Convergence rate of Padé-type approximants for Stieltjes functions

M. Bello Hernández ${ }^{\text {a,*, }}$, F. Cala Rodríguez ${ }^{\text {b }}$, J.J. Guadalupe ${ }^{\text {a,1 }}$, G. López Lagomasino ${ }^{\text {c, } 2}$
${ }^{a}$ Dpto. de Matemáticas y Computación, Univ. de La Rioja, Logroño, Spain
${ }^{\text {b }}$ Dpto. de Análisis Matemático, Univ. de La Laguna, Tenerife, Spain
${ }^{\text {c }}$ Dpto. de Matemáticas, Univ. Carlos III de Madrid, Madrid, Spain

Received 30 October 1997; received in revised form 20 March 1998

Abstract

For a wide class of Stieltjes functions we estimate the rate of convergence of Padé-type approximants when the number of fixed poles represents a fixed proportion with respect to the order of the rational approximant. © 1998 Elsevier Science B.V. All rights reserved.

Keywords: Orthogonal polynomials; Padé-type approximation

1. Introduction

Let $\gamma>1$, by f_{γ}, we denote a continuous almost everywhere positive function on the real line such that

$$
\begin{equation*}
\lim _{|x| \rightarrow \infty} f_{i}(x)|x|^{-i}=1 \tag{1}
\end{equation*}
$$

In [9], Rakhmanov studied the asymptotic behavior of the sequence $h_{n}\left(\mathrm{~d} \rho_{;} ;\right.$.) of orthonormal polynomials with respect to

$$
\begin{equation*}
\mathrm{d} \rho_{\gamma}(x)=\exp \left\{-f_{\gamma}(x)\right\} \mathrm{d} x, \quad x \in \mathbb{R} . \tag{2}
\end{equation*}
$$

(Within this class of measures, of particular interest are the so-called Freud weights

$$
\mathrm{d} w_{z}(x)=\exp \left\{-|x|^{\prime \prime}\right\} \mathrm{d} x
$$

[^0]0377-0427/98/\$ - see front matter (c) 1998 Elsevier Science B.V. All rights reserved. PII: S0377-0427(98)00144-7
and their orthogonal polynomials.) He proved that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\log \left|h_{n}\left(\mathrm{~d} \rho_{\gamma} ; z\right)\right|}{n^{1-\gamma^{-1}}}=D(\gamma)|\operatorname{Im} z|, \tag{3}
\end{equation*}
$$

where this limit is uniform on compact subsets of $\mathbb{C} \backslash \mathbb{R}$,

$$
D(\gamma)=\frac{\gamma}{\gamma-1}\left[\frac{\Gamma((\gamma+1) / 2)}{\Gamma(\gamma / 2)}\right]^{(1 / 2)},
$$

and Γ (.) denotes the Gamma function. Set

$$
\hat{\rho}_{\gamma}(z)=\int \frac{\mathrm{d} \rho_{i}(x)}{z-x}
$$

Let π_{n} denote the nth diagonal Padé approximant with respect to $\hat{\rho}_{\gamma}$. From Rakhmanov's result it is not hard to deduce that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\log \left|\hat{\rho}_{\gamma}(z)-\pi_{n}(z)\right|}{n^{1-\gamma^{-1}}} \leqslant-2 D(\gamma)|\operatorname{Im} z|, \tag{4}
\end{equation*}
$$

uniformly on compact subsets of $\mathbb{C} \backslash \mathbb{R}$. We aim to obtain similar results when instead of Padé approximants, Padé-type approximants are used.

Let l_{n}^{2} be a polynomial of degree $m(n)$ and $0 \leqslant m(n) \leqslant n$. We define the nth Padé-type approximants of $\hat{\rho}_{\gamma}$ with fixed poles at the zeros of l_{n}^{2} as the unique rational function

$$
r_{n}=\frac{p_{n}}{q_{n} l_{n}^{2}}
$$

where p_{n} and q_{n} are polynomials which satisfy

- deg $p_{n} \leqslant n-1, \operatorname{deg} q_{n} \leqslant n-m(n), q_{n} \not \equiv 0$,
- $\left(q_{n} l_{n}^{2} \hat{\rho}_{;}-p_{n}\right)(z)=\mathrm{O}\left(1 /\left(z^{n-m(n)+1}\right)\right)$, as $z=\mathrm{i} x \rightarrow \infty, x>0$.

It is easy to prove (see, e.g., [4]) that

$$
\begin{align*}
& 0=\int x^{v} q_{n}(x) l_{n}^{2}(x) \mathrm{d} \rho_{i}(x), \quad v=0, \ldots, n-m(n)-1, \tag{5}\\
& \left(\hat{\rho}_{\gamma}-r_{n}\right)(z)=\frac{1}{\left(q_{n} l_{n}\right)^{2}(z)} \int \frac{\left(q_{n} l_{n}\right)^{2}(x) \mathrm{d} \rho_{\because}(x)}{z-x} . \tag{6}
\end{align*}
$$

If $m(n)=0$, then r_{n} is the nth diagonal Pade approximant with respect to $\hat{\rho}_{i}$. If $m(n)=n$, all the poles of the rational approximant are fixed.

In recent years (see, e.g., [1-7]), the rate of convergence of Padé-type and multipoint Padé-type approximants has been studied when the measure defining the function has compact support. We will show that results of type (4) take place for Padé-type approximants when the support of the measure is unbounded. To this end, we will restrict the type of polynomials which carry as their zeros the fixed poles of the Padé-type approximants. In the sequel, l_{n} denotes the orthonormal polynomial of degree $m(n) / 2$ with respect to the Freud measure $\mathrm{d} w_{\beta}(x)$ introduced above. Unless otherwise stated, we take $\gamma>\beta>1$.

We prove
Theorem 1. Let l_{n} denote the orthonormal polynomial of degree $m(n) / 2$ with respect to the Freud measure $\mathrm{d} w_{\beta}(x)$ where $1<\beta<\gamma$. Let r_{n} denote the nth Padé-type approximant of $\hat{\rho}_{;}$with fixed poles at the zeros of l_{n}^{2} and assume that

$$
\lim _{n \rightarrow \infty} \frac{m(n)}{n}=\theta \in[0,1) .
$$

Then

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\log \left|\hat{\rho}_{\gamma}(z)-r_{n}(z)\right|}{n^{1-\gamma^{-1}}} \leqslant-2(1-\theta)^{1-\vartheta^{-1}} D(\gamma)|\operatorname{Im} z|, \tag{7}
\end{equation*}
$$

where convergence takes place uniformly on each compact subset of $\mathbb{C} \backslash \mathbb{R}$.
The paper is divided as follows. In Section 2, we give some auxiliary results. Section 3 is devoted to the proof of the theorem stated above and some comments.

2. Auxiliary results

Let $\mathrm{d} \rho$ be a finite positive Borel measure on \mathbb{R}, with an infinite number of points in its support and finite moments. Denote

$$
\begin{equation*}
K_{j}(\mathrm{~d} \rho, z)=\sup _{p \in \Pi_{,}, p \neq 0} \frac{\left|p^{2}(z)\right|}{\int\left|p^{2}(x)\right| \mathrm{d} \rho(x)}, \tag{8}
\end{equation*}
$$

where Π_{j} is the set of all polynomials of degree $\leqslant j$.
If $\mathrm{d} \rho=l_{n}^{2} \mathrm{~d} \rho_{;}$we denote

$$
K_{n, j}(z)=K_{j}(\mathrm{~d} \rho, z) .
$$

Lemma 2.1. There exist constants $D>0$ and $\alpha \in \mathbb{R}$ such that

$$
\begin{equation*}
\mathrm{D} n^{\alpha} K_{j}\left(\mathrm{~d} \tilde{\rho}_{i j}, z\right) \leqslant K_{n, j}(z) \leqslant K_{j}\left(\left.l_{n}^{2} \mathrm{~d} \rho_{i ;}\right|_{\left(-n^{1}, n^{1: 3}\right.}, z\right), \tag{9}
\end{equation*}
$$

where $\mathrm{d} \tilde{\rho}_{\eta}(x)=\exp \left\{-\left(f_{i}(x)-|x|^{\beta}\right)\right\} \mathrm{d} x, 1<\beta<\gamma$, and $\left.l_{n}^{2} \mathrm{~d} \rho_{\gamma}\right|_{\left(-n^{1}, n^{1, j}\right)}$ is the restriction of the measure $l_{n}^{2} \mathrm{~d} \rho_{;}$to $\left(-n^{1 / 7}, n^{1 / 2}\right)$.

Proof. From (8) the inequality on the right side of (9) follows directly. On the other hand from Corollary 1.4 in [7] there exist constants $D_{1}>0$ and $\alpha_{1} \in \mathbb{R}$ such that

$$
l_{n}^{2}(x) \exp \left\{-|x|^{\beta}\right\} \leqslant D_{1}(m(n)+1)^{\alpha_{1}}, \quad x \in \mathbb{R} .
$$

Since $0 \leqslant m(n) \leqslant n$, we obtain

$$
l_{n}^{2}(x) \exp \left(-|x|^{\beta}\right) \leqslant D_{2} n^{x_{1}} .
$$

Thus, if $p \in \Pi_{j}$ and $p \not \equiv 0$, we get

$$
\frac{\left|p^{2}(z)\right|}{\int\left|p^{2}(x)\right| l_{n}^{2}(x) \mathrm{d} \rho_{\gamma}(x)} \geqslant \frac{\left|p^{2}(z)\right|}{D_{2} n^{x_{1}} \int\left|p^{2}(x)\right| \mathrm{d} \tilde{\rho}_{j}(x)}
$$

and the proof is concluded.

Lemma 2.2. Let K be a compact subset of $\mathbb{C} \backslash \mathbb{R}, 1<\beta<\gamma$, and $\lim (m(n) / n)=\theta$. Then

$$
\liminf _{n \rightarrow \infty} \frac{\log \left|q_{n}\right|(z)}{n^{1-1 / \%}} \geqslant(1-\theta)^{1-1 / 2} D(\gamma)|\operatorname{Im} z|
$$

uniformly on K, where q_{n} is the $(n-m(n))$ th orthonormal polynomial with respect to $l_{n}^{2} \mathrm{~d} \rho_{\text {, }}$, and l_{n} denotes the orthonormal polynomial of degree $m(n) / 2$ with respect to the Freud measure $\mathrm{d} w_{\beta}(x)$.

Proof. Let t_{k} be the k th orthonormal polynomial with respect to $\mathrm{d} \rho$. From the general theory of orthogonal polynomials, we know (see [5]) that

$$
\begin{align*}
& K_{j}(\mathrm{~d} \rho, z)=\sum_{k=0}^{j}\left|t_{k}(z)\right|^{2} \geqslant\left|t_{j}(z)\right|^{2}, \quad z \in \mathbb{C}, \tag{10}\\
& K_{j-1}(\mathrm{~d} \rho, z)=\frac{\tau_{j-1}}{\tau_{j}} \frac{t_{j}(z) t_{j-1}(\bar{z})-t_{j}(\bar{z}) t_{j-1}(z)}{z-\bar{z}},
\end{align*}
$$

where $z \in \mathbb{C} \backslash \mathbb{R}$ and τ_{j} is the leading coefficient of t_{j}. Thus, with the aid of (10), we obtain

$$
\begin{aligned}
K_{j-1}(\mathrm{~d} \rho, z) & =\frac{\tau_{j-1}}{\tau_{j}} \frac{\operatorname{Im}\left(t_{j}(z) \overline{\left.t_{j-1}(z)\right)}\right.}{\operatorname{Im} z} \\
& \leqslant \frac{\tau_{j-1}}{\tau_{j}} \frac{\left|t_{j} t_{j-1}(z)\right|}{|\operatorname{Im} z|} \\
& \leqslant \frac{\tau_{j-1}}{\tau_{j}} \frac{\left|t_{j}(z)\right| K_{j-1}^{1 / 2}(z)}{|\operatorname{Im} z|}
\end{aligned}
$$

This inequality yields

$$
\begin{equation*}
K_{j-1}(\mathrm{~d} \rho, z) \leqslant \frac{\tau_{j-1}^{2}}{\tau_{j}^{2}} \frac{\left|t_{j}(z)\right|^{2}}{|\operatorname{Im} z|^{2}}, \tag{11}
\end{equation*}
$$

therefore,

$$
\begin{equation*}
K_{j}(\mathrm{~d} \rho, z)=K_{j-1}+\left|t_{j}(z)\right|^{2} \leqslant\left[\frac{\tau_{j-1}^{2}}{\tau_{j}^{2}|\operatorname{Im}(z)|^{2}}+1\right]\left|t_{j}(z)\right|^{2} . \tag{12}
\end{equation*}
$$

On the other hand,

$$
\begin{aligned}
\frac{1}{\tau_{j}^{2}} & =\inf _{P=z^{j}+\ldots} \int\left|P^{2}(x)\right| \mathrm{d} \rho(x) \\
& \leqslant \int\left|x \frac{t_{j-1}(x)}{\tau_{j-1}}\right|^{2} \mathrm{~d} \rho(x),
\end{aligned}
$$

or what is the same

$$
\frac{\tau_{j-1}^{2}}{\tau_{j}^{2}} \leqslant \int\left|x t_{j-1}\right|^{2} \mathrm{~d} \rho(x)
$$

If $\mathrm{d} \rho(x)$ satisfies (2), there exist constants $D_{1}, D_{2}, D_{3}>0$ such that for all $k \in \mathbb{N}$ and $p \in \Pi_{k}$, we have (see Theorem 2.6 in [8])

$$
\int\left|p^{2}(x)\right| \mathrm{d} \rho(x) \leqslant D_{2} \int_{-D_{1} k^{1} \mid ;}^{D_{1} k^{1 ; 7}}|p(x)|^{2} \mathrm{~d} \rho(x)
$$

in particular,

$$
\begin{align*}
\frac{\tau_{j-1}^{2}}{\tau_{j}^{2}} & \leqslant D_{2} \int_{-D_{1 j} j^{1 / j}}^{D_{j} j^{\prime \prime}}\left|x t_{j-1}(x)\right|^{2} \mathrm{~d} \rho(x) \\
& \leqslant D_{3} j^{2 / x} \tag{13}
\end{align*}
$$

Take $\mathrm{d} \rho(x)=\mathrm{d} \tilde{\rho}_{;}(x)=\exp \left\{-\left(f_{i}(x)-|x|^{\beta}\right)\right\} \mathrm{d} x$. Since $1<\beta<\gamma$, the function $f_{i}(x)-|x|^{\beta}$ satisfies (1). Using (3), (10), (12), and (13) one obtains

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\log K_{n}\left(\mathrm{~d} \tilde{\rho}_{\gamma}, z\right)}{n^{1-1 / \gamma}}=2 D(\gamma)|\operatorname{Im}(z)| . \tag{14}
\end{equation*}
$$

This result appears in [9], Lemma 4.
For $\mathrm{d} \rho(x)=l_{n}^{2}(x) \mathrm{d} \rho_{i}(x)$ and $j=n-m(n)$, (12) gives

$$
\begin{equation*}
K_{n, n-m(n)}(z) \leqslant\left[\frac{\tau_{n, n-m(n)-1}^{2}}{\tau_{n, n-m(n)}^{2}}+1\right]\left|q_{n}(z)\right|^{2} \tag{15}
\end{equation*}
$$

where q_{n} is the $(n-m(n))$ th orthonormal polynomial with respect to $\left|l_{n}\right|^{2} \mathrm{~d} \rho_{\gamma}$ and $\tau_{n, n-m(n)}$ its leading coefficient. Notice that, infinite-finite range L_{2} estimates give as above

$$
\begin{equation*}
\frac{\tau_{n-m(n)-1}^{2}}{\tau_{n-m(n)}^{2}} \leqslant D_{4} n^{2 / /} \tag{16}
\end{equation*}
$$

From the first inequality in (9), (14)-(16), we obtain

$$
\begin{aligned}
\liminf _{n \rightarrow \infty} \frac{\log \left|q_{n}(z)\right|}{n^{1-1 / \gamma}} & \geqslant \lim _{n}\left(\frac{n-m(n)}{n}\right)^{1-1 / \%} \frac{\log \left|K_{n-m(n)}\left(\mathrm{d} \tilde{\rho}_{\gamma}, z\right)\right|}{2(n-m(n))^{1-1 / \gamma}} \\
& =(1-\theta)^{1-1 / 2} D(\gamma)|\operatorname{Im}(z)|
\end{aligned}
$$

and the proof is finished.

3. Proof of Theorem 1

Let K be a compact subset of $\mathbb{C} \backslash \mathbb{R}$, then there exists $D_{1}=D_{1}(K)>0$ such that

$$
|z-x| \geqslant D_{1}, \quad z \in K, \quad x \in \mathbb{R}
$$

Using (6) and the orthonormality of q_{n}, we get

$$
\begin{aligned}
\left|\left(\hat{\rho}_{;}-r_{n}\right)(z)\right| & =\left|\frac{1}{\left(q_{n} l_{n}\right)^{2}(z)} \int \frac{\left(q_{n} l_{n}\right)^{2}(x)}{z-x} \mathrm{~d} \rho_{;}\right| \\
& \leqslant \frac{1}{D_{1}\left|\left(q_{n} l_{n}\right)^{2}(z)\right|} .
\end{aligned}
$$

Now, from Lemma 2.2 and (3) as applied to the sequence $\left\{l_{n}\right\}$, we obtain (7).
Corollary 1. Under the assumptions of Theorem 1

$$
r_{n} \rightarrow \hat{\rho}_{\gamma \gamma},
$$

uniformly on each compact set of $\mathbb{C} \backslash \mathbb{R}$.

Proof. It is immediate from the fact that the right-hand side of (7) is continuous and negative on $\mathbb{C} \backslash \mathbb{R}$.

Remark 1. In the case when $\theta=1$ and $1<\beta=\gamma$ it is possible to construct examples where there is divergence. For example, taking $m(n)=n$ and $f_{\gamma}(x)=|x|^{\prime \prime}-|x|^{\prime \prime}$ with $\gamma^{\prime}<\gamma$ sufficiently close to γ. For this reason we do not discuss this limiting situation.

Remark 2. When $1<\gamma<\beta$ and $m(n)=n$ there is always divergence.

References

[1] A. Ambroladze, H. Wallin, Padé type approximants of Markov and meromorphic functions, J. Approx. Theory 88 (1997) 354-369.
[2] A. Ambroladze, H. Wallin, Convergence of rational interpolants with preassingned poles, J. Approx. Theory 89 (1997) 238-256.
[3] F. Cala, G. López, From Padé to Padé-type approximants. Exact rate of convergence, in: M. Florenzano et al. (Eds.), Proc. 2nd Internat. Conf. on Approx. and Opt. in the Caribbean, Peter Series in Approx. and Optimization, vol. 8, 1995, pp. 155-163.
[4] F. Cala, G. López, Multipoint Padé-type approximants. Exact rate of convergence, Constr. Approx. 14 (2) (1998) 259-272.
[5] G. Freud, Orthogonal Polynomials, Pergamon Press, Budapest, 1966.
[6] A.A. Gonchar, On convergence of Padé approximants for some classes of meromorphic functions, Mat. Sb. 97 (139) (1975) 4; English Transl. in: Math. USSR Sb. 26 (1975) 555-575.
[7] A.L. Levin, D.S. Lubinsky, Christoffel functions, Orthogonal Polynomials, and Nevai's Conjecture for Freud Weights, Constr. Approx. 8 (1992) 463-535.
[8] H.N. Mhaskar, E.B. Saff, Where does the L_{p} norm of a weighted polynomial live?, Trans. Amer. Math. Soc. 303 (1987) 109-124.
[9] E.A. Rakhmanov, On the asymptotic properties of polynomials orthogonal on the real axis, Mat. Sb .119 (161) (1982) 161-203; English Transl. in: Math. USSR Sb. 47 (1984) 155-193.

[^0]: * Corresponding author.
 ${ }^{1}$ This research was partially supported by DGES under grant PB96-0120-C03-02.
 ${ }^{2}$ This research was partially supported by DGES under grant PB96-0120-C03-01.

