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Generalized Stieltjes Polynomials and Rational
Gauss–Kronrod Quadrature

M. Bello Hernández, B. de la Calle Ysern, and G. López Lagomasino

Abstract. Generalized Stieltjes polynomials are introduced and their asymptotic prop-
erties outside the support of the measure are studied. As applications, we prove the
convergence of sequences of interpolating rational functions, whose poles are partially
fixed, to Markov functions and give an asymptotic estimate of the error of rational
Gauss–Kronrod quadrature formulas when functions which are analytic on some neigh-
borhood of the set of integration are considered.

1. Introduction

1.1. Stieltjes Polynomials

Let µ denote a finite positive Borel measure on the real line R whose compact support
S(µ) contains infinitely many points. Letµ′ = dµ/dx be the Radon–Nykodym derivative
ofµwith respect to the Lebesgue measure dx. Let {pn}n∈N be the sequence of orthonormal
polynomials with respect to the measure µ; that is, pn(z) = κn zn + · · · , κn > 0, and∫

pm(x)pk(x) dµ(x) = δkm .

There exists a unique monic polynomial Sn of degree n which satisfies the orthogonality
relations ∫

xk Sn(x)pn−1(x) dµ(x) = 0, k = 0, 1, . . . , n − 1.

The polynomial Sn is called the nth Stieltjes polynomial with respect to the measureµ. We
will refer to sn = κn−1Sn as the normalized nth Stieltjes polynomial. Much of the study
on the polynomials Sn has been directed into finding sufficient conditions guaranteeing
that the zeros of Sn have nice properties such as being simple and belonging to the
set of integration. This is due to the fact that Stieltjes polynomials are used in Gauss–
Kronrod quadrature rules (see [4], [7], and [1]; and the references therein). However,
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these properties are not satisfied in general (see, for instance, [8]). Until recently, little
was known on the asymptotic behavior of the Stieltjes polynomials outside the support
of the measure. We say that the measure µ is regular and denote it by µ ∈ Reg if one of
the following two equivalent limit relations (see Theorem 3.1.1 in [12]) holds

lim
n→∞ κ

1/n
n = 1

cap S(µ)
,

lim
n→∞ |pn(z)|1/n = exp{g
(z,∞)},

uniformly on compact subsets of C\Co(S(µ)), where Co(S(µ)) denotes the convex
hull of S(µ), cap S(µ) stands for the logarithmic capacity of S(µ), and g
(z,∞) is
the (generalized) Green function with singularity at infinity relative to the region 
 =
C̄\S(µ) (see Section 1.2 and Appendix A.5 in [12] for the definition).

Regarding ratio asymptotics, E. A. Rakhmanov [9] proved that, under the conditions
S(µ) = [b − a, b + a] and µ′ > 0 almost everywhere (a.e.) on [b − a, b + a],

lim
n→∞

pn+1(z)

pn(z)
= �

(
z − b

a

)
,

uniformly on compact subsets of C\S(µ), where �(z) = z +√z2 − 1. The square root
is taken to be positive for z > 1.

We also consider the Szegő class of measures. For simplicity in the notation, we restrict
our attention to measures supported on [−1, 1]. We say that µ ∈ S if S(µ) = [−1, 1]
and logµ′(x)/

√
1− x2 ∈ L1[−1, 1]. In this case,

lim
n→∞

pn(z)

[z +√z2 − 1]n
= 1√

2π
Sµ(�(z)),

uniformly on compact subsets of C̄\[−1, 1], where

Sµ(z) = exp

{
1

4π

∫ 2π

0
log(µ′(cos θ)|sin(θ)|) eiθ + z

eiθ − z
dθ

}
, |z| �= 1.

It is well-known that µ ∈ S implies that µ′ > 0 a.e. in [−1, 1] which, in turn, implies
µ ∈ Reg (see Theorem 4.1.1 in [12]). In [1] we proved the following theorem that is
presented here in a simplified form for the case that S(µ) = [−1, 1]:

Theorem 1. The following assertions hold:

(a) If µ ∈ Reg, the set of accumulation points of the zeros of {Sn+1}n∈N is contained
in [−1, 1] and

lim
n→∞ |sn+1(z)|1/n = |z +

√
z2 − 1|.

(b) If µ′ > 0 a.e., then

lim
n→∞

sn+1(z)

sn(z)
= z +

√
z2 − 1.
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(c) If µ ∈ S, then

lim
n→∞

sn+1(z)

[z +√z2 − 1]n
=
√

z2 − 1

2π
Sµ(�(z)).

The limits hold true uniformly on compact subsets of C\[−1, 1].

This result was used to obtain estimates on the rate of convergence of Gauss–Kronrod
quadrature formulas and interpolating rational functions with partially prescribed poles
for functions analytic on a certain neighborhood of [−1, 1].

1.2. Generalized Stieltjes Polynomials

Let {wn}n∈N be a sequence of monic polynomials with real coefficients such that, for
each n ∈ N: degwn = in, 0 ≤ in ≤ 2n + 1; and wn > 0 on Co(S(µ)). If in < 2n + 1,
letwn,i = ∞ for 1 ≤ i ≤ 2n+ 1− in; if in > 0, then {wn,i }2n+1−in+1≤i≤2n+1 denotes the
set of zeros of wn . By L we denote the set of all limit points of {wn,i }1≤i≤2n+1 as n tends
to infinity. In the sequel, we will assume that L, which is a closed set, is contained in
C̄\Co(S(µ)). In fact, when the support of the measure is not an interval, it is necessary
that L be contained in a more restricted set, as we will see later. The positivity of wn

on Co(S(µ)) is assumed for convenience in the normalization process but it would be
sufficient that for each n it preserves a constant sign on that set.

Set dµn = dµ/wn . Obviously, for each n ∈ N,∫
S(µ)

dµ(x)

wn(x)
< +∞,

therefore, we can construct the table of polynomials {pn,m}n,m∈N, such that pn,m(z) =
κn,m zm + · · · , κn,m > 0, is the mth orthonormal polynomial with respect to µn . That is,∫

S(µ)
pn,k(x)pn,m(x) dµn(x) = δk,m .

These polynomials are uniquely determined if we assume that the leading coefficients
are positive. Unless otherwise specified, the set of integration is S(µ) in which case it
will not be indicated.

Let {vn}n∈N be a sequence of monic polynomials with real coefficients such that
deg vn = jn ≤ n + 1 and vn > 0 on Co(S(µ)). Let vn, j = ∞ for 1 ≤ j ≤ n + 1− jn;
therefore, {vn, j }n+1− jn+1≤ j≤n+1 denotes the set of zeros of vn . We also assume that the
set of all limit points of {vn, j }1≤ j≤n+1 as n tends to infinity is contained in L.

Let {Sn,m}n,m∈N be a sequence of polynomials such that for each n ∈ N, Sn,m is defined
as the monic polynomial of least degree verifying∫

xk Sn,m(x)pn,m−1(x)
dµn(x)

vn(x)
= 0, k = 0, 1, . . . ,m − 1.

Finding Sn,m reduces to solving a system of m homogeneous equations on m + 1 un-
knowns. Thus a nontrivial solution always exists. We call Sn,m the mth Stieltjes polyno-
mial with respect to the varying measure dµn/vn . The normalized Stieltjes polynomials
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sn,m is defined as sn,m = κn,m−1 Sn,m . In the case when wn ≡ vn ≡ 1 for all n ∈ N, we
regain the standard Stieltjes polynomials.

The object of this paper is to obtain similar results to those contained in Theorem 1
for generalized Stieltjes polynomials. This is done in Section 3. In Section 2 some
preparatory work is carried out. Section 4 is dedicated to applications in two directions;
namely, the convergence of multipoint Padé-type approximation and the convergence of
rational Gauss–Kronrod rules.

2. Auxiliary Results

2.1. Some Lemmas

The functions of second kind with respect to µn are given by

gn,m(z) =
∫

pn,m(x)

z − x
dµn(x), z ∈ 
 = C̄\S(µ).

These functions are analytic in 
 and gn,m(∞) = 0. Because of the orthogonality
relations satisfied by pn,m with respect to the measure µn, z = ∞ is a zero of gn,m of
multiplicity m + 1.

The next two lemmas are well-known and easy to verify (see, e.g., the proof of
Theorem 6.1.8 in [12]).

Lemma 1. We have

gn,m(z)pn,m(z) =
∫

p2
n,m(x)

z − x
dµn(x), z ∈ 
.

Lemma 2. Let K be a compact subset of C\Co(S(µ)), then there exist positive con-
stants M1, M2 , independent of n and m, satisfying

M1 ≤ |gn,m(z)pn,m(z)| ≤ M2, z ∈ K .

In particular, gn,m has no zeros on C\Co(S(µ)).

Lemma 3. If m ≥ deg vn , then deg Sn,m = m.

Proof. From the definition of Sn,m it is immediate that deg Sn,m ≤ m. Let us suppose
that deg Sn,m ≤ m−1. Due to the orthogonality relations satisfied by pn,m−1 with respect
to the measure µn , we have∫

Sn,m(z)− Sn,m(x)

z − x
pn,m−1(x) dµn(x) = 0.

Therefore

Sn,m(z)gn,m−1(z) =
∫
vn(x) Sn,m(x)

z − x
pn,m−1(x)

dµn(x)

vn(x)

= vn(z)
∫

Sn,m(x)

z − x
pn,m−1(x)

dµn(x)

vn(x)
.
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The second equality is a consequence of the orthogonality relations which Sn,m satisfies
with respect to dµn/vn and the condition m ≥ deg vn . Since gn,m−1 has no zeros in
C\Co(S(µ)), each zero of vn with multiplicity k is a zero of Sn,m with multiplicity at
least k. Therefore, deg Sn,m ≥ deg vn .

On the other hand, we know that∫
T (x)Sn,m(x)pn,m−1(x)

dµn(x)

vn(x)
= 0,

for any polynomial T of degree less than m. If we take in the relation above T (x) =
vn(x) xm−1−deg Sn,m , we obtain∫

xm−1−deg Sn,m Sn,m(x)pn,m−1(x) dµn(x) = 0.

Notice that deg(xm−1−deg Sn,m Sn,m(x)) = m − 1 and pn,m−1 is orthogonal to all polyno-
mials of degree less than m − 1 with respect to µn . Therefore, pn,m−1 is orthogonal to
itself. This contradiction indicates that deg Sn,m = m.

The next lemma plays a key role in our subsequent arguments. Its proof is basically
the same as that of Lemma 2 in [1] although we include it for the sake of completeness.

Lemma 4. If m ≥ deg vn , for all z ∈ C̄\Co(S(µ)) we have

sn,m(z)− 1/gn,m−1(z)

vn(z)
= 1

gn,m−1(z)

∫
sn,m(x)

z − x
pn,m−1(x)

dµn(x)

vn(x)
(1)

and

sn,m(z) gn,m−1(z) = 1+ vn(z)gn,m−1(z)

2π i

∫
γ

dζ

vn(ζ )gn,m−1(ζ )(ζ − z)
,(2)

where γ is any positively oriented close smooth curve which surrounds the set
Co(S(µ)) such that L and z are contained in the unbounded component of C̄\γ .

Proof. From the orthogonality relations of pn,m−1 with respect to the measure µn , we
obtain∫

Sn,m(z)− Sn,m(x)

z − x
pn,m−1(x) dµn(x) =

∫
zm − xm

z − x
pn,m−1(x) dµn(x)

=
∫

xm−1 pn,m−1(z) dµn(x) =
1

κn,m−1
.

Rewriting this equation and using the orthogonality of Sn,m with respect to dµn/vn , we
find that

gn,m−1(z)sn,m(z) = 1+
∫

sn,m(x)

z − x
pn,m−1(x) dµn(x)

= 1+
∫
vn(x)sn,m(x)

z − x
pn,m−1(x)

dµn(x)

vn(x)

= 1+ vn(z)
∫

sn,m(x)

z − x
pn,m−1(x)

dµn(x)

vn(x)
.
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The first formula of the lemma is equivalent to this expression. From (1) and the orthog-
onality properties of pn,m−1 and sn,m , we have that

sn,m(z)− 1/gn,m−1(z)

vn(z)
=

∫
xsn,m(x)

z − x
p2

n,m−1(x)
dµn(x)

vn(x)∫
p2

n,m−1(x)

1− x/z
dµn(x)

.

Therefore, this function is analytic in C̄\Co(S(µ)) and has a zero of order at least 1 at
infinity. Using Cauchy’s integral formula with a curve γ as indicated above, we obtain

sn,m(z)− 1/gn,m−1(z)

vn(z)
= 1

2π i

∫
γ

sn,m(ζ )− 1/gn,m−1(ζ )

vn(ζ )(z − ζ ) dζ

= 1

2π i

∫
γ

dζ

vn(ζ )gn,m−1(ζ )(ζ − z)
.

Rewriting this formula conveniently, we obtain (2). The proof is completed.

Notice that gn,m−1(z) may have zeros in Co(S(µ))\S(µ); therefore, 1/gn,m−1(z) can
have poles in this set. This is the only reason why, in general, we cannot take a curve γ
closer to S(µ) than the way indicated in Lemma 4.

2.2. Potential Theory

Throughout this section, we will assume that C\S(µ) is a regular domain with respect
to the Dirichlet problem. In reference to this condition, for simplicity, we will say that
S(µ) is regular. The regularity of S(µ) implies that cap S(µ) > 0.

Let w be a positive continuous function on S(µ). Set f (z) = −logw(z). It is well-
known (see [11, Sections I.1 and I.3]) that among all probability measures σ with support
in S(µ) there exists a unique probability measure µw with support in S(µ), called the
extremal or equilibrium measure associated with w, minimizing the weighted energy

Iw(σ ) =
∫ ∫ (

log
1

|z − t | + f (z)+ f (t)

)
dσ(z) dσ(t).

Let P(µw; z) = −
∫

log |z−t | dµw(t) be the potential of this extremal measure and Sw ⊂
S(µ) its support. Under these conditions there exists a constant Fw, called equilibrium
constant, such that

P(µw; z)+ f (z) ≥ Fw, z ∈ S(µ),

P(µw; z)+ f (z) = Fw, z ∈ Sw.
(3)

Due to (3), µw is also called the equilibrium measure in presence of the external
field f .

For regular measures, the nth root asymptotic behavior of orthogonal polynomials with
respect to varying measures is characterized by the equilibrium measure in the presence
of the external field induced by the varying part of the measure. The corresponding result
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has been proved in various degrees of generality by different authors. We state it as it
appears in [12, Theorem 6.5.1], where a proof and more references may be found.

Let µ ∈ Reg and let {wn}n∈N be as defined in Subsection 1.2. Assume that (wn)
−1/n

converges uniformly to w2 on S(µ), where w is a positive continuous function on S(µ).
Then

lim
n→∞(κn,n)

1/n = eFw(4)

and

lim
n→∞ |pn,n(z)|1/n = eFw−P(µw;z)(5)

uniformly on each compact subset of C\Co(S(µ)).
Notice that for each k ∈ Z fixed, (4) and (5) remain in force for the sequences
{κn,n+k} and {pn,n+k}, respectively, with the same expression in the right-hand side.
In fact, using the same result, in order to find the new limits, we would have to find
limn(wn)

−1/n+k = limn(wn)
−1/n = w2. Therefore, we get the same external field.

Let ρn and ρ be finite Borel measures on C̄. By ρn
∗−→ ρ, n → ∞, we denote the

weak∗ convergence of ρn to ρ as n tends to infinity. This means that, for every continuous
function f on C̄,

lim
n→∞

∫
f (x) dρn(x) =

∫
f (x) dρ(x).

For a given polynomial T , we denote by �T the normalized zero counting measure
of T . That is,

�T = 1

deg T

∑
ξ : T (ξ)=0

δξ .

The sum is taken over all the zeros of T and δξ denotes the Dirac measure concentrated
at ξ .

In the sequel, for each n, it is considered that degwn = 2n + 1 and deg vn = n + 1,
assigning to these polynomials 2n+1− in and n+1− jn “zeros” at infinity, respectively,
in case that either in < 2n + 1 or jn < n + 1 (for the meaning of in and jn return to
Subsection 1.2 where the polynomials wn and vn were introduced). It is said that the
sequence of polynomials {wn}n∈N (analogously for {vn}n∈N) has ν as its zero asymptotic
distribution if

�wn

∗−→ ν, n→∞.
If {wn}n∈N has zero asymptotic distribution ν, it is easy to see that (wn)

−1/n uniformly
converges to e2P(ν;·) on S(µ), where P(ν; ·) is the potential of the probability measure ν.
Then, the asymptotic behavior of the polynomials pn,n may be expressed in terms of the
equilibrium measureµw in the presence of the external field−P(ν; ·). Since the support
of ν is contained in L ⊂ C̄\Co(S(µ)), it is well-known that µw is the balayage of ν onto
S(µ). Therefore, Sw ≡ S(µ) (see, for instance, [11, Chapter IV, Theorem 1.10]) and

P(µw; z)− P(ν; z) = Fw, z ∈ S(µ).
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If S(µ) is made up by several intervals, the measure µw is absolutely continuous with
respect to the Lebesgue measure dx and

∂(µw)

∂x
(x) = 1

2π

∫
L

(
∂g

∂n+

(x; a)+ ∂g

∂n−

(x; a)
)

dν(a),

where g
(·; a) is the Green function of 
 with singularity at the point a and n± stands
for the two normals to the real line. We can make the above formula more precise if,
additionally, we suppose that S(µ) = [−1, 1] and ν = λδ∞ + (1 − λ) ν̃, where ν̃ is a
measure supported on R\[−1, 1]. Then (see [11, pp. 118–122]), for each x ∈ [−1, 1],
we have

∂(µw)

∂x
(x) = λ

π

1√
1− x2

+ 1− λ
π

∫ |√a2 − 1|
|x − a|√1− x2

dν(a).

It is also known (see Theorem 5.1, Chapter II in [11]) that

G
(ν; z) = Fw − P(µw; z)+ P(ν; z), z ∈ 
,(6)

where G
(ν; ·) is the Green potential of the measure ν in 
; that is,

G
(ν; z) =
∫

L
g
(z; ζ ) dν(ζ ), z ∈ 
.

Set

E =
{

z ∈ C : G
(ν; z) ≤ max
ζ∈Co(S(µ))

G
(ν; ζ )
}
.

From some examples in [1], it follows that there is no hope of obtaining asymptotics of
the (generalized) Stieltjes polynomials inside the set E for the whole class of regular
measures.

3. Asymptotics

3.1. Weak Asymptotics

In the sequel, we will suppose that L ⊂ C̄\E . Without loss of generality, we may assume
that L is a compact subset ofC\E . The reduction to this case may be achieved by means
of a Möbius transformation of the variable in the initial problem, which transforms S(µ)
into another compact subset ofR and L ⊂ C̄\E into a compact subset contained inC\Ẽ ,
where Ẽ is the image of E by the Möbius transformation. This assumption implies, in
particular, that for each n the degrees of vn andwn are really n+1 and 2n+1, respectively,
and liberates our arguments from the special treatment which otherwise we would have
to give to neighborhoods of infinity. We use this assumption in the proofs but state the
results for an arbitrary L contained in C̄\E .

Theorem 2. Suppose that the sequences of polynomials {wn} and {vn} have ν as their
zero asymptotic distribution. Let k be a fixed integer, k ≥ 0. If S(µ) is regular and
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µ ∈ Reg, then

lim sup
n→∞

‖sn,n+k+1gn,n+k − 1‖1/n
K(7)

≤ ‖exp{−G
(ν; z)}‖K‖exp{G
(ν; z)}‖Co(S(µ)),

where K is any compact subset of C̄\E .

Proof. Fix a compact set K ⊂ C\E . Let V be a neighborhood of L such that V̄ ⊂
C\E . Take n0 sufficiently large so that for n ≥ n0 all the zeros of vn lie in V . Fix
r > ‖G
(ν; ζ )‖Co(S(µ)) so that V̄ ∪ K lies in the unbounded component of C\γr , where
γr = {ζ ∈ C : G
(ν; ζ ) = r}. From (2), applied integrating over γr , we have that

‖sn,n+k+1gn,n+k − 1‖K ≤ C
‖vngn,n+k‖K

inf
ζ∈γr

|vn(ζ )gn,n+k(ζ )| ,

where C is a positive constant depending on the length of γr and the distance between
γr and K , but not on n ≥ n0. Therefore,

lim sup
n→∞

‖sn,n+k+1gn,n+k − 1‖1/n
K ≤

lim sup
n→∞

‖vngn,n+k‖1/n
K

lim
n→∞ inf

ζ∈γr

|vn(ζ )gn,n+k(ζ )|1/n .(8)

By Lemma 2 and (5) (taking into account the remark made on the sentence following
(5)), we have that

lim
n→∞ |gn,n+k(z)|1/n = eP(µw;z)−Fw(9)

uniformly on compact subsets ofC\Co(S(µ)). Since ν is the zero asymptotic distribution
of {vn}n∈N, then

lim
n→∞ |vn(z)|1/n = e−P(ν;z),(10)

uniformly on compact subsets of C\L, and using the Principle of Descent (see [11,
Chapter I, Theorem 6.8]), we have that

lim sup
n→∞

|vn(z)|1/n ≤ e−P(ν;z),(11)

uniformly on compact subsets of C. From (9), (10), and (11), taking account of (6), it
follows that

lim sup
n→∞

‖vngn,n+k‖1/n
K ≤ ‖exp{−G
(ν; z)}‖K(12)

and

lim
n→∞ inf

ζ∈γr

|vn(ζ )gn,n+k(ζ )|1/n = e−r .(13)

Relations (12) and (13) together with (8) give

lim sup
n→∞

‖sn,n+k+1gn,n+k − 1‖1/n
K ≤ ‖exp{−G
(ν; z)}‖K er .
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The left-hand side of this inequality does not depend on r ; therefore, we can make r tend
to ‖G
(ν; ζ )‖Co(S(µ)) obtaining (7) for compact subsets of C\E . The function under the
norm sign on the left-hand side of (7) is analytic on C̄\S(µ) and, in particular, on C̄\E ;
therefore, by use of the Maximum Principle the result is easily extended to compact
subsets of C̄\E . With this we conclude the proof.

Corollary 1. Under the hypothesis of Theorem 2, we have that

lim
n→∞ sn,n+k+1(z)gn,n+k(z) = 1,(14)

uniformly on compact subsets of C̄\E . The set of accumulation points of the zeros of
{Sn,n+k+1}n∈N is contained in E . Also

lim
n→∞ |sn,n+k+1|1/n(z) = eFw−P(µw;z),(15)

uniformly on each compact subset of C\E .

Proof. Since ‖exp{−G
(ν; z)}‖K‖exp{G
(ν; z)}‖Co(S(µ)) < 1 due to the subhar-
monicity of −G
(ν; z) on C̄\E , relation (14) follows immediately from (7). The state-
ment concerning the zeros of {Sn,n+k+1}n∈N is a direct consequence of (14) and Hurwitz’s
theorem since the function 1 has no zeros on C̄\E . Finally, (14) and (9) render (15).

Now, let us say some words about the case when S(µ) is an interval. Since g
(z; ζ ) ≡ 0
on S(µ) we have that G
(ν; z) ≡ 0 on S(µ). Additionally, G
(ν; z) > 0 on 
 because
of its superharmonicity. Therefore, in this particular case, E ≡ S(µ) and Theorem 2 and
Corollary 1 hold true on all C̄\S(µ). In the following theorem, we give more information
about the zeros of generalized Stieltjes polynomials:

Theorem 3. Let S(µ) be an interval. Suppose that the sequences of polynomials
{wn}n∈N and {vn}n∈N have ν as their zero asymptotic distribution and µ ∈ Reg. Then

�Sn,n+k+1

∗−→ µw, n→∞.

Proof. Set �Sn,n+k+1 = �n and denote the potential of �n by Un . All the measures �n

are probability measures. Let � ⊂ N be a subsequence of indices such that

�n
∗−→ �, n ∈ �, n→∞.(16)

It is sufficient to prove that � = µw for any such sequence � of indexes. Corollary 1
indicates that the support of� is contained in the set S(µ). In addition to this, we know,
due to Lemma 3, that deg Sn,n+k+1 = n + k + 1.

Taking (15) and (4) into account, we have that

lim
n∈�

Un(z) = lim
n∈�

−1

n + k + 1
log |Sn,n+k+1| = P(µw, z), z ∈ C\S(µ).
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On the other hand, from (16) one obtains

lim
n∈�

Un(z) = U�(z), z ∈ C\S(µ),

where U� is the potential of the measure �. Thus, U�(z) = P(µw, z), except at most
on a set of Lebesgue measure zero in the complex plane; therefore, from Theorem 3.7.4
in [10], we obtain that � = µw as we wanted to prove.

3.2. Ratio Asymptotics

Unless otherwise stated, in this section and the next, for the sake of simplicity, we will
consider that the support of the measureµ is the interval [−1, 1], but all the results can be
restated if we substitute [−1, 1] by any compact interval I of R. As usual, the reduction
to the interval [−1, 1] is attained by means of an affine change of variables.

It is known that if µ′ > 0 a.e. on [−1, 1] and L ∩ [−1, 1] = ∅, then, for each fixed
k ∈ N,

lim
n→∞

pn,n+k+1(z)

pn,n+k(z)
= z +

√
z2 − 1,(17)

uniformly on each compact subset of C\[−1, 1]. Moreover, for every m ∈ N and every
bounded Borel-measurable function f on [−1, 1], we have

lim
n→∞

∫ 1

−1
f (x)pn,n+k(x)pn,n+k+m(x) dµn(x) =

1

π

∫ 1

−1
f (x)Tm(x)

dx√
1− x2

,

where Tm denotes the mth Chebyshev polynomial, i.e., Tm(cos θ) = cos mθ . In particular,

lim
n→∞ gn,n+k(z)pn,n+k(z) = 1

π

∫ 1

−1

dx

(z − x)
√

1− x2
= 1√

z2 − 1
,(18)

uniformly on each compact subset of C̄\[−1, 1], where the square root is taken so that√
z2 − 1 > 0 for z > 1. The proof of these results may be found in [3].
With the aid of the theorems of the previous section, we can derive ratio asymptotics

for sequences of generalized Stieltjes polynomials.

Theorem 4. Suppose that the sequences of polynomials {wn} and {vn} have the same
zero asymptotic distribution. Let k be a fixed integer, k ≥ 0. If S(µ) = [−1, 1] and
µ′ > 0 a.e. on [−1, 1], then

lim
n→∞

sn,n+k+1(z)

sn,n+k(z)
= z +

√
z2 − 1(19)

and

lim
n→∞

pn,n+k(z)

sn,n+k+1(z)
= 1√

z2 − 1
,(20)

uniformly on each compact subset of C\[−1, 1].
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Proof. First of all, notice that µ′ > 0 a.e. on [−1, 1] implies that µ ∈ Reg (see [12,
Theorem 4.1.1]). Using (14), (18), and (17), we obtain

lim
n→∞

sn,n+k+1(z)

sn,n+k(z)
= lim

n→∞
sn,n+k+1(z)gn,n+k(z)

sn,n+k(z)gn,n+k−1(z)
× lim

n→∞
pn,n+k−1(z)gn,n+k−1(z)

pn,n+k(z)gn,n+k(z)

× lim
n→∞

pn,n+k(z)

pn,n+k−1(z)
= z +

√
z2 − 1,

and all the limits hold uniformly on each compact subset K of C\[−1, 1]. The proof of
(19) is complete. From (18) and (14), we immediately obtain (20).

3.3. Strong Asymptotics

Set�(z) = z+√z2 − 1. Let k be a fixed integer. From the results in [2]1 it follows that,
if µ ∈ S, then

lim
n→∞

p2
n,n+k(z)

[�(z)]2k−1wn(z)
Bn(z) = 1

2π
[Sµ(�(z))]

2,(21)

uniformly on each compact subset of C\[−1, 1], where

Bn(z) =
2n+1∏
i=1

�(z)−�(wn,i )

1−�(wn,i )�(z)

and

Sµ(z) = exp

{
1

4π

∫ 2π

0
log(µ′(cos θ)|sin(θ)|) eiθ + z

eiθ − z
dθ

}
, |z| > 1.

If wn,i = ∞ the corresponding factor in Bn must be substituted by 1/�(z). Therefore,
as a particular case, when wn ≡ 1 for all n ∈ N, one obtains the well-known formula

lim
n→∞

pn(z)

[�(z)]n
= 1√

2π
Sµ(�(z)),

uniformly on each compact subset of C\[−1, 1].
Using these limit relations and the results above one obtains strong asymptotics for

generalized Stieltjes polynomials.

Theorem 5. Suppose that the sequences of polynomials {wn} and {vn} have the same
zero asymptotic distribution. Let k be a fixed integer, k ≥ 0. If µ ∈ S, then

lim
n→∞

s2
n,n+k+1(z)

[�(z)]2k−1wn(z)
Bn(z) = z2 − 1

2π
S2
µ(�(z)),(22)

uniformly on each compact subset of C\[−1, 1], where Bn(z) and Sµ(z) are as in (21).

1 Two of the authors wish to point out a frequent misprint in this reference regarding Szegő’s condition

on [−1, 1]. In particular, it is necessary to substitute logµ′(x) by logµ′(x)/
√

1− x2 in the conditions of
Theorem 4 and thereafter whenever Szegő’s condition is required.



Generalized Stieltjes Polynomials and Rational Gauss–Kronrod Quadrature 261

Proof. From (14), (21), and (18), we have

lim
n→∞

s2
n,n+k+1(z)

[�(z)]2k−1wn(z)
Bn(z) = lim

n→∞ s2
n,n+k+1(z)g

2
n,n+k(z)

× lim
n→∞

p2
n,n+k(z)

[�(z)]2k−1wn(z)
Bn(z)

× lim
n→∞

1

g2
n,n+k(z)p

2
n,n+k(z)

= z2 − 1

2π
S2
µ(�(z)),

with uniform convergence on any compact subset K ofC\[−1, 1], which proves (22).

4. Applications

4.1. Multipoint Padé-Type Approximation

Set

µ̂(z) = c +
∫

dµ(x)

z − x
, z ∈ C̄\S(µ), c ∈ R.

Let {wn}n∈N and {vn}n∈N be as above. It is easy to verify that for each n ∈ N there exists
a unique rational function Rn = Ln/(Qn pn,n), where Ln and Qn satisfy:

• deg Qn ≤ n + 1, deg Ln ≤ 2n + 1, and Qn �≡ 0.

• Qn pn,nµ̂− Ln

wnvn
∈ H(C\S(µ)), where H(C\S(µ)) denotes the set of all holomor-

phic functions defined on C\S(µ).
• Qn pn,nµ̂− Ln

wnvn
(z) = O

(
1

zn+2

)
, z→∞.

Hence, by the use of Cauchy and Fubini theorems, we obtain∫
xk Qn(x)pn,n(x)

dµ(x)

wn(x)vn(x)
= 0, k = 0, 1, . . . , n.

Thus, taking Qn to be monic we have that Qn ≡ Sn,n+1. It can also be shown (see, for
instance, Lemma 6.1.2 in [12]) that

µ̂(z)− Rn(z) = wn(z)vn(z)

(sn,n+1 pn,nh)(z)

∫
(sn,n+1 pn,nh)(x)

wn(x)vn(x)

dµ(x)

z − x
,(23)

for all z ∈ C̄\S(µ), where h is any polynomial of degree less than or equal to n + 1.
We are ready for

Theorem 6. Suppose that the sequences of polynomials {wn} and {vn} have ν as their
zero asymptotic distribution. Let S(µ) be regular and µ ∈ Reg. Then, on each compact
subset K ⊂ C̄\E , we have

lim sup
n→∞

‖µ̂(z)− Rn(z)‖1/3n
K(24)

≤ ‖exp{−G
(ν; z)}‖K‖exp{G
(ν; z)}‖Co(S(µ)).
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Proof. Fix a compact set K ⊂ C\E . Let V be a neighborhood of L such that V̄ ⊂
C\E . Take n0 sufficiently large so that for n ≥ n0 all the zeros of vn lie in V . Fix
r > ‖G
(ν; ζ )‖Co(S(µ)) so that V̄ ∪ K lies in the unbounded component of C\γr , where
γr = {ζ ∈ C : G
(ν; ζ ) = r}. For short, let us denote wn(z)vn(z)/(s2

n,n+1(z)pn,n(z))
by hn(z). Taking h ≡ sn,n+1 in (23), we have that

µ̂(z)− Rn(z) = hn(z)
∫

1

hn(x)

dµ(x)

z − x
, z ∈ K .

Since 1/((z − x)hn(x)) is analytic in an open neighborhood of the bounded component
of C\γr , we may use Cauchy’s integral formula and Fubini’s theorem to obtain

µ̂(z)− Rn(z) = hn(z)
∫
γr

1

hn(ζ )

µ̂(ζ )

z − ζ dζ, z ∈ K .

Hence

‖µ̂(z)− Rn(z)‖K ≤ C
‖hn‖K

inf
ζ∈γr

|hn(ζ )| ,

where C is a positive constant depending on the length of γr and the distance between
γr and K , but not on n ≥ n0. Therefore,

lim sup
n→∞

‖µ̂(z)− Rn(z)‖1/3n
K ≤

lim sup
n→∞

‖hn‖1/3n
K

lim
n→∞ inf

ζ∈γr

|hn(ζ )|1/3n .(25)

From (15), (5), and the uniform convergence of |wnvn|1/n , we obtain

lim
n→∞ |hn(z)|1/3n = exp{−G
(ν, z)},(26)

uniformly on compact subsets of C\{L ∪ E}. Using (15), (5), and the Lower Envelope
theorem, we have

lim sup
n→∞

|hn(z)|1/3n ≤ exp{−G
(ν, z)},(27)

uniformly on compact subsets of C\E . By use of (26) and (27), we obtain

lim sup
n→∞

‖hn‖1/3n
K ≤ ‖exp{−G
(ν; z)}‖K(28)

and

lim
n→∞ inf

ζ∈γr

|hn(ζ )|1/3n = e−r .(29)

Relations (28) and (29) together with (25) give

lim sup
n→∞

‖µ̂(z)− Rn(z)‖1/3n
K ≤ ‖exp{−G
(ν; z)}‖K er .

The left-hand side of this inequality does not depend on r ; therefore, we can make r tend
to ‖G
(ν; ζ )‖Co(S(µ)) obtaining (24) for compact subsets of C\E . Since the function
under the norm on the left-hand side of (24) is analytic in a neighborhood of infinity,
from the Maximum Principle it is obvious that (24) is also true for any K ⊂ C̄\E .
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4.2. Rational Gauss–Kronrod Quadrature

Let us consider the partial fraction decomposition of the approximant Rn ,

Rn(z) = c +
N∑

i=1

Mi∑
j=0

j! ai, j,n

(z − zn,i ) j+1
.

N denotes the total number of distinct poles of Rn . The points zn,i are the zeros
of sn,n+1 pn,n . Though the zeros of pn,n are simple they may coincide with zeros of
sn,n+1; therefore, for given zn,i any value of Mi is possible. Obviously, N = N (n) and
Mi = Mi (n), but in order to simplify the notation, we omit the explicit reference to this
dependence.

Let f be an analytic function on a neighborhood V of the compact set E . Set

I ( f ) =
∫

f (x) dµ(x), I GK
2n+1( f ) =

N∑
i=1

Mi∑
j=0

ai, j,n f ( j)(zn,i ),

and denote I ( f ) − I GK
2n+1( f ) by EGK

2n+1( f ). Under the conditions of Theorem 2, from
Corollary 1, we know that for n ≥ n0(V ) all the zeros of sn,n+1 are contained in V
and the expressions above make sense. In the sequel, we only consider sufficiently large
n’s. Notice that if the zeros zn,i are all simple (which is not known in general) we ob-
tain the rational Gauss–Kronrod quadrature rule and if, additionally, wn ≡ vn ≡ 1,
n ∈ N, then I GK

2n+1 is the usual Gauss–Kronrod quadrature formula. Even for this clas-
sical Gauss–Kronrod quadrature rule little is known about the properties of the zeros
and positivity of the coefficients ai, j,n (see [4] or the Introduction in [1]). From re-
sults obtained independently by Peherstorfer [6] and Notaris [5], it follows that I GK

2n+1
has simple nodes contained in Co(S(µ)) and positive coefficients ai, j,n , provided that
dµ(x) = √1− x2, degwn ≤ n, and vn ≡ 1. We think that it would be worth find-
ing general classes of measures for which the rational Gauss–Kronrod quadrature rule
verifies the former properties.

Let us consider the degree of exactness of the quadrature formula I GK
2n+1.

Lemma 5. There exists N ∈ N such that for each n ≥ N we have

I

(
h

wnvn

)
= I G K

2n+1

(
h

wnvn

)
,

where h is any polynomial of degree less than or equal to 3n + 1.

Proof. Let V be a neighborhood of E such that V ∩L = ∅. Let γ be an analytic Jordan
curve such that V lies in the bounded component of C\γ and L in the unbounded one.
For n ≥ N , all the zeros of Sn,n+1 belong to V and all those ofwnvn lie in the unbounded
component of C\γ . From (23) we know that (µ̂− Rn)/(wnvn) is holomorphic in C̄\V̄
and

µ̂− Rn

wnvn
(z) = O

(
1

z3n+3

)
, z→∞.
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Then, if h is any polynomial of degree less than or equal to 3n+1, h(µ̂−Rn)/(wnvn) has
a zero at infinity of multiplicity at least two. Therefore, we can use Cauchy’s theorem,
Fubini’s theorem, and Cauchy’s integral formula to obtain

0 =
∫
γ

h(µ̂− Rn)

wnvn
(ζ ) dζ

=
∫
γ

h(µ̂− c)

wnvn
(ζ ) dζ −

∫
γ

h(Rn − c)

wnvn
(ζ ) dζ

= 2π i

[∫
h

wnvn
(x) dµ(x)−

N∑
i=1

Mi∑
j=0

ai, j,n

(
h

wnvn

)( j)

(zn,i )

]

= 2π i

[
I

(
h

wnvn

)
− I GK

2n+1

(
h

wnvn

)]
, n ≥ N .

Now, let us prove

Theorem 7. Let f be an analytic function on a simply connected neighborhood V of
E . Then, under the conditions of Theorem 6, we have

lim sup
n→∞

|EGK
2n+1( f )|1/3n ≤ ‖exp{−G
(ν; z)}‖∂V ‖exp{G
(ν; z)}‖Co(S(µ)),(30)

where ∂V stands for the set of boundary points of V .

Proof. Let W be a neighborhood of E with W̄ ⊂ V . There exists a natural number
n0(W ) such that for each n ∈ N with n ≥ n0(W ) the polynomial sn,n+1 has all its zeros
contained in the open set W .

Let γ be an analytic Jordan curve contained in V such that W lies in the bounded
component of C\γ . Using similar arguments to those employed in the proof of Lemma
5, it is easy to verify that

EGK
2n+1( f ) = 1

2π i

∫
γ

f (ζ )(µ̂− Rn)(ζ ) dζ.(31)

From this equality and (24), we obtain

lim sup
n→∞

|EGK
2n+1( f )|1/3n ≤ ‖exp{−G
(ν; z)}‖γ ‖exp{G
(ν; z)}‖Co(S(µ)).

We can choose γ as close to ∂V as we please, so (30) immediately follows.
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