimension.
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1 Introduction

The method of discretization for convolution operators, due to de Guzmán (cf. [1], Theo-
rem 4.1.1), and further developed by Menárguez and Soria (cf. Theorem 1 of [2]) consists in
replacing functions by finite sums of Dirac deltas in the study of the operator. So far, the main
applications of these theorems have been related to the Hardy–Littlewood maximal function,
and more precisely, to the determination of bounds for the best constants cd appearing in the
weak type (1, 1) inequalities (cf. [2], [3], [4], and [5] for the one-dimensional case, and for higher
dimensions, [2] and [6]). In this paper we complement de Guzmán’s theorem by proving that
one can consider arbitrary measures instead of finite discrete measures, and the same conclu-
sions still hold (Theorem 1). A special case of our theorem (where the space is the real line and
the convolution operator is precisely the Hardy–Littlewood maximal function) appears in [5]
(see Theorem 2).

Regarding upper bounds for cd, Stein and Strömberg (see [7]) showed that the constants
grow at most like O(d log d) for arbitrary balls, and like O(d) in the case of euclidean balls.
With respect to lower bounds for the maximal function associated with cubes, it is shown
in [2], Theorem 6, that cd ≥ (

1+21/d

2

)d. These bounds decrease with the dimension to
√

2.
Increasing lower bounds are given in Proposition 1.4 of [6], where in particular it is proven
that lim infd cd ≥ 47

√
2

36 . But since the best constants are not known, there still is left open the
possibility that the cd would form a decreasing sequence; here (see Theorem 2) we show that,
for cubes, the inequality cd ≤ cd+1 holds in every dimension d (not only for the usual maximal
function, but also for lacunary versions of it). In dimensions 1 and 2 the stronger result c1 < c2

is known, thanks to the recent determination by Antonios Melas of the exact value of c1 as
11+

√
61

12 (Corollary 1 of [5]). Since c2 ≥
√

3
2 + 3−√

2
4 , by Proposition 1.4 of [6], Melas’s result

entails that the first inequality is strict.
Finally, we note that the original question of Stein and Strömberg (see also [8], Prob-

lem 7.74 c, proposed by Carbery), as to whether limd cd < ∞ or limd cd = ∞, remains open.
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2 Convolution Operators and Measures

We shall state the main theorem of this note in terms of a locally compact group X. Denote
by C(X) the family of all continuous functions g : X → R, by Cc(X) the continuous functions
with compact support, and by λ the left Haar measure on X. If X = R

d, λd will stand for
the d-dimensional Lebesgue measure. As usual, we shall write dx instead of dλ(x). A finite
real-valued Borel measure μ on X is Radon if |μ| is inner regular with respect to the compact
sets. It is well known that if X is a locally compact separable metric space, then every finite
Borel measure is automatically Radon. Let N be a neighborhood base at 0 such that each
element of N has compact closure, and let {hU : U ∈ N } be an approximate identity, i.e., a
family of nonnegative Borel functions such that for every U ∈ N , supphU ⊂ U and ‖hU‖1 = 1.
Furthermore, since for every neighborhood U of 0 there is a continuous function gU with values
in [0, 1], gU (0) = 1, and suppgU ⊂ U , we may assume that each function in the approximate
identity is continuous (obtain hU by normalizing gU ). Let μ be a finite, nonnegative Radon
measure on X. Recall that h ∗ f(x) =

∫
f(y−1x)h(y) dy and μ ∗ f(x) =

∫
f(y−1x) dμ(y). Let

g ∈ Cc(X); we shall utilize the following well-known results: μ ∗ (hU ∗ g) = (μ ∗ hU ) ∗ g, and
hU ∗ g → g uniformly as U ↓ 0. The idea of the proof below consists simply in replacing the
measure μ with the continuous function μ ∗ hU , using the fact that ‖μ ∗ hU‖1 = μ(X).

The L1 norm refers always in this paper to the Haar measure.
Lemma 1 Let {kβ} be a family of nonnegative lower semicontinuous real-valued functions,
defined on X. Set k∗v := supβ |v ∗ kβ |, where v is either a function or a measure. Then, for
every finite real-valued Radon measure μ on X, and every α > 0,

λd{k∗μ > α} ≤ sup
{
λd{k∗f > α} : ‖f‖1 = |μ|(X)

}
.

The same result holds if {kn} is a sequence of nonnegative real-valued Borel functions.
Proof Consider first the case where {kβ} is a family of lower semicontinuous functions. We
shall assume that functions and measures are nonnegative. There is no loss of generality in
doing so since k∗f ≤ k∗|f | and k∗μ ≤ k∗|μ| always. Also, by lower semicontinuity,

∫
kβ dμ =

sup{∫ gγ,β dμ : 0 ≤ gγ,β ≤ kβ , gγ,β ∈ Cc(X)} (Corollary 7.13 of [9]). It follows that for every x,
supβ μ ∗ kβ(x) = supγ,β{μ ∗ gγ,β(x) : 0 ≤ gγ,β ≤ kβ , gγ,β ∈ Cc(X)}. Therefore we may assume
that the family {kβ} consists of nonnegative continuous functions with compact support.

Next, let {hU : U ∈ N } be an approximate identity as above, with each hU continuous,
and let C ⊂ {k∗μ > α} be a compact set. It suffices to show that there exists a function f
with ‖f‖1 = μ(X) and C ⊂ {k∗f > α}. We shall take f to be μ ∗ hU0 , for a suitably chosen
neighborhood U0. Since {k∗μ > α} = ∪β{μ ∗ kβ > α} and each μ ∗ kβ is continuous, there
exists a finite subcollection of indices {β1, . . . , β�} with C ⊂ ∪�

1{μ ∗ kβi
> α}, so the continuous

function max1≤i≤� μ∗kβi
attains a minimum value α+a on C, with a strictly positive. Because

μ is a finite measure and hU ∗kβi
converges uniformly to kβi

as U → 0, μ∗hU ∗kβi
also converges

uniformly to μ ∗ kβi
. Hence, there exists a U0 ∈ N such that for every V ⊂ U0, V ∈ N , and

every i ∈ {1, . . . , �}, ‖μ ∗ kβi
− μ ∗ hV ∗ kβi

‖∞ < a/2. In particular, it follows that

C ⊂
{

max
1≤i≤�

μ ∗ hU0 ∗ kβi
> α

}
⊂ {

k∗(μ ∗ hU0) > α
}
.

The case where {kn} is a sequence of nonnegative bounded Borel functions can be proved by
reduction to the previous one. Choose a finite Radon measure μ and fix α > 0. Given ε ∈ (0, 1),
for every n let gn ≥ kn be a bounded, lower semicontinuous function with ‖gn−kn‖1 < ε2

2n+1μ(X)

(cf. Proposition 7.14 of [9]). Then, for any f ∈ L1(λ), using the Fubini–Tonelli theorem and
left invariance we have

‖g∗f − k∗f‖1 =
∥
∥∥
∥ sup

n

∫
gn(y−1x)f(y) dy − sup

n

∫
kn(y−1x)f(y) dy

∥
∥∥
∥

1

≤
∑

n

∫∫
(gn(y−1x) − kn(y−1x))|f(y)| dy dx
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=
∑

n

∫
|f(y)|

∫
(gn(y−1x) − kn(y−1x)) dx dy

=
∑

n

‖f‖1‖gn − kn‖1 < ‖f‖1ε
2(μ(X))−1.

In particular, if ‖f‖1 = μ(X), we have that ‖g∗f −k∗f‖1 < ε2, from which λ{g∗f −k∗f ≥ ε} ≤
‖g∗f−k∗f‖1

ε < ε follows. Now {g∗f > α + ε} ⊂ {k∗f > α} ∪ {g∗f − k∗f > ε}, so
(α + ε)λ{k∗μ > α + ε} ≤ (α + ε)λ{g∗μ > α + ε}

≤ (α + ε) sup{λ{g∗f > α + ε} : ‖f‖1 = μ(X)}
≤ (α + ε)(sup{λ{k∗f > α} : ‖f‖1 = μ(X)} + ε),

and the result is obtained by letting ε ↓ 0.
Theorem 1 Let {kβ} be a family of nonnegative lower semicontinuous real-valued functions,
defined on X, and let c > 0 be a fixed constant. Then the following are equivalent :

(i) For every function f ∈ L1(λ), and every α > 0, αλ{k∗f > α} ≤ c‖f‖1.
(ii) For every finite real-valued Radon measure μ on X, and every α > 0, αλ{k∗μ > α} ≤

c|μ|(X).
The same result holds if {kn} is a sequence of nonnegative real-valued Borel functions.
Proof (i) is the special case of (ii) where dμ(y) = f(y) dy. For the other direction, by Lemma 1
and part (i) we have αλ{k∗μ > α} ≤ α sup{λ{k∗f > α} : ‖f‖1 = |μ|(X)} ≤ c|μ|(X).
Remark 1 By the discretization theorem of de Guzmán (see [1], Theorem 4.1.1), further
refined by Menárguez and Soria (Theorem 1 of [2]), in R

d conditions (i) and (ii) of Theorem 1
are both equivalent to

(iii) For every finite collection {δx1 , . . . , δxN
} of Dirac deltas on X, and every α > 0,

αλ{k∗ ∑N
1 δxi

> α} ≤ cN.

From the viewpoint of obtaining lower bounds, the usefulness of (ii) is due to the fact that
it allows us to choose among a wider class of potential examples than just finite sums of Dirac
deltas. Both (ii) and (iii) will be utilized in the sext section.

3 Behavior of Constants for the Hardy–Littlewood Maximal Operator

Let B ⊂ R
d be an open, bounded, convex set, symmetric about zero. We shall call B a ball,

since each norm on R
d yields sets of this type, and each bounded B, convex and symmetric about

zero, defines a norm. The (centered) Hardy–Littlewood maximal operator associated with B is
defined for locally integrable functions f : R

d → R as Md,Bf(x) := supr>0
χrB

rdλd(B)
∗ |f |(x). We

denote by cd,B the best constant in the weak type (1, 1) inequality αλd{Md,Bf > α} ≤ c‖f‖1,
where c is independent of f ∈ L1(Rn) and α > 0. Let s := {rn}∞−∞ be a lacunary (bi)sequence
(i.e., a sequence that satisfies rn+1/rn ≥ c for some fixed constant c > 1 and every n ∈ Z).
Then the associated maximal operator is defined via Ms,d,Bf(x) := supn∈Z

χrnB

rd
nλd(B)

∗|f |(x). The
arguments given below are applicable to both the maximal function and to lacunary versions
of it, so we shall not introduce a different notation for the best constants in the lacunary case.
In particular, Lemma 2 and Theorem 2 refer to all of these maximal operators, but only the
usual maximal operator shall be mentioned in the proofs.

Given a finite sum μ =
∑k

1 δxi
of Dirac deltas, where the xi’s need not be all different, let

�(x + B) be the number of point masses from μ contained in x + B.
Lemma 2 Let B be a ball in R

d. Then for every linear transformation T : R
d → R

d with
detT 
= 0, cd,B = cd,T (B).

Proof Given μ :=
∑k

1 δxi
and Tμ :=

∑k
1 δT (xi), we have that

Md,Bμ(x) := sup
r>0

�(x + rB)
rdλd(B)

and Md,T (B)Tμ(x) := sup
r>0

�(x + rT (B))
rdλd(T (B))

.
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Then x ∈ {Md,Bμ > α} iff T (x) ∈ {Md,T (B)Tμ > (α/| detT |)}. Since
| detT |λd{Md,Bμ > α} = λd{Md,T (B)Tμ > (α/| detT |)},

we have αλd{Md,Bμ > α} = (α/| detT |)λd{Md,T (B)Tμ > (α/| detT |)}, and the result follows.
Theorem 2 For each d ∈ N \ {0} let Bd be a d-dimensional parallelotope centered at zero.
Then cd,Bd

≤ cd+1,Bd+1 for both the maximal operator and for lacunary operators.
Proof Since every such Bd is the image under a nonsingular linear transformation of the d-
dimensional cube Qd centered at zero with sides parallel to the axes and volume 1, we may
assume that in fact Bd = Qd. With the convex bodies fixed, we will write cd and Md rather than
cd,Bd

and Md,Bd
. Given α > 0, μd =

∑k
1 δxi

on R
d and a constant c > 0 such that αλd{Mdμd >

α} > cμd(Rd), we want to find a measure μd+1 on R
d+1 such that αλd+1{Md+1μd+1 > α} >

cμd+1(Rd+1). This will imply that cd ≤ cd+1. Let L := (k/α)1/d. Note that if r ≥ L, then for
every x ∈ R

d, �(x+rQd)
rd ≤ α. Choose N � L such that αN−L

N λd{Mdμd > α} > ck, and let
μd+1 := μd × λ[−N,N ], where λ[−N,N ] stands for the restriction of linear Lebesgue measure to
the interval [−N, N ]. We claim that {Mdμd > α} × [−N + L, N − L] ⊂ {Md+1μd+1 > α}. In
order to establish the claim, the following notation shall be used: If x = (x1, . . . , xd) ∈ R

d, by
(x, xd+1) we denote the point (x1, . . . , xd, xd+1) ∈ R

d+1. Now if x ∈ {Mdμd > α}, then there
exists an r(x) ∈ (0, L) such that r(x)−dμd(x + r(x)Qd) > α, so for every y ∈ [−N + L, N −L],
r(x)−d−1μd+1((x, y) + r(x)Qd+1) = r(x)−d−1(μd(x + r(x)Qd) × λ[−N,N ]([y − r(x)

2 , y + r(x)
2 ])

= r(x)−dμd(x + r(x)Qd) > α,

as desired. But now

αλd+1{Md+1μd+1 > α} ≥ 2α(N − L)λd{Mdμd > α} = 2αN
N − L

N
λd{Mdμd > α}

> 2Nck = cμd+1(Rd+1).

Remark 2 Recall from the Introduction that, for the �∞ balls (i.e., cubes with sides parallel
to the axes), c1 < c2. Since the �1 unit ball in dimension 2 is a square, it follows from Lemma 2
that the best constant in dimension 2 is equal for the �1 and the �∞ norms. It follows that
c1 < c2 in the �1 case also. It would be interesting to know whether or not the best constants
associated with the �p balls are all the same. Note that establishing bounds of the type a−1cd,2 ≤
cd,p ≤ acd,2 (where the constant a ≥ 1 is independent of the dimension d and cd,p denotes the
best constant associated with the �p ball) would show that the bounds O(d) (which hold for
Euclidean balls by [7]) extend to �p balls.
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