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Abstract

Special efficient Poisson series processors (PSP) have been created. Poison series appear frequently in problems of
non-linear dynamics and celestial mechanics and their size makes their manipulation by means of general computer
algebra systems (CAS) inefficient, but the characteristics of the problems suggest the use of general CAS with
other general scientific software like compilers, libraries of compiled programs or word processors. To combine
these specialized and general tools we need to communicate between them. In this paper we describe the tools to
share information between PSPC, our own PSP, and other general software. © 2001 IMACS. Published by Elsevier
Science B.V. All rights reserved.
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1. Introduction

In a previous paper [2,4,7] we described ATESAT, a software system to obtain automatically analytical
theories in the artificial satellite problem. The core of ATESAT is a specialized computer algebra system,
named PSPC, used to handle Poisson series that appear frequently in non-linear mechanics, and in
particular, in celestial mechanics. Let us recall that a Poisson series is a multivariate Fourier series of the
form ∑

i0,...,in−1,j0,...,jm−1

C
j0,...,jm−1
i0,...,in−1

x
i0
0 · · · xin−1

n−1

(
sin
cos

)
(j0y0 + · · · + jm−1ym−1).

This series consists of a rational or real coefficient, n polynomial variables with integer exponents and
a trigonometric function of a linear combination of angular variables. The set P of Poisson series is a
commutative algebra with a unit element. We call it series by an abuse of language, because although it
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may have a finite or infinite number of terms, in practice, in order to define an equivalent computational
object, we need to consider only series with a finite number of terms.

Usually, high-order theories in celestial mechanics include series with a huge number of terms. For
instance, in ATESAT around 1,200,000 algebraic terms are manipulated when the three Lie transforma-
tions (elimination of the parallax, elimination of the perigee and Delaunay normalization) are applied to
the zonal problem of the artificial satellite in order to create a third-order theory.

In PSPC the algebraic structure of Poisson series is created, and the operations among Poisson series
is extended to the differential and integral calculus and other specialized operations such as substitutions
of variables by series, splitting series depending on certain conditions, etc. A more detailed description
of PSPC can be found in [1,5].

Once PSPC is applied for solving a problem, the result obtained is one or more Poisson series with
variable size depending on the problem. Usually these series are used in

• the qualitative analysis of the results by using other computer algebraic systems, like Mathematica for
instance, with more general tools included graphics;

• the evaluation of a theory by making a quantitative study of the problem by means of a compiled
program, using languages like C or FORTRAN;

• a scientific word processor, like LATEX, to have a comprehensive print copy with the results of the
theory.

Thus, manipulation of the results is needed to write these series in a format compatible with a software
different than PSPC. An automatic translation of the series would avoid the possible errors of a manual
manipulation. We describe bellow the characteristics of the translation of the Poisson series generated by
PSPC to a format readable by Mathematica, C and LATEX.

In the case of LATEX, the problem is a simple translation between two different languages. However,
some other aspects more involved than the simple translation must be taken into account when the Poisson
series obtained by PSPC are used in a C program, or in a Mathematica session.

Considering the large size of the series appearing in particular problems, like the ones handled by
ATESAT, we need a way to write automatically an efficient C or FORTRAN code to evaluate them. The
efficiency will consist of reducing as much as possible the number of calls to the mathematical library,
minimizing the evaluation of powers and trigonometric functions, and defining good data structures. An
algorithm of Coffey and Deprit [6] combined with an internal storage format of the series in PSPC,
different from the ones used in other PSPs, was applied to make a more efficient code.

PSPC can collaborate with Mathematica [9] in two different ways. The simplest one is the translation of
the series to the Mathematica format, in order to be used in a Mathematica session as a usual Mathematica
object. A more involved way is to build, by means of the communication protocol MathLink [8], a
new kernel of Mathematica that we named PSPCLink [3] such that the Mathematica front-end send
all the operations involving Poisson series to PSPCLink, whereas the rest of operations are sent to the
kernel of Mathematica. With this tool we combine the flexibility of Mathematica with the efficiency of
PSPC.

2. Symbolic representation of a Poisson series

Let us give a more precise definition of Poisson series.
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Definition 1. We call Poisson series of n polynomial variables x = x1, . . . , xn and m angular variables
y = y1, . . . , ym, to a map (x, y) → S(x, y) : Rn × Rm → R, defined by

S(x, y) =
∑

i∈I,j∈J
C

j

i PiTj, C
j

i ∈ R,

where i = i0, . . . , in−1 and j = j0, . . . , jm−1 are elements belonging to Zn and Zm, respectively, and
furthermore

Pi = x
i0
0 · · · xin−1

n−1 and Tj =
(

sin
cos

)
(j0y0 + · · · + jm−1ym−1),

represent the polynomial and trigonometric parts, respectively.

Each term of a Poisson series is characterized by the following basic information:

1. A number C
j

i that represents the coefficients.
2. n integers (i0, . . . , in−1) that represent the exponents of the polynomial part Pi and characterize it.
3. m integers (j0, . . . , jm−1) that represent the angular variable coefficients of the trigonometrical part

Tj , plus an integer, or simply a bit, equal to 0 or 1 which says whether the term is a sine or a cosine.
The m + 1 integers characterize Tj .

The symbolic representation of these mathematical objects is closely connected with the computational
data structure. It determines the efficiency of the PSP in handling series, as well as the efficiency of the
C code generated to evaluate them.

The classical symbolic representation∑
i∈I,j∈J

C
j

i PiTj (1)

is based on the lexicographical ordering of the terms. This ordering is similar to the one obtained by
Mathematica when the expression Expand[TrigReduce[ ]] is applied.

Fig. 1 shows the list structure usually used to store Poisson series. This data structure corresponds
naturally to the classical symbolic representation.

Another symbolic representation of these series is obtained when the terms with a common trigono-
metric part are grouped together

S(x, y) =
card(J )∑

j=1

(
card(I)∑

i=1

C
j

i Pi

)
Tj . (2)

This expression can be written in a matrix form as

S(x, y) = PCT, (3)

Fig. 1. Unidimensional list structure.
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Fig. 2. Bidimensional list structure used in PSPC.

where P = {Pi, i = 1, . . . , card(I)}, T = {Tj , j = 1, . . . , card(J )}, and C is the matrix (Ci,j ). This
expression (3) represents a new useful symbolic representation of the series.

In PSPC, the data structure implemented belongs to the matrix representation. This structure is shown
in Fig. 2. The use of this representation will improve the strategy in evaluating the series.

3. Evaluation of series

One on the goals of PSPC is the possibility of handling series with a large number of terms. For instance,
in the artificial satellite theory developed by ATESAT for a zonal problem, the expression of the radial
distance after the elimination of the perigee, contains more than 80,000 terms, and the expression of the
argument of latitude is a series with more than 150,000 terms. Using such data in a quantitative study,
creates a non trivial problem.

Two aspects of the problem must be considered. On the one hand is the automatic construction of the
code (FORTRAN or C) to evaluate an expression. On the other is the design of the internal algorithm for
evaluating the series, which is crucial when the series are large. The automatic construction of the code
has been traditionally considered in general mathematical software. Mathematica, for instance, have the
commands CForm and FortranForm to transform a Mathematica expression into a C or FORTRAN
code. The main contribution to the problem of the evaluation, given by specialized computer algebra
systems like PSPC, is the possibility of taking into account the inherent properties of the object in order
to build a faster algorithm to evaluate large series.

To illustrate the historical approach to the problem of the evaluation of Poisson series, let us consider
the series resulting from the following operation: S2

1 + S2
2 , where S1 = (x + y) sin(a − b), and S2 =

(x − y) cos(a + b). Using the Mathematica order Expand[TrigReduce[ ]] we obtain the symbolic
expression

x2 + y2 − 1
2x2 cos(2a − 2b) − xy cos(2a − 2b) − 1

2y2 cos(2a − 2b)

+ 1
2x2 cos(2a + 2b) − xy cos(2a + 2b) + 1

2y2 cos(2a + 2b) (4)
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corresponding to the classical symbolic representation (1) of the Poisson series. The functionFortranForm
gives us the FORTRAN code to evaluate a series like

x ∗ ∗2 + y ∗ ∗2 − (x ∗ ∗2 ∗ COS(2 ∗ a− 2 ∗ b))/2. − x ∗ y ∗ COS(2 ∗ a− 2 ∗ b)

− (y ∗ ∗2 ∗ COS(2 ∗ a− 2 ∗ b))/2. + (x ∗ ∗2 ∗ COS(2 ∗ a+ 2 ∗ b))/2.

− x ∗ y ∗ COS(2 ∗ a+ 2 ∗ b) + (y ∗ ∗2 ∗ COS(2 ∗ a+ 2 ∗ b))/2.

This FORTRAN code corresponds to the first, not optimized, approach in the evaluation of series by
the Poisson series processors. The list structure in which the series are stored does not permit to distin-
guish common trigonometric factors between the different terms, and the expressions cos(2a + 2b) and
cos(2a − 2b) are evaluated repeatedly. The excessive use of the library functions SIN and COS makes
very inefficient the generated code to evaluate large series.

The second approach to the evaluation of series maintains the list structure, but minimizes the number
of calls to the routines SIN and COS by applying an algorithm developed by Coffey and Deprit [6]. This
algorithm, named navigation table, makes use of the addition theorems of the trigonometric functions to
create a table for computing the trigonometric terms by means of sums and products and only one call to
the SIN and COS functions for each variable.

To illustrate the last approach to the evaluation of series let us apply to the previous idea the Mathematica
expression

Collect[Expand[TrigReduce[\ ]], \{Sin[\ ],Cos[\ ]\}].
We obtain, instead of Eq. (4), the expression

(x2 + y2) − (
1
2x2 + xy + 1

2y2
)

cos(2a − 2b) + (
1
2x2 − xy + 1

2y2
)

cos(2a + 2b)

whose FORTRAN code is

x ∗ ∗2 + y ∗ ∗2 + (−x ∗ ∗2/2. − x ∗ y− y ∗ ∗2/2.) ∗ COS(2 ∗ a− 2 ∗ b)

+ (x ∗ ∗2/2. − x ∗ y+ y ∗ ∗2/2.) ∗ COS(2 ∗ a+ 2 ∗ b)

This last expression corresponds to the symbolic representation of the Poisson series given in Eq. (2).
This representation avoids the repetition of trigonometric terms in both the internal storage of series,
using the bidimensional structure (Fig. 2), and the evaluation of series.

In spite of that, we use the navigation table combined with the bidimensional representation to maximize
as much as possible the efficiency of the code. The power of the polynomial variables is computed by
products and stored in arrays of powers. Finally, we use the matrix product to compute the result. We use
either a sparse or a dense matrix depending on the ratio between zeros and non-zeros in the matrix.

As a real example, let us see for instance the series H1,2 appearing in ATESAT when we apply the
elimination of the parallax to the satellite problem. This is a small series with 156 polynomial terms,
19 trigonometric terms and 460 coefficients (2964 if we include zeros). The classical list representation
requires 460 evaluations of the trigonometric functions, while the bidimensional representation imple-
mented in PSPC requires only 19 evaluations of the trigonometric functions. This combined with the
navigation table, also implemented in PSPC, and a sparse representation of the matrix of coefficients,
improves notably the efficiency in the evaluation of Poisson series.
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4. PSPCLink

The specialized computer algebra systems like PSPC, has been developed to take advantage of the
particular properties of the mathematical objects they manipulate. This is particularly important when
the object can have a large size as in the case of Poisson series. General tools like Mathematica do not
consider these particular properties, and they loose efficiency in size of storage and time of computation
with respect to the specialized tools. In particular, there are a lot of cases handled with ATESAT that are
impossible to be solved with Mathematica.

However, Mathematica and other mathematical software tools provide a lot of important possibilities
like a friendly front-end, the possibility of handling simultaneously a great variety of mathematical objects,
including special functions, graphics, etc. This is very useful in the early stages of the development of an
analytical theory, and also to analyze the final results of these theories.

To combine the possibilities of both tools, the first solution is the definition of a common format
to interchange Poisson series between Mathematica and PSPC. However, Mathematica provides the
possibility of using a C compiled code by means of the communication protocol MathLink. This protocol
will give us the possibility to use PSPC inside Mathematica.

The front-end of Mathematica is the interface between the user and Mathematica. One writes an
expression in the front-end and it sends the expression to the kernel, a standalone application, where
this expression is evaluated sending the final result to the front-end again. By using the communications
protocol MathLink we wrote PSPCLink. PSPCLink is an application that contains PSPC and that acts as
a second kernel of Mathematica.

As we can see in Fig. 3, when we write an expression in the front-end that contains a Poisson series, it
sends the expression to PSPCLink instead of the standard kernel.

To create PSPCLink we need all the PSPC code to be included in the file PSPC.c; MathLink does not
permit user-defined types, for this reason we need to create a new file PSPCLink.c to synchronize the
user data types with the data types recognized by MathLink. Finally, a file PSPCLink.tm that contains
the functions in Mathematica and the names of the corresponding functions in C and the types of the
arguments, is preprocessed with mprep, a part of MathLink, and we obtain a file PSPCLink.tm.c that
is compiled together with PSPC.c and PSPCLink.c to create the application PSPCLink (Fig. 4).

Fig. 3. PSPCLink as a second kernel of Mathematica.
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Fig. 4. Scheme of generation of PSPCLink.

As an example, we can see how to add two Poisson series. The first step is to have, inside PSPC.c, a
function add series to add the given series, by means of three pointers, to a PSPC data type SERIES
as argument.

intadd series(a,b,c)

SERIES ∗ a, ∗b, ∗c
{

. . .

}
MathLink cannot pass these kind of arguments from the front-end to PSPCLink. For this reason we wrote
the function AddSeries included in the file PSPCLink.c. In this function an integer number is used
to identify each series. By means of these integer numbers we obtain a pointer to the series and we call,
inside it, the function add series.

intAddSeries (n, m, s)
intn,m,s
{
return(add series(pointers to → n,m,s))

}
In PSPCLink.tm we declare the names of the function directly connected by MathLink.

:Begin:
:Function: AddSeries
:Pattern: AddSeries[n Integer,m Integer,s Integer]
:Arguments: {n,m,s}
:ArgumentTypes: {Integer,Integer,Integer}
:ReturnType: Integer
:End :

Once we have installed PSPCLink in Mathematica, we pass the Poisson series from the front-end to the
new kernel by using the expressions ToPoissonSeries and FromPoissonSeries. For instance,

ps1 = ToPoissonSeries[1 + xSin[a− b]]

sends the series 1 + x sin(a − b) to PSPCLink to store it, and returns to the front-end the expression
PoissonSeries[1], whose head identifies the object as a Poisson series, and the integer argument 1 is used
to access the stored series. If we have another series ps2with the index 2 we may add both series writing
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Fig. 5. Computational time (s) of the expression (5) with PSPCLink and only with Mathematica, changing the value of n from
1 to 8.

AddSeries[1, 2, 3]

that stores the addition in a Poisson series identified with the index 3.
Instead of using the expression AddSeries to add series, like in procedural languages, we prefer

to use the Mathematica style. With this style we add the series with the operator +. In order to do
that, we overload this operator by changing the properties of the head Plus associated with the symbol
PoissonSeries.

To show the efficiency of PSPCLink versus the exclusive use of the Mathematica functions, we present
a graph (Fig. 5) with the computational time of the following operation:

[
1 +

(
n∑

i=1

xi

)
cos(a + b)

]5

(5)

in which we change the number n of polynomial variables.
The calculations have been made with a PowerPC 750 G3, 266 MHz, and 30MB of RAM memory

dedicated to Mathematica. We see in the graphic that the efficiency in using PSPCLink increases as
the number of variables does. The time of computation decreases notably when we made the same
operation with a compiled standalone application created with PSPC since the communications between
the front-end of Mathematica and PSPCLink is relatively slow, but with PSPCLink we have the possibility
of handling Poisson series from Mathematica in a faster way than by using only Mathematica.
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