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Abstract.  We study the asymptotic properties of Stieltjes polynomials outside 
the support of the measure as well as the asymptotic behaviour of their zeros. 
These properties are used to estimate the rate of convergence of sequences of 
rational functions, whose poles are partially fixed, which approximate Markov- 
type functions. An estimate for the speed of convergence of the Gauss--Kronrod 
quadrature formula in the case of analytic functions is also given. 

1 I n t r o d u c t i o n  

1.1 G e n e r a l  R e m a r k s  Let w be a nonnegative function on the interval 

[-1,1] with w E L1[-1,1]. By dz we denote Lebesgue measure on [-1,1]. Let 

{Pn},,~N be the sequence of orthonormal polynomials with respect to the weight 

function w; that is, p.(z) = s,~ z" + . . . ,  ~;,, > 0, and 

f' 
(1) p,,,Cz) pk(z)  ~ (z )  dz  = 6k~. 

1 

It is well-known and easy to verify that there exists a unique monic polynomial S,, 

of  degree n which satisfies the orthogonality relations 

/2 (2) x ~ S n ( x ) p . - l ( z ) w ( x ) d x  = O, k = O, 1 , . . . , n -  1. 
1 

The polynomial S ,  is called the nth Stieltjes polynomial with respect to the weight 

function w. This class of polynomials {Sn} was introduced by Stieltjes [22] for 
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2 M. B E L L O  E T  A L .  

the Legendre weight w = 1 in terms of the associated function of the second kind. 

For more information, see the remark after Lemma 2 below. 

In the last two decades, Stieltjes polynomials have attracted considerable 

attention. This interest has been motivated by their connection with Gauss- 

Kronrod quadrature formulas 

1 n n + l  / .  

(3) ] /(x)w(x) dx = ~ ak,nf(Xk,n) + ~ 7k,n/(Yk,n) + En(f), 
J -  1 k = l  k = l  

where {xk,,~} are the zeros of the orthogonal polynomial pn. The nodes {Yk,n} and 

weights {ak,n }, {Tk,n } are chosen so as to maximize the degree of exactness of the 

formula in the space of polynomials. It is easy to see that if for a given weight, 

En (f) = 0 for all polynomials of degree less than or equal to 3n + 1, then the nodes 

Yk,n must be the zeros of the Stieltjes polynomial S,~+1. The reciprocal statement 

is also true if the zeros of the Stieltjes polynomials Sn+l happen to be simple and 

distinct from the z e r o s  ofpn. In fact, there is equivalence between the construction 

of Stieltjes polynomials and Gauss-Kronrod quadrature formulas if multiple nodes 

are allowed (for details, see Section 5). Kronrod [ 10] was the first to consider this 

type of formula, taking as nodes the zeros of Legendre polynomials and the zeros 

of the corresponding Stieltjes polynomials. For further references and surveys on 

this topic, see [9], [12], and [7]. 

From the point of  view of quadrature processes, it is important to know if the 

nodes are simple, their interlacing properties, and whether they are contained in 

the set where the function to be integrated is defined. Since Sn is orthogonal with 

respect to a sign changing function, equations (2) do not in general guarantee that 

the zeros of Sn lie in [-1, 1], that they are simple and distinct from the zeros of 
p,~_~, or even that they are real. However, for the ultraspherical weight function 

wx, wx(x) = (1 - x2) x-1/2, 0 < ,~ < 2, Szeg6 proved in [24] that these properties 

hold for all n. Positivity of the coefficients appearing in the quadrature formula 

and interlacing properties of the zeros have also been studied for the ultraspherical 

weights wx, 0 < )~ < 1, in [11] and [4], respectively. The same properties are 
analysed in [16] and [17] for weights of the type ~ -  x2w(x), where ~/1 - x2w(x) 
is positive and twice continuously differentiable on [-1, 1]. Estimates of the error 

in Gauss-Kronrod quadrature formulas have been given for classes of  functions 

with different degrees of smoothness. For the case of analytic functions, see [6] 
and [ 15]. In connection with Lagrange interpolation, see also [8]. 

Thus, to some extent the study of Stieltjes polynomials has been marked so far 

by their applicability in Gauss-Kronrod quadrature. This has caused research to 

focus on weights for which quadrature is meaningful for classes of functions as large 
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as possible. We have shifted the attention to the Stieltjes polynomials themselves 

and to the study of their asymptotic properties, regardless of their immediate 

use in quadrature. We aim to describe general classes of  weights for which the 

corresponding Stieltjes polynomials have either nth root (weak), ratio, or strong 

asymptotic behaviour. Such results have direct application in the approximation 

of  Markov functions by means of rational approximants with partially prescribed 

poles (Pad6-type approximants in the terminology commonly used in recent years). 

Regarding such approximants, we refer to the papers [1]-[3] and the references 

therein. As a by-product of the results obtained in rational approximation, we give 

estimates of the rate of  convergence of Gauss-Kronrod quadrature for functions 

which are analytic on a neighbourhood of  the set of integration. 

1.2 Def in i t ions  a n d  K n o w n  R e s u l t s  Let # be a finite, positive Borel 

measure on the real line IR whose compact support S(#) contains infinitely many 

points. Let #' = d#/dx be the Radon-Nykodym derivative of # with respect to 

the Lebesgue measure dx. Whenever we find it more convenient, we adopt the 

differential notation for a measure. The nth Stieltjes polynomial with respect to p 

is defined by (1) and (2), with ~v(x) dx replaced by dp(x). That is, let {Sn}neN be 

a sequence of polynomials such that for each n E N, S,~ is defined as the monic 

polynomial of degree at most n verifying 

f s  x k Sn(x) (x) dp(x) = O, k = O, 1 n - l ,  Pn-1 
(t,) 

where Pn-1 = t C n - l Z  n - 1  + " "  , t~n-1 > 0, is the (n - 1)th orthonormal polynomial 

with respect to the measure #. Finding Sn reduces to solving a system of n 

homogeneous equations in n + 1 unknowns. Thus a non-trivial solution always 

exists. From the orthogonality relations satisfied by Sn, it is easy to conclude that 

deg Sn = n. Sn is called the nth Stieltjes polynomial with respect to the measure 

d/~. Unless otherwise stated, the set of integration is S(/~), in which case it will not 

be indicated. We refer to sn = ~n-1 Sn as the normalized nth Stieltjes polynomial. 

The introduction of  this notation allows us to give several formulas a closed form; 

of course, this has nothing to do with attempting to orthonormalize the Stieltjes 

polynomials. 

The largest class of  measures with which we deal is that of  regular measures. 

This class of  measures was introduced in recent years and has been extensively 

studied. The excellent monograph [21] by H. Stahl and V. Totik is dedicated to 

the study of  these measures and their orthogonal polynomials. For the precise 

definition and different equivalent forms of  its expression, see page 61 of  that 
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treatise. The regularity of  the measure #, for which we write p �9 Reg,  is equivalent 

to either one of  the following two limit relations (see Theorem 3.1.1 in [21]), 

(4) lim " 1/n 1 
- - ~  cap S(p) 

(5) lim Ip.(z)l 1/" = exp{gn(z, oo)}, 
n - - ~ o o  

uniformly on compact subsets of  C \  Co(S(#)), where Co(S(#)) denotes the convex 

hull of  S(p), cap S(p) stands for the logarithmic capacity of  S(#), and gn (z, cr is 

the (generalized) Green function with singularity at infinity relative to the region 

ft = C \ S(p) (cf. Section 1.2 and Appendix A.5 in [21] for the definition). We 

assume that capS(p) > 0, which is equivalent to gn(z, ~ )  ~ +cr 
The Blumenthal-Nevai class of measures is also important in the theorY of 

orthogonal polynomials and related subjects. Let 

xpn(x) = an+lPn+l + bnPn(X) + anPn-1 (x), n >_ 1, 

be the recurrence relation satisfied by the sequence {P,~}n~N of orthonormal poly- 

nomials. We say that p E M(a,  b) if I imn-~  bn = b and lim,,..,r an = a/2. In this 

case, it is known that S(p) = [b - a, b + a] U e, where e is an at most denumerable 

set whose only possible accumulation points are b 4- a. We assume that a r 0, so 

that [b - a, b + a] does not reduce to a point. In this ease, 

(6) n-~oolim Pn+l(z---'---~) : q Y ( ~ a b  

uniformly on compact subsets o f C  \ S(p), where @(z) = z + v ~  - 1. The square 

root is taken to be positive for z > 1. This function is the conforrnal mapping 

of  C \ [-1, 1] onto {[w I > 1} such that ~(co) = c~ and @'(oo) > 0. Because of 

these properties, log ]9((z - b)/a)] is the Green function with singularity at infinity 

relative to the region C \ [b - a, b + a]. If p �9 M(a,  b), then in addition to (6), we 

have 

1 fb+  dx 
(7) lim f f (x )p~(x)  dp(x) = - f ( x )  

n--+oo JS(l~) 7f J b - a  ~/a 2 -- (X -- b) 2 

for everY bounded Borel-measurable function f on S(p), continuous on 

[b - a, b + a]. For more details on this class of  measures and its properties, see the 

book [13] by P. Nevai.  A well-known sufficient condition for # E M(a,  b) due to 

E. A. Rakhmanov is that S ( # )  = [b - a, b + a] and p' > 0 almost everYwhere on 

[b - a, b + a] (see [19] for a proof). 
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Finally, we consider the Szeg6 class of measures. For simplicity in notation, 

we restrict our attention here to measures supported on [-1,  1]. We say that # E S 

if S(#) = [-1, 1] and log #'(x)/~/1 - x 2 E LI[-1,  1]. In this case, 

(8) lim pn(Z) 1 
- 

uniformly on compact subsets of C \ [-1, 1], where 

) 1 el~ 
St~(z ) = exp ~ log(/zl(COS0) I sin(O)l) Zdo~ 

+ 
e,O_ z j ,  i z l ~ l .  

0 

Relations of  type (8) are called exterior strong asymptotic formulas. 

As for strong asymptotics on the support of the measure, it is necessary to place 

more restrictions on the measure/~ to obtain some results. Thus, for instance, 

suppose that d/~(x) = w(x) dx and the function f(O) = w(cos/7) I sin 01 satisfies the 

Lipschitz-Dini condition 

If(O + 5) - / (e)[  < M (logS) -L - l ,  

where M and L are fixed positive numbers. Then we have (see Theorem 12.1.4 in 

[23]), uniformly on - 1  < x < 1, 

(9) (1 - x2)l/4v/~-~p,(x ) = ~/2/~ cos{nO + "/(0)} + O{ (logn)-L }, 

where x = cos0, exp{iT(O)} = S,(e~~176 and S~(e is) := limr..+ 1- S#(reW). 

1.3 S t a t e m e n t  o f  M a i n  Resu l t s  As mentioned above, the main object of  

this paper is the study of the asymptotic behaviour of Stieltjes polynomials. In 

this direction, not much is known so far. Most of  the results to the present are 

formulas of type (9), which allow one to obtain reasonably accurate information 

on the location and asymptotic distribution of  the zeros of  Stieltjes polynomials. 

Ehrich, [4] and [5], proves relations similar to (9) for Stieltjes polynomials with 

respect to the ultraspherical weights wx, 0 < )~ < 2. Previously, Peherstoffer had 

given in [ 16] a representation of the limit of  the Stieltjes polynomials with respect 

to the weight x/1 - x2w(x) in terms of the series expansion of  Sw at z = 0 provided 

that x/i  - x2w(x) is positive and twice continuously differentiable on [-1, 1] (see 

also [ 17]). It is quite surprising that formulas for the exterior asymptotic behaviour 

of  Stieltjes polynomials are only known for the class of weights considered in [ 17]. 

In that work, the author asks whether such a relation takes place under weaker 

assumptions. As we shall see, the only restriction is that the measure satisfy 
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Szeg6's condition (# E S). Regarding such other types of  asymptotics as nth root 

or ratio asymptotics, to the best of  our knowledge, the results we present are the 

first available. 

Set 

E =  ~fz 6 C :  gf~(z, oo) < max gf~(w, oo)~. 
k - w~Co(s(~,)) J 

We write S(#) = ess[b - a, b + a] if the support o f  the measure/z  has the same 

structure as in the Blumenthal-Nevai class M(a, b), that is, consists o f  the interval 

[b - a, b + a] and an at most denumerable set which accumulates only at the points 

b+a.  
The functions of  second kind with respect to # are given by 

pn(X) dp(x), 
g , ( z )  = z - z z e ~ = C \ S ( ~ ) .  

These functions are analytic in f~ and gn(oo) = O. Because of  the orthogonality 

relations satisfied by Pn with respect to the measure #, z = oc is a zero of  gn of 

multiplicity n + 1. 

We have 

T h e o r e m  1. The following assertions hold. 

(a) / f p  6 Reg  and cap S(#) > O, then 

(10) lim Sn+l(Z) gn(Z) = 1, 
n - - - + o o  

uniformly on compact subsets o f t  \ E. In addition, the set o f  accumulation points 

of  the zeros of  {Sn+x }neN is contained in E and 

(11) lira [sn+x (z)l 1In = exp{gf~(z, oo)}, 
rl---+ o o  

uniformly on each compact subset of  C \ E. Moreover, if  S(#) = ess[b - a, b + a], 
then relations (10) and  (11) hold uniformly on each compact subset of  C \ S(#) 
and C \ S(#) respectively; and the set of  accumulation points of  the zeros of the 
{Sn}neN is contained in S(#). 

(b) l f #  E M(a, b) with a ~ O, then 

(12) lim S n + l ( z ) - @ ( ~ a b  ) and lira pn(Z) 1 
n~oo Sn(Z) n~oo Sn+X(Z) ~/(Z -- b) 2 - a 2' 

uniformly on each compact subset of  C \ S(I~). 

(c) / f  # 6 S, then 

s,,+l(z) , ~  1 
(13) l i ~ m o o ~  - V 21r S,(~(z)) ,  

uniformly on each compact subset o fC \ [-1,  1], where S,(z)  is as in (8). 
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The paper is organized as follows. The next section is essentially dedicated 

to proving an integral relation between Stieltjes polynomials and functions of  the 

second kind, which plays an important role in the subsequent arguments. The 

following section is dedicated to the study of the asymptotic properties of Stieitjes 

polynomials and to proving our main results stated above. In Section 4, we apply 

our result on nth root asymptotics to obtain convergence of a certain type of Pad6- 

type approximants to Markov functions. In turn, this result is applied in Section 5 to 

estimate the speed of  convergence of the Gauss-Kronrod quadrature formula when 

integrating functions which are analytic on a neighbourhood of  the support of  the 

measure. The final section contains an example illustrating the type of  difficulties 

one encounters with the location of the zeros and the asymptotic properties of  the 

Stieltjes polynomials when the support of  the measure contains more than one 

interval. 

2 Some i e m m a s  

The following lemma provides some useful relations. 

L e m m a  1. We have 

f , , 
(14) gn(z)pn(z) = J ~ _ x a # t x ) ,  z E f~; 

and, for any polynomial en of degree less than or equal to n, 

(15) , , (z)  f ;~(__X)xpn_l(x)d#(x)= f s pn_l(x)di~(x), z E •. 

Let K be a compact subset of  C \ Co(S(#)); then there exist positive constants 
M1, M2, independent of  n, satisfying 

(16) Ma <_ Ig. (z)p . (z) l  <_ M2, z E K.  

ln particular, p,g~ has no zeros on C\Co(S(/~)). Moreover,/fS(#) = ess[b-a, b+a], 
a < a', and K is a compact subset o fC  \ (S(p,) t_J [b - a', b + a']), then there exists 
no such that for all n > no, gn has no zeros on C \ [b - a', b + aq and (16) holds 
uniformly on K. 

Proof .  Relation (14) is well-known (see, e.g., Theorem 6.1.8 in [21]). It 

follows directly from the orthogonality properties of  pn. To prove (15), notice that 

from the orthogonality relations satisfied by sn, we have 

f e n  Sn (x)pn-1 (x)d#(x) = O, 
(z)_ en (z) 

Z - - X  
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which is equivalent to (15). 

The general statement concerning (16) is also well-known. It is an immediate 

consequence of (14). The upper bound is obvious. For the lower bound, notice 

that 

- x[2 f - I  

which in the first place makes it obvious that YnPn has no zero in C \ Co(S(#)). 

On the other hand, it is easy to bound from below in absolute value by a positive 

constant on a compact subset of  C \ Co(S(i~)). 
Now assume that S(#) = ess[b - a, b + a], and [b - a', b + a'] and K are 

as in the second part of the statement relative to (16). In this case, the set 

Go(,.q(/~)) \ (S(/~) U [b - a', b + a']) is made up of  at most a finite number of non- 

intersecting open intervals (let us assume at least one; otherwise, we would have 

nothing to prove). It is easy to show that on the closure of  any bounded connected 

component of R \ S(#), pn can have at most one zero (otherwise, one could con- 

struct a polynomial ! of degree _< n - 2 such that gpn would have a constant sign 

on the support of the measure, contradicting the orthogonality relations satisfied 

by pn). On the other hand, each mass point of/~ attracts at least one zero of pn 
(see Theorem 6.1.1 [23]). Therefore, for all sufficiently large n, each one of  the 

non-intersecting open intervals which compose Co(S(#)) \ (S(#) O [b - a', b + a']) 

contains exactly one zero of  Pn which lies beyond a prescribed sufficiently small 

distance from K. Using this, the upper bound in (16) on K is immediate on ac- 

count of  (14). Thus we have that the family {png,} is uniformly bounded on each 

compact subset of C \ (S(#) O [b - a', b + a']). Suppose that on the compact set K 

we had chosen before, IP,,g-I is not uniformly bounded from below by a positive 

constant. Take a convergent subsequence of  {Pngn} whose limit function has a 

zero at z0 E K. The limit function cannot be identically equal to zero, because that 

would contradict the lower bound which was shown to hold on compact subsets of 

the complement of the convex hull of the support. Therefore, z0 is an isolated zero. 

Choose a neighborhood V of z0 at a positive distance from S(#) o [b - a', b + a']. 

By Hurwitz' Theorem, we conclude that there is a subsequence of  indices A such 

that for each n E A, Pngn has at least one zero in V. Such zeros must be contained 

in the real line, since (as was proved earlier) Pngn does not have zeros outside the 

real line for any n. Let us show that they cannot be on the real line either for 

all sufficiently large n. Having proved this, we arrive at a contradiction, which 

implies that on K the sequence {lPng, I} is uniformly bounded from below on K 

by a positive constant as needed. 

First of all, using the arguments employed above, we know that for all 
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sufficiently large n we can guarantee that Pn has no zero on V. Let us prove 

that for all sufficiently large n, g,~ does not vanish on Co(S(#)) \ [b - a', b + a'] and 

thus on C \ [b - a', b + a']. To this end, notice that 

(17) (p.g.) '(z) = f ~(~X)xd#(x ) < O, z E R \ S(#). 

Therefore the function p,,gn has at most one simple zero in each of the open intervals 

which give the connected components of Co(S(#)) \ S(#). On those intervals, we 

saw that pn has exactly one zero for all sufficiently large n; therefore, for such n, 

the functions gn cannot have any zeros. With this we conclude the proof. [] 

Now, let us obtain some integral expression connecting the Stieltjes polynomials 

and functions of the second kind. 

L e m m a  2. We have 

1 1 f s , ( X ) p n _ l ( x ) d ~ ( x ) ,  z e C \ Co(S(t~)), (18) s,~(z) g n - l ( Z )  ~ n - l ( Z )  Z -- ~7 

and 

(19) sn(z) gn-l(z) = 1 + gn-i(z_.__.__~) f~ dr 
27ri 9n-1(~) (~ - z)' 

where 7 is any positively oriented closed smooth curve which surrounds 
Co(S(#)) such that z is contained in the unbounded component of  C \ 7. I f  S(p) 
= ess[b - a, b + a], then we can take 7 in (19) as any smooth contour surrounding 
[b - a, b + a], and the formula remains valid for all sufficiently large n. 

Proof .  From the orthogonality relations of Pn-1 with respect to the measure 
#, we obtain 

f S.(z) - s.(z) 
z T, 

f z n -- X n 
pn-l(x)d/~(x)= z x pn-x(x)d#(x) 

= f x.-lp._l(z)du(x )= 1 ~ o  

l~n--1 

Rewriting this equality, we find that 

gn-l(Z) 8n(Z) = 1 + f Sn(X) 
2; -- X 

Pn-x (x) dl~(x), 

which is equivalent to the first formula of the lemma. From (18), (14) and (15) 

(used with en(z) = Xpn-a (z)), it follows that 

1 ( f ~ - ~ ( x '  ) - ~ f  8 n ( Z )  g n _  1 (Z-""'--"--~ -'z-- i : - ~ / z  dt~Cx) z--sn(X) p2n-x(x)d#(x)" z - x  
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Therefore, this function is analytic in C \ Co(S(/~)) and has a zero of  order at least 

1 at infinity. Using Cauchy's  integral formula with a curve "), as indicated above, 

we obtain 

s.(z) g._l(z) 
1 f s n ( ~ ) - l / g n _ l ( ~ ) d ~ =  1 f~ d~ 

2~i ( - ; - - ~  ~ g._~ (r162 - z) '  

which is (19) in different form. When S(#) = ess[b - a, b + a], take any smooth 

contour that surrounds [b - a, b + a]. Choose a' > a such that [b - a', b + a'] does not 

intersect the contour. According to Lemma 1, for all sufficiently large n, gn does 

not have zeros on C \ [b - a' ,  b + a']. Therefore, reasoning as before, we can obtain 

(19) using this 3'. The proof is complete. [] 

In his letter to Hermite [22], Stieltjes considers the function gn of  the second 

kind with respect to the Legendre weight. He notices that such a function has a 

zero at infinity of  degree n + 1 and concludes that 

1 a l  a2  
gn(z) - En+l + --z + -~ + ' ' '  ' n 6 N, 

where En+l is a polynomial of  degree n + 1. Using Cauchy's  integral formula he 

obtains an integral representation of  the polynomial E ,+ I  (different from (18) and 

(19)) which allows him to prove that it satisfies full orthogonality relations with 

respect to pn(x) dr. Therefore, En+l is Sn+l up to a multiplicative constant. We 

have preferred to take (2) as the starting-point for the Stieltjes polynomials. 

3 Asymptotics of Stieltjes polynomials 

Recall that 

r "1 
E =  t {z 6 C :  gn(z, oo) < max gf~(w, oo)~. 

- ~ C o ( s ( ~ ) )  

The set E contains the convex hull of  S(#) and has, in general, non-empty interior. 

Moreover, E coincides with S(#) (and thus has empty interior) if  and only i f  S(/~) 

is connected (an interval). It is well-known that the Green function gn(z, oo) tends 

to zero, except at most on a set of  capacity zero, as z goes to S(#). 

Let  f be a bounded function defined on K.  As usual, 

IlfllK = suP{If(z)I : Z ~ K}.  

The following theorem provides a stronger version of  (10). 
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T h e o r e m  2. Le t#  6 R e g  and cap S(#)  > O. Then 

(20) limsup l[ 8n+1 ~n -- 111~ n < II exp{-gfl(., ~)}IIK II exp{gfl(-, ~)}llco(s(.)), 
~ - - } o o  

where K is any compact subset o f  C \ E. Moreover, i f  additionally we suppose that 

S(#) = ess[b - a, b + a], then 

(21) limsup [[ Sn+l gn - 1[[~ n ~ [[ exp{-gfl(-, oo)}llK, 
~ - - } o o  

with K any compact subset o f  C \ S(#). 

Proof .  Fix a compact set K C C \ E .  Let r be a real number, r > 

[[gfl(-, c~)[[Co(s0,))' such that K lies in the unbounded component of C \ 7r, where 
"yr = {( E C : gf2((,~) - r}. Obviously, 7~ surrounds Co(S(#)). From (19), 

applied integrating over 7~, we have 

I[ 8n+l  gn - I [ [K  _< C IIg , , l lK 
infce-r. 19-(r 

where C is a positive constant depending on the length of 7~ and the distance 

between 7r and K. Therefore, 

(22) limsup II s.+~ fin - -  111~" < limsuPn.oo IIg.ll~" 
n---~co --  l i m n ~ o o  infce-r~ [gn(()[  l / n "  

By (16) and (5), we have 

(23) lira [gn(z)[ 1/" = exp{-g.(z,c~)},  
n--.} o o  

uniformly on compact subsets of C \ Co(S(#)). From (23), it follows that 

lim sup IIg,,ll~" = II exp{-g.(- ,  oo)} IlK 
n - - ~ o o  

(24) 

and 

(25)  lim inf Ig.(r 1/" = e x p { - r } ,  
n--} co ~E~',- 

Relations (24) and (25) together with (22) give 

limsup I I s . + l g .  - 111~" _< exp{r} Ilexp{-g.( ' ,~)}ll~. 
n---4, o o  

The left hand of this inequality does not depend on r; therefore, we can make 

r tend to Ilgn(., ~)lleo(s(~)), obtaining (20) for compact subsets of  C \ E. The 
function under the norm sign on the left hand of (20) is analytic on C \ S(#) and, 
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in particular, on C \ E; therefore, by use of the Maximum Principle, the result is 

easily extended to compact subsets of C \ E. 

The proof of  (21) is analogous to that of  (20), taking advantage of  the special 

structure of S(/~). To avoid repetitions, we simply outline the main ingredients. We 

start out again with a fixed compact subset K, which is now contained in C \ S(/~). 

Take r > 0 sufficiently small so that K lies entirely on the unbounded component 

of  the complement of 7r, taking care that % does not intersect any of  the mass 

points which S(#) has outside of  [b- a, b + a]. According to Lemma 1, we know that 

for all sufficiently large n, gn has no zero on or outside %. Therefore, according 

to Lemma 2, (19) remains valid integrating over this 7r; and we deduce a bound 

analogous to (22). Now, (5) holds uniformly on compact subsets of  C \ S(/~) (see 

Theorem 3.1.1 and Corollary 1.1.5 in [21]) since the zeros ofpn are bounded away 

from K. Using this and (16), we obtain (23) on each compact subset of  C \ S(#); 

we can then proceed as before, with the advantage that we can make r approach 

zero. With this we conclude the proof. [] 

With the aid of this theorem, we are able to prove our main result stated in the 

introduction. 

P r o o f  o f  T h e o r e m  1. (a) Since 

II exp{-g~(z,  )}IIK II exp{gfl(z, < 1 

by the harmonicity of  gf~(z, ~ )  on C \ E, relation (10) follows immediately from 

(20). The statement concerning the zeros of  {Sn+l },,eN is a direct consequence of  

(10) and Hurwitz' Theorem since the function 1 has no zeros on C \ E .  Finally, (10) 

and (23) yield (11). The case when S(#) = ess[b - a, b + a] is proved analogously, 

using (21) in place of (20). 

(b) First notice that it is sufficient to consider the case when a = 1 and b = 0: 

the general case may be reduced to this by means of  an affine change of  variables. 

Secondly, according to (21), under the presentconditions we know that (10) holds 

uniformly on each compact subset o f C  \ S(~u). Finally, from (14) and (7), we have 

1 f" dx 1 
(26) n--*~lim gn(Z) pn(z) = -~ ]-x  (z - x) l~T-S-~- x 2 = z~x/-~----~- I ' 

uniformly on each compact subset of C \ S(#). Putting these things together and 

using (6), we obtain 

lira Sn+l(Z) = lira Sn+l(Z) gn(Z) x lira Pn-s(Z) gn-l(Z) x lira pn(z) 
s.(z) v.(z)g.(z) 

= z + f f z 2 - -  1, 
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where all limits hold uniformly on each compact subset K of C \ S(#). With this, 

we have proved the first part of  (12). From (26) and (10), we immediately obtain 
the second relation. 

(c) From (10), (8) and (26), we have 

lim Sn+l(Z._.__~) lira Sn+l(z)gn(z) x lim pn(Z) 1 .--*~ [qJ(z)] n = , ~  n~r162 [@(z)] - - - - - ~  • lim g . ( z )  

1 = , c  
%' 2~r 

with uniform convergence on any compact subset K of C \ [-1, 1], which proves 

(13). [] 

Comparing these results with (5), (6) and (8), one observes that, for these 

important classes of  measures, there are points in common between the asymptotic 

behaviour of  Stieltjes polynomials and of  orthonormal polynomials; this is specially 

so when S(/~) = ess[b - a, b + a]. When the support of  the measure already 

contains two whole intervals, some differences do arise, as the example in Section 

6 illustrates. That example also reveals that Theorem 2 is, in some sense, sharp. 

With respect to the location of  the zeros, it is known (cf. [14] and [18]) that, 

in general, Stieltjes polynomials may have complex zeros. Despite this fact, 

statement (a) of  Theorem 1 shows that the zeros can only accumulate on E (on 

S(#) if S(#) = ess[b - a, b + a]) when # E Reg.  We complement this assertion in 

the next result. In order to state it properly, it is necessary to give some additional 

definitions. It is well-known (see [20], Section 3.3) that among all probability 

measures a with support in S(/~) there exists a probability measure A (which is 

unique if cap S(p) > 0) with support in S(/~), called the extremal or equilibrium 

measure of  S(#), minimizing the energy 

Let P(a;  z) = - f log }z - tl da(t) be the potential of  the measure a. There exists a 

constant F ,  the equilibrium constant of  S(p), such that 

P ( A ; z ) < F ,  z t C ,  

P(A; z) = F, z 6 S(p) \ A wi th  capA = 0. 

It can be shown that the property above characterizes the equilibrium measure and 

that the equilibrium constant F is precisely the minimal energy :Z(A). We also 

recall that cap S(/~) = exp{-F}.  If cap S(p) > O, the equilibrium measure of  S(#) 
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is closely related to the Green function relative to the region C \ S(/~) by means of  

the formula 

(27) ga(z,  oo) = F - P(A; z), z E C \ S(#). 

Let  pn and p be finite Borel measures on C. By pn * > p, n -~ oo, we denote 

the weak* convergence of  pn to p as n tends to infinity. This means that for every 

continuous function f on C, 

lim / f ( x ) d p n ( X ) =  / f ( x ) d p ( x ) .  
t$-.-.k O 0  

For a given polynomial T, we denote by AT the normalized zero counting 

measure of  T. That is 
1 

A T -  degT Z tf~. 
~: T(~)=0 

The sum is taken over all the zeros of  T, and ~ denotes the Dirac measure 

concentrated at ~. 

T h e o r e m  3. Suppose that S(#) = ess[b - a, b + a], a > 0, and # E Reg.  Then 

, dx 
As.+1 > ~-x/a 2 - ( x - b )  2' u - ~ c o .  

P r o o f .  Set As.+1 - An. In this case, it is known (see [20], Corollary 5.2.4) that 

capS(#)  = a/2,  that gn(z,  oo) - log ]k~((z - b)/a)l,  and the equilibrium measure A 

is dx/(Tr~f a 2 - (x - b)2). 

All the measures An are probability measures. Let  A C N be a subsequence of  

indices such that 

(28) An *>A, n E A ,  n - ~ o o .  

It is sufficient to prove that A -- ), for any such sequence A of  indices. According 

to Theorem 1, in this case, the support of  A is contained in the set S(#). Taking 

(11), (27) and (4) into account, we have 

lim P ( A n ; z )  = lim - 1  log[Sn+l[ = P(A;z),  z E C \ S ( p ) .  
nELX nEA n + 1 

On the other hand, from (28), one obtains 

lim P(An; z) = P(A; z), z E C \ S(/~). 
nEA 

Thus, P(A; z) = P(A; z) except at most on a set of  Lebesgue measure zero in the 

complex plane; therefore, f rom Theorem 3.7.4 in [20], we obtain that A - A, as we 

wanted to prove. 13 
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Using basically the same arguments, one can show that the balayage onto OE 

of any convergent subsequence of {As,§ is the balayage onto OE of the 
corresponding equilibrium measure A. 

4 Pad~-type approximation 

The first part of  Theorem 1 may be applied to estimate the rate of convergence 

of a certain sequence of interpolating rational functions to Markov functions when 

part of the poles are fixed at the zeros of the orthogonal polynomials of  the given 

measure. Set 

~(z)=c+--/d-~(-x-),  z e C \ S ( i t ) ,  cE 
d Z - - X  

Let Pn be the nth orthonormal polynomial with respect to it. It is easy to verify 

that there exists a unique rational function Rn = L=/(Q~pn),  such that Ln and Qn 

satisfy 

�9 degQn < n + 1, degLn < 2n + 1, and Qn ~ O. 

�9 Qn(z )pn(z )~(z )  - Ln(z) = O(1/Zn+2), Z --+ 00. 

From the definition, it follows inunediately, using the Cauchy and Fubini Theorems, 

that Qn satisfies 

f xkQn(x)pn(x)d#(x) = k = O, O, 1 , . . . ,  n .  

Therefore, taking Qn to be monic, we have Q,, = Sn+x. Another immediate 

consequence of the definition and Cauchy's integral formula (taking into account 

that Qn = S,~+x) is 

(29) ~(z) - Rn(z)  - 1 f (S2n+--tPn--)(X) d#(x), z 6 C \ S(#).  
(S2n+x p, ) ( z )  z - x 

Using the remainder formula above and the nth root asymptotic behaviour of  the 

polynomials pn and sn+l, we prove 

T h e o r e m  4. Let it E l:teg and capS(i t)  > O. Then, on each compact subset 

K o f C  \ E, we have 

(30) 
limsup II ~(z) - Rn(z)ll~ 3n < II exp{-g•(., ~)}IIK II exp{gf~(., oo)}llCo(s(,)). 

n-.-4,oo 

I f  additionally, we suppose that S(it) = [b - a, b + a], a > O, then 

(31) limsup II ~(z) - R,,(z)ll~ 3" ___ II exp{-g•(., oo)}llK, 
n---~ o o  
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m 

where K is any compact subset of  C \ S(#). 

Proof .  Fix a compact set K C C \ E .  Let r be a real number, r > 

II gn (., oo ) II Co(s(~)), such that K lies in the unbounded component of C \ %, where 
% = {( E C : 9t~((,oo) = r}. For short, let us denote 1/(s~+x(Z)pn(Z)) by hn(z). 
From (29), we have that 

f 1 d#(x) ~(z) - Rn(z) = hn(z) hn(x) z -  x '  z E K .  

Since for each z E K, 1/((z - x) h,(x)) is analytic in an open neighbourhood of 

the bounded component of C \ 7., we may use Cauchy's integral formula to obtain 

/ ( l f ~  1 d ,  ) 
~(z) - Rn(z) = hn(z) ~ri ~ hn(() (( - x) z - - (  d#(x) 

_hn(z )  f~ ( f d # ( x ) )  d( hn(z) f~ 1 ~ ( ( )dr ,  
- 2~ri . k J  ( - z hn(() (z - () - 2ri . hn(() z----S-( 

where Fubini's Theorem has been used in the second equality�9 Hence 

II ~ ( z ) -  R.(z)l lr  < C Ilh,,llK 
- inf;e-rr Ih,,(()l' 

where C is a positive constant depending on the length of 7r and the distance 

between % and K. Therefore, 

( 3 2 )  l i m s u p  II ~(z) - Rn(z)[[~ an < 

From (11) and (5), we obtain 

lim SUPn~o o IIh.l l~ a" 
limn~oo infee.r. [hn( ()lll  an" 

(33) lira [h . ( z ) l  x/3" = exp{-gfl(z, oo)}, 
I'1----~ O O  

uniformly on compact subsets of  C \ E. By use of (33), we obtain 

(34) 
�9 1 / 3 n  h m su p  IIh,,ll~ --- II exp( -g~(z ,  oo)}llK 
n- - - -k  o o  

Relations (34) together with (32) give 

and lim inf [hn(()[ l/an = exp{-r}.  
n-*oo ~E'V, 

limsup [[ ~(z) - Rn(z)[[~ an _< exp(r} [[ exp{-gf~(z, oo)}[IK. 
n - - ~ o o  

The left hand of this inequality does not depend on r; therefore, we can make r 

tend to [[gt~ (', oo)[[Co(s(u))' obtaining (30) for compact subsets of  C \ E. Since the 
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function under the norm on the left hand of (30) is analytic on a neighbourhood 

of infinity, from the Maximum Principle it is obvious that (30) is also true for any 

K C C \ E. Formula (31) is a direct consequence of (30) when the support is an 

interval. [] 

So far, most papers dealing with Pad6-type approximants of  Markov-type 

functions take the distinct fixed poles to have even order (cf. [2] and [3]). This 

is done in order to ensure that the polynomials, whose zeros are the free poles of  

the rational approximant, be orthogonal with respect to a positive measure. This 

simplifies matters considerably, as it forces the free poles to fall within the convex 

hull of the support of  the measure. The question arises whether this restriction, 

due to the method used in the proofs, can be dropped or weakened. Theorem 4 is 

a first step in that direction. 

5 Gauss-Kronrod quadrature 

We first introduce an extended Gauss-Kronrod quadrature formula. Let us 

consider the partial fraction decomposition of the approximant R . ,  

N M, j !  as,J, . 

S=l j=O 

Here N denotes the total number of distinct poles of Rn. The points z,~,i are the 

zeros of  s .+l  p. .  Though the zeros o f p .  are simple they may coincide with zeros 

of sn+ 1; therefore, for given z.,i, any value of  Ms is possible (of course Ms < n + 1). 

Obviously, N = N(n)  and Mi = Mi(n);  but in order to simplify the notation, we 

omit the explicit reference to this dependence. 

Let f be an analytic function on a neighbourhood V of the compact set E. Set 

(35) 
rr M~ 

f f(a)dp(x), l.(f) = EF_.as,j,nf(J)(z,~,s), E.(f) = l(f)- In(f). l(f) 
.I i=1 j=O 

I f #  E Reg  and capS(#)  > 0, from (a) of  Theorem 1, we know that for n > no(V) 

all the zeros of  s ,+l  are contained in V and the expressions above make sense. In 

the sequel, we only consider sufficiently large n's. Notice that if the zeros zn,i are 

all simple (which is not known in general), then I ,  is the usual Gauss-Kronrod 

quadrature formula. This fact is made explicit by the following lemma, where we 

study the degree of  exactness of the quadrature formula just introduced in the space 

of  polynomials. 
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L e m m a  3. There exists N E N such that f o r  each n >_ N, we have 

I(h)  = I n ( h ) ,  

where h is any polynomial  o f  degree less than or  equal to 3n + 1. 

Proof .  Let V be a neighbourhood of E. Let 7 be an analytic Jordan curve such 

that V lies in the bounded component of C \ 7. For n > N, all the zeros of  Sn+l 

belong to V and, therefore, ~ - Rn is holomorphic in C \ V. From (29), we know 

that 

~t(Z) -- a n ( Z  ) -~ O ( 1 / z 3 n + 3 ) ,  Z "~ 00. 

Then, if h is any polynomial of degree less than or equal to 3n + 1, h(~ - Rn) 

has a zero at infinity of multiplicity at least two. Therefore, we can use Cauchy's 

Theorem, Fubini's Theorem and Cauchy's integral formula to obtain, for n > N, 

0 = f~ h ( ( ) (~  - Rn)(~) d(  

N Mi 

r -- X ] i=1 j=0  r -- Zn,i 

Mi 

: ~ i=1 j= 0  

= 2~ri [I (h) - In (h)]. 
[] 

Finally, we estimate the error of this extended Gauss-Kronrod quadrature 

formula for analytic functions. In the following statement, E , ( f )  should be un- 

derstood in the sense of (35). In case that all the zeros of Sn+lp ,  are simple, it 

coincides with (3). 

Theorem 5. Let f be an analytic function on a neighbourhood V o f  E. Let 

/~ 6 Reg and cap S(#)  > O. Then 

(36) limsup IEn(f)l 1/3n ~ II exp{-g~(-, oo)}[[ov II exp{gQ(., oo)}llCo(s(.)), 
n---+~ 

where OV is the set o f  boundary points o f V .  l f  S (# )  = [b - a, b + a], then 

(37) limsup IEn(f)l 1/Sn < Ilexp{-gft(',~176 
n----I.oo 

f o r  any funct ion f analytic on a neighbourhood V o f  [b - a, b + a]. 
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Proof .  Let W be a neighbourhood of E with W c V. There exists a natural 

number no(W) such that for each n E N with n > no(W), the polynomial Sn+l has 

all its zeros contained in the open set W. 

Let 3' be an analytic Jordan curve contained in V such that W lies in the bounded 

component of C \ 7. Using the Fubini and Cauchy Theorems, we have 

i(f) - In(f) = ~ f(~)(p - Rn)(~) d~. 

From this equality and (30), we obtain 

limsup II(f) - 1,( f ) l  1/3" <- II exp{-g~(-,  oo))11~ II exp{g~(., ~)}llCo(s0,))" 
~---~ oo  

We can choose 3' as close to aV as we want, so (36) immediately follows. 

Obviously, (37) is a direct consequence of (36). [] 

Notice that, under the conditions of Theorem 5, we have that limn~oo En (f) = 0 

with geometric rate of order 3n. The closer OV is to E, the slower En(f) tends to 

0. We wish to point out that Theorem 5 ensures the convergence of  the Gauss- 

Kronrod quadrature formula for analytic functions regardless of the signs which 

the coefficients aid,,, may have. This approach allows us to obtain estimates for 

the rate of convergence of Gauss-Kronrod quadrature formulas for a very general 

class of measures as compared with the measures considered in [6] and [ 15]. Also, 

the order of convergence which we give is better than that which follows from 

Theorem 1 in [6]. As regards [15], it is more difficult to compare the order of 

convergence because of the different nature of the estimates. 

Finally, we remark that (31) and (37) can also be proved imposing on the 

support of the measure the weaker condition S(#) = ess[b - a, b + a]. 

6 Example 

The next example illustrates the nature of the difficulties one encounters in 

trying to improve the results when S(#) contains more than one interval. In 

fact, it shows that, in general, in the class of regular measures one cannot obtain 

asymptotics on a set larger than C \ E, or get estimates of the rate of  convergence 

better than that expressed on the right hand of (20). 

Recall that pn gn has at most one simple zero in each of the open intervals which 

give the connected components of R \ S(#) (see (17)). 

Set d#(x) = w(x)dx, where w(x) is an even function defined on 

[ - 8 , - a ]  tJ [a, fl], ~ > a > 0. This measure is symmetric with respect to the 

origin. Therefore, P2n+l is an odd function, and it must have a zero at z = 0; 
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thus, according tO what was said above, g2.+l does n o t  vanish in ( - a ,  a).  On 
the other hand, /~ .  is even; thus /~ . /x  is odd, from which it follows that 

g2.(O) = - f p2.(x)lxdl~(x) = O. 

Let r > 0 and set % = {~ e C : g~(z, oo) = r}. Since g2~+l is analytic in 

C \ S(/~), we can prove (19) with 7 = % reasoning as in Lemma  2. With this 

formula on %, following the same proof as in Theorem 2, it is easy to obtain that 

limsup II 82.+2 g2n-bl - -  111~ 2" < II exp{ -g . ( z ,  oo)}lIK, 

on each compact subset K C C \ S(#). 

From symmetry, it is not difficult to see that gt~(0, oo) = maxq~[_a,a] gt~(~, oo). 

Take a E C \ S(#), with g~(a, oo) < g~(0,oo). Let 0 < r < gfi(a, oo) and let 7 

be a positively oriented circle centered at z = 0 such that a, 7, and S(/~) lie in the 

unbounded connected component of the complement of  7. Since g~2 has a simple 

pole at z = 0, following the arguments used in proving (19) and using the Residue 
Theorem, one has 

g2n(a) L dr s2n+ICa) g2nCa) --- 1 + ~ r g2n(r162 - a) 

(38) 

g2nCa) L de 
= 1 +  ~ . 9 2 . ( r 1 6 2  

g2.( . ) /" de 
+ ~ Jr g2.(O (r - a) 

-g2.(a) + 
. g~.(o)" 

For the integral on the right-hand side, it is easy to deduce that 

g2.(a) L d( 1/2n 
(39) limsuooP 21ri  - , .  g2.(r - a) _< exp{r - g~Ca, cr < 1. 

For the third term in (38) (see (17) and take into account that g2.(0) = 0). we have 

-g2.Ca) _ g2.Ca) p2.(o) 
.g~.(o) - .  f~2.(~) ~-2 d~,Cz)" 

Since 

llf  I 1 _< d~(~) _< 
and lim.~oo Ip2.(z)l 1/2" = expTgnCz, oo)} uniformly on compact  subsets of  C\S(/~) 
(because p2. has no zeros in ( - a ,  a)), it follows that 

I g~,,(.)111 ~" 
(40) lira ~ = exp{gr~(0, oo) - gfl(a, oo)} > 1. .-,oo ag2.(0) l 

Therefore, taking account of  (38), (39), and (40), we obtain 

lim 182n+1(a) g2n(a) -- II 1/2" ---- exp{ga(0, oo) - g~(a, oo)}. 
. . - I ,  OO 
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Hence, at the point a, s2n+x (a) gzn(a) does not converge to 1. Moreover, it diverges 

with geometric rate. 

+ �9 

o e e  e �9 e O N  * e e o  e e e e e o  

�9 + 

Figure 1. Zeros of  $20 and $21 forw = 1, a = 1,/~ = 2. 

We have considered the particular case w = 1, t~ = 1,/~ = 2. Numerical 

experiments show that the zeros of the Stieltjes polynomials for this measure have 

an interesting behaviour; while the zeros of  S2n sit on [ - 2 , - 1 ]  U [1, 2], those of  

$2n+1 draw the level curve {~ E C : gn(~, oo) = gt~(0, oo)}. Figure 1 shows the 

zeros of Sn for n = 20, 21 (the small circles are the zeros of  $20 and the crosses the 

zeros of  S2x). As this example shows, the only drawback in extending the results 

of  this paper to compact subsets closer to S(#) is the existence of  zeros of  g,, in 

Co(S(p)) \ S(#). If  we know for some reason that the functions of  second kind (or 

some subsequence) have no zeros on Co(S(#)) \ S(#), then we can extend (20) to 

any compact subset of  C \ S(#) (for the corresponding subsequence). 
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