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Abstract

For a wide class of Stieltjes functions we estimate the rate of convergence
of Padé-type approximants when the number of fixed poles represents a fixed
proportion with respect to the order of the rational approximant.
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1 Introduction

Let v > 1, by f, we denote a continuous almost everywhere positive function on the

real line such that
lim f,(x)|z|7" = 1. (1)

|z| =00

In [9], E. A. Rakhmanov studied the asymptotic behavior of the sequence h,(dp,;.)
of orthonormal polynomials with respect to

dpy(z) = exp{—f,(z)} dz, z € R (2)
(Within this class of measures, of particular interest are the so-called Freud weights

dw,(z) = exp{—|z|"} dx
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and their orthogonal polynomials.) He proved that

lim log |y (dpy; 2)|

n—00 nI*'Y_l

= D(y)Im 2], (3)
where this limit is uniform on compact subsets of C\R,

F((v+1)/2)
T(~/2)

(1/7)

Y

Doy =+ |

and I'(.) denotes the Gamma function. Set
I _ dpy(x)
o) = [

Let 7, denote the n — th diagonal Padé approximant with respect to p,. From
Rakhmanov’s result it is not hard to deduce that

n—00 nl—’Y

uniformly on compact subsets of C\R. We aim to obtain similar results when instead
of Padé approximants, Padé-type approximants are used.

Let [2 be a polynomial of degree m(n) and 0 < m(n) < n. We define the n-th Padé-
type approximants of p, with fixed poles at the zeros of 2 as the unique rational

function
Pn

T2

where p, and ¢, are polynomials which satisfy

T'n

.degpngn_ladeg Qngn_m(n)a(.bz?_éoa
¢ (in%ﬁ’y _pn)(z) = O(m)a as z =1x — 0o, = > 0.
[t is easy to prove (see, for example, [4]) that

0= /x”qn(x) 2(x) dpy(z), v=0,....,n—m(n) — 1 (5)

and

(= 16) = gy | ), (©)

(gnln)?(2) 2—Z
If m(n) =0, then r, is the n — th diagonal Padé approximant with respect to p,. If
m(n) = n, all the poles of the rational approximant are fixed.
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In recent years (see, for example, [1], [2], [3], [4] and [6]) the rate of convergence
of Padé-type and multipoint Padé-type approximants has been studied when the
measure defining the function has compact support. We will show that results of
type (4) take place for Padé-type approximants when the support of the measure is
unbounded. To this end, we will restrict the type of polynomials which carry as their
zeros the fixed poles of the Padé-type approximants. In the sequel, [, denotes the
orthonormal polynomial of degree m(n)/2 with respect to the Freud measure dws ()
introduced above. Unless otherwise stated, we take v > 3 > 1.

We prove

Theorem 1 Let I, denote the orthonormal polynomial of degree m(n)/2 with respect
to the Freud measure dwg(x) where 1 < 3 < . Let r, denote the n-th Padé-type
approzimant of p, with fized poles at the zeros of I2 and assume that

im ™) _ge0,1).
n—oo N
Then

8109 = &) < (1 — gy Do o] )

lim sup
n—oo

where convergence takes place uniformly on each compact subset of C \ R.

The paper is divided as follows. In Section 2, we give some auxiliary results. Section
3 is devoted to the proof of the theorem stated above and some comments.

2 Auxiliary results

Let dp be a finite positive Borel measure on R, with an infinite number of points in
its support and finite moments. Denote

p* ()|
K;(dp,z)= sup ———"—0,
’ peEll;, pZ0 [ 1p?(z)]dp(x)

where II; is the set of all polynomials of degree < j.
If dp = 2 dp, we denote

(8)

Kong(2) = K;(dp, ).

Lemma 2.1 There exist constants D > 0 and o € R such that
Dn®K;(dpy, z) < Knj(2) < K;(L2dp,| RTMVRSE)) (9)
where dp.(z) = exp{—(f,(z) — |z|®)}dz, 1 < B < v, and lidp7|(_n1/7’n1/7) is the

restriction of the measure [2dp, to (—n'/7, n'/7).
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Proof: From (8) the inequality on the right side of (9) follows directly. On the other
hand from Corollary 1.4 in [7] there exist constants D; > 0 and «; € R such that

12(x)exp{—|z|°} < Dy(m(n) + 1), 2 € R
Since 0 < m(n) < n, we obtain
12(x) exp(—|z|?) < Dyn™
Thus, if p € II; and p # 0, we get

p* (2 )I S p*(2)|
J1P*@)[3 () dpy(w) — Dant [ p?(z)ldpy (x)

and the proof is concluded.ll

Lemma 2.2 Let K be a compact subset of C\R, 1 < 8 < v, and lim ™= ( ) = 9. Then

. loglgn|(2) -
uniformly on K, where q, is the (n — m(n))-th orthonormal polynomial with respect
to 12 dp, and l,, denotes the orthonormal polynomial of degree m(n)/2 with respect to

the Freud measure dwg(x).

Proof: Let t; be the k-th orthonormal polynomial with respect to dp. From the
general theory of orthogonal polynomials, we know (see [5]) that

K, (dp.2) Zm (P > 1t5(2)P, 2 € ¢ (10)

and B )
K, 1(dp, 2) = Dt il () = 6@ ().

Tj z—Z

where z € C\ R and 7; is the leading coefficient of ¢;. Thus, with the aid of (10), we
obtain

T Im(t;(2)t-1(2))

K; 1(d =
j 1( P Z) Tj Im z
< T ftitia ()]
— 7 |Imz|
1/2
- BEIKSE)
T [Tm z|
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This inequality yields

= )
K; 1 (dp,z) < 22117 11
7 1( p,Z) ~ 7']-2 |Imz|2’ ( )
therefore,
2
T2
K;(dp,z) = K; 1 + |t;(2)]* < []7 + 1] Iti(2)]% (12)
J ol e
On the other hand,
1
— = _inf P*(x)| d
7 = b [ 1P dota)
ti_
<[22 gy,
7'];1
or what is the same
2
5 < oty dpto)

J

If dp(x) satisfies (2), there exist constants Dy, Dy, D3 > 0 such that for all £ € N
and p € Iy, we have (see Theorem 2.6 in [8])

D1k~
[ @l s [ @) an)

lel/'Y

in particular,

2, Dyt
o2 oaf et dola)
Tj ~Dij'/
< Dyjl. (13)

Take dp(z) = dp,(z) = exp{—(f,(z) — |z|?)}dz. Since 1 < 3 < =, the function
f,(z) — |z|Psatisfies (1). Using (3), (10), (12), and (13) one obtains

n—00 nt— Vel

= 2D(3)|Im(2)]. (14)

This result appears in [9], Lemma 4.
For dp(x) = I2(x)dp,(z) and j = n — m(n), (12) gives

2
7_n,nfm(n)fl

n,n—m(n)

lqn(2) %, (15)
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where ¢, is the (n — m(n))-th orthonormal polynomial with respect to |I,|* dp, and
Tnn—m(n) its leading coefficient. Notice that, infinite-finite range Lo estimates give as
above

7_2

% < D, (16)
Tn m
From the first inequality in (9), (14), ( 5) and (16 we obtain
1-1/y 1 K ds
limlnfw 2 h Og| n— mn)( p’Y;Z)|
n—00 n /v (n))l,l/7

(=0 D)
and the proof is finished.Hl

3 Proof of Theorem 1
Let K be a compact subset of C\ R, then there exists Dy = D;(K) > 0 such that
|z—xz|>Dy, z€ K,x€R

Using (6) and the orthonormality of ¢,, we get

by = ra)(2)] = ‘(qnz:)Z(z) / (@dn)*(@)

2=
1

D1|(gnln)?(2)|
Now, from Lemma 2.2 and (3) as applied to the sequence {[,}, we obtain (7).l

Corollary 1 Under the assumptions of Theorem 1
Tn = Py
, uniformly on each compact set of C\ R.

Proof: It is immediate from the fact that the right hand of (7) is continuous and
negative on C \ R.H

Remark 1 In the case when 0 =1 and 1 < 3 = vy it is possible to construct examples
where there is divergence. For evample, taking m(n) = n and f,(z) = |z[7 — |z|”
with v < 7 sufficiently close to . For this reason we do not discuss this limiting
situation.

Remark 2 When 1 < v < 8 and m(n) = n there is always divergence.
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