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Abstract 

For a wide class of Stieltjes functions we estimate the rate of convergence of Pad6-type approximants when the number 
of fixed poles represents a fixed proportion with respect to the order of the rational approximant. (~) 1998 Elsevier Science 
B.V. All rights reserved. 
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I. Introduction 

Let 7 > 1, by f ,  we denote a continuous almost everywhere positive function on the real line such 
that 

lim £(x)lxl-:= 1. (1) 

In [9], Rakhmanov studied the asymptotic behavior o f  the sequence hn(dp:.; .) o f  orthonormal 
polynomials with respect to 

dpT(x ) =  exp{ - f~ . (x )}dx ,  x c ~. (2) 

(Within this class o f  measures, o f  particular interest are the so-called Freud weights 

dw:.(x) = e x p { - I x V } d x  
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and their orthogonal polynomials.) He proved that 

lim log ]h,(dp,;z)[ = O ( 7 ) l l m z l  ' 
n ~ o o  F/l-- ;  ' - I  

where this limit is uniform on compact subsets of C\R,  

7 

D(7)--  Y _ 1 L F(7/2) J ' 

and F(.) denotes the Gamma function. Set 

= f 
dp:.(x) 

d Z - - X  

Let re,, denote the nth diagonal Pad6 approximant with respect to fir" 
not hard to deduce that 

log IL(z) - =.(z)l 
lina h i _ ,  ' , <~-2D(7)llmzl, 

(3) 

From Rakhmanov's result it is 

(4) 

uniformly on compact subsets of C \E .  We aim to obtain similar results when instead of Pad6 
approximants, Pad&type approximants are used. 

Let 12. be a polynomial of degree m(n) and 0 ~< m(n) <~ n. We define the nth Pad&type approxi- 
mants of  Pr with fixed poles at the zeros of l] as the unique rational function 

P.  
rn - -  2 ' q. l. 

where p .  and qn are polynomials which satisfy 
• d e g p .  ~ < n -  1, degq,, < ~ n - m ( n ) ,  q. 5 0 ,  
• (q.12.fi,,- p . ) ( z )=O(1 / ( z"  mWl+t)), as z=ix- -*c~ ,  x>O. 
It is easy to prove (see, e.g., [4]) that 

f , v = 0 . . . .  m(n) 0 = x~'q.(x)12.(x)dp.,(x), , n -  1, (5) 

1 f (q,l,)2(x)dp~.(x) 
( f t . , -  r , ) ( z ) -  (q,l,)2(z) _ z 7  x . (6) 

If re(n)= 0, then r, is the nth diagonal Pad6 approximant with respect to ft... If re(n)= n, all the 
poles of the rational approximant are fixed. 

In recent years (see, e.g., [1-7]), the rate of convergence of Pad6-type and multipoint Pad6-type 
approximants has been studied when the measure defining the function has compact support. We will 
show that results of  type (4) take place for Pad&type approximants when the support of the measure 
is unbounded. To this end, we will restrict the type of polynomials which carry as their zeros the 
fixed poles of  the Pad6-type approximants. In the sequel, l, denotes the orthonormal polynomial of 
degree m(n)/2 with respect to the Freud measure dwtdx ) introduced above. Unless otherwise stated, 
we take 7 > f l > l .  
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We prove 

Theorem 1. Let  I,, denote the orthonormal polynomial o f  degree m(n)/2 with respect to the Freud 
measure dw/~(x) where 1 </~<7.  Let  r. denote the nth Padk-type approximant o f  ~; with f ixed 
poles at the zeros o f  12~ and assume that 

lim m(n) _ 0 C [0, 1). 
n ~ ~ c  n 

Then 

log 1¢3,(z)- r.(z)[ ~<-2(1 0)'-: '  'D(v)lImz[, (7) lim sup 
n ~  ~ n I - - 7 -  I 

where convergence takes place uniformly on each compact subset o f  C\I~. 

The paper is divided as follows. In Section 2, we give some auxiliary results. Section 3 is devoted 
to the proof of the theorem stated above and some comments. 

2. Auxiliary results 

Let dp be a finite positive Borel measure on ~, with an infinite number of  points in its support 
and finite moments. Denote 

Ip2(z)l 
K/(dp, z) = sup , (8) 

pc~,p~O f IPz(x)ldp(x) 

where ~ is the set of  all polynomials of  degree ~< j .  
If  dp = 12n dp:, we denote 

K.,/(z) = Ki(dP, z). 

Lemma 2.1. There exist constants D > 0 and ~ c ~ such that 

Dn~Kj(d~;.,z) <~ K,w(z) <<. Kj(12.dp;.]~_.,: .,~),z), (9) 

where d/~;.(x) = e x p { - ( f : , ( x ) -  [x[t~)} dx, l < f l <  7, and 12. dp:,l~_.,~ . ~  is the restriction o f  the mea- 
sure l 2 dp;. to (-nl/;',nl/:'). 

Proof. From (8) the inequality on the right side of (9) follows directly. On the other hand from 
Corollary 1.4 in [7] there exist constants D~ > 0 and a~ E ~ such that 

12.(x)exp{-lx[/~} <~ D,(m(n) + 1) ~, xG R. 

Since 0 ~< re(n) <~ n, we obtain 

le . (x)exp(- lx l /~)  ~ O2n =' . 
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Thus, if p C Hj and p ~ 0, we get 

[p2(z)l Ip2(z)l 
f [p2(x)[12(x)dp~,(x) D2n ~, f [p2(x)[ d/3~,(x) 

and the proof is concluded. [] 

Lemma 2.2. Let K be a compact subset of  C\N, 1 </~<7, and lim(m(n)/n)=O. Then 

lim inf log [q.l(z) 
n--+oo n l -  1,'7 

~> (1 - 0 )  l '::'D(7)lImz] 

uniformly on K, where qn is the ( n -  m(n))th orthonormal polynomial with respect to 12ndp;, 
and l. denotes the orthonormal polynomial of  degree re(n)~2 with respect to the Freud measure 
dw/~(x). 

Proof. Let tk be the kth orthonormal polynomial with respect to dp. From the general theory of 
orthogonal polynomials, we know (see [5]) that 

J 

Kj(dp, z) = ~ It~(z)l 2 ~ Itj(z)l 2, z ~ c ,  (lO) 
k=0 

Kj_l(dp, z ) -  Tj-l t/(z)tj-i(~) - t~(-~)ti l(z) 
z - ~  

where z E C\E  and ~ is the leading coefficient of ti. Thus, with the aid of (10), we obtain 

K j _ l ( d p , z )  = rj- 

< . g i n  

~<'9- 

This inequality yields 

, Im(tj(z)t/_, (z)) 
I m  z 

, I t / t j - l ( Z ) l  
I lmzl 

, I t , ( z ) l K ) / J , ( z )  
IImzl 

Kj_l(dp, z) <<. - - -  
~_, JtAz)l 2 
~2 Ilmzl 2' 
J 

(11) 

therefore, 

J Kj(dp, z )=Kj_ ,  + ItAz)l ~ ~ L~lim(z)? + 1 Itj(z)l ~. (12) 
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On the other hand, 

1 inf /Ip2(x)[ dp(x) - -  z 
~j2 P = z i + . . . 

f x t j - ' (x)  2 ~< dp(x), 
"{j-i 

or what is the same 

j 1 ]2  ~2 <" [xti_, dp(x). 

If dp(x) satisfies (2), there exist constants Dl, D2, D3 > 0  such that for all k E t~ and p E H~, we 
have (see Theorem 2.6 in [8]) 

/Z f [p2(x)] <. D2 ]p(x)] 2 dp(x) dp(x), 

in particular, 

T 2 [ D I . J  I ' 

<. D= Ixt/_,(x)l 2 dp(x), 
.I - -D i j l  :' 

<~ D3j 2/':'. ( 13 ) 

Take dp (x )=  d/);,(x)= e x p { - ( f ( x ) -  Ix]/~)} dx. Since 1</3 <7, the function f ( x ) -  ]xll¢ satisfies (1). 
Using (3), (10), (12), and (13) one obtains 

log K.(d¢3~,, z) 
lirn n,_l/; ' = 2D(7)llm(z)]. (14) 

This result appears in [9], Lemma 4. 
For dp (x )=  12.(x)dp~.(x) and j = n - m(n), (12) gives 

[ ] gn . . . .  (n)(Z) ~< 2 4- 1 Iq.(z)l 2, (15) 
"Cn, n - - m ( n )  

where q. is the ( n -  m(n))th orthonormal polynomial with respect to [l. 12 dp;, and r . . . . .  {.) its leading 
coefficient. Notice that, infinite-finite range L2 estimates give as above 

T 2 n - m ( n )  1 2 / "  

"[~--m(n) ~ D4n' . (16) 

From the first inequality in (9), (14)-(16),  we obtain 

lim inf log ,q,,(z)[ ( n - : ( n ) )  .-'/;' n,_~/;, /> lim - log [gn-m(.)(d~;,,z)[ 

= (1 - 0) t- ~/;'D(7)lIm(z)l 

and the proof is finished. [] 
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3. Proof  of  Theorem 1 

Let K be a compact subset of  C \ E ,  then there exists DI----DI(K)>0 such that 

[z-x[ >~Dj, zEK, xE~ .  

Using (6) and the orthonormality of  qn, we get 

1 / (qnl.)2(x) 
[(~;, - r.)(z)[ = (q.ln)2(z) z - x dp:. 

1 
D, I(q,l,,)2(z)[" 

Now, from Lemma 2.2 and (3) as applied to the sequence {/,}, we obtain (7). 

Corollary 1. Under the assumptions of Theorem 1 

rn ~ /97' 

uniformly on each compact set of C\E. 
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[ ]  

Proof. It is immediate from the fact that the right-hand side of (7) is continuous and negative on 
[ ]  

Remark 1. In the case when 0 = 1 and 1 < fl = 7 it is possible to construct examples where there is 
divergence. For example, taking m(n)=n and f ( x ) =  Ix]; '- Ix[;" with 7' <7  sufficiently close to 7. 
For this reason we do not discuss this limiting situation. 

Remark 2. When 1 < 7 < f l  and m(n)=n there is always divergence. 
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