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Ratio and relative asymptotics are given for sequences of polynomials orthogonal
with respect to measures supported on an arc of the unit circle, where their absolutely
continuous component is positive almost everywhere. The results obtained extend
to this setting known ones given by Rakhmanov and Ma� te� , Nevai, and Totik for
the case when the arc is the whole unit circle. Technically speaking, the main feature
is the use of orthogonality with respect to varying measures. � 1998 Academic Press

1. INTRODUCTION

1. In recent years, growing attention has been paid to the study of
the asymptotic behavior of sequences of polynomials which are orthogonal
with respect to varying measures. This is not accidental. Such sequences
arise naturally in the study of the convergence of sequences of rational func-
tions which interpolate a given analytic functions along a table of interpolation
points (see e.g. [9] and [12]). But perhaps their most attractive feature is
that they become a powerful tool in solving problems where a fixed measure
and orthogonality in the usual sense are involved. Some applications in
this direction are asymptotics of orthogonal polynomials on unbounded
intervals [11, 15, 19, 30, 33], (one-point) Pade� [14] and Hermite�Pade�
approximations [2].

As far as the underlying idea is concerned, this paper resembles [15].
There, the question was the relative asymptotics of polynomials orthogonal
with respect to measures on unbounded intervals. The problem was trans-
lated to varying measures on the unit circle 1. Here, we are concerned with
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the asymptotics of polynomials orthogonal on an arc # of the unit circle;
this problem too may be restated in terms of varying measures on 1.

2. Undoubtedly, one of the results which motivated great interest
and gave new impetus to the theory of orthogonal polynomials in the eighties
is due to E. A. Rakhmanov. In a series of two papers (see [28, 29]), he
proved the following.

Let _ be a finite positive Borel measure supported on the unit circle 1=
[|z|=1] and let [.n], .n(`)=:n `n+ } } } , :n>0, be the corresponding
sequence of orthonormal polynomials. Assume that _$>0 a.e. on 1, then

lim
n � �

:n+1

:n
=1

and

lim
n � �

.n+1(`)
.n(`)

=`,

uniformly on each compact subset of C"[|`|<1].

For a short proof see [20], and for a miniature proof see [31] (also
[25]).

It may be worth noting that Rakhmanov's interest in the ratio asymptotics
of orthogonal polynomials came from a problem in rational approximation
(see [8]). The same is true for extensions of Rakhmanov's Theorem which
one of the authors of this paper has made to the case of varying measures
(see [13, 14]). These extensions will be used here. From a technical point
of view (though the statements are not equivalent), we obtain an analogue
of Rakhmanov's result for a measure supported on an arc # reducing the
problem to the unit circle (but with varying measures). A prior attempt
to extend Rakhmanov's result to measures supported on an arc of the unit
circle was made by the other author in [1]. A different approach was
employed without varying measures, but the method required the use of a
Szego� -type condition at the end points of the arc.

Let E be a compact subset of the complex plane C. By C(E), we denote
the logarithmic capacity of E (for the definition see [7, p. 310]). Let
#=[z=ei%, %1�%�%2 , %2&%1�2?] be an arc of the unit circle. It is well
known that C(#)=sin(%2&%1)�4. In particular, if #=1, then C(#)=1.

Given an arc #, let G(`)=G(#; `) be the conformal mapping (of the
unbounded connected component) of C� "# onto C� "[|||�1] such that
G(�)=� and G$(�)>0.

By Riemann's Theorem such a conformal representation exists and it is
uniquely determined. When #=1, we have that G(`)=`.
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In Section 2, we prove the following extension of Rakhmanov's Theorem.

Theorem 1. Let _ be a finite positive Borel measure supported on an arc
# with 0<%2&%1<2? and let [.n], .n(`)=:n`n+ } } } , :n>0, be the
corresponding sequence of orthonormal polynomials. Assume that _$>0 a.e.
on #, then

lim
n � �

:n+1

:n
=

1
C(#)

. (1)

Moreover (,n=.n �:n),

lim
n � �

,n+1(`)
,n(`)

=C(#) G(`) (2)

and

lim
n � �

.n+1(`)
.n(`)

=G(`), (3)

uniformly on each compact subset of C"#.

The case when %2&%1=0 degenerates into an arc with one point, and it
is not interesting because we get a discrete measure. The situation %2&%1=2?
corresponds to Rakhmanov's Theorem. There, convergence may be derived
in (2) and (3) only on the unbounded component of C"1 because the zeros
of the polynomials [.n] may be everywhere dense in [|`|<1]. For 0<
%2&%1<2? and _$>0 a.e. on #, the zeros of [.n] ``concentrate'' on # in
the sense that for each compact subset K/C"# there exists n0 such that for
n�n0 , .n has no zero lying on K and convergence extends to all C"#.

3. Another subject of major interest (closely connected with ratio
asymptotics) has been the extension of Szego� 's Theory to measures _ on 1
for which log _$ is not integrable. The foundations were laid in Rakhmanov's
paper [28] and Nevai's book [24]. As a positive reaction to [28] and
[29] a new theory arose in which Szego� 's condition log _$ # L1 was sub-
stituted by the much weaker one _$>0 a.e. on 1. The main contributions
are due to Ma� te� , Nevai, Rakhmanov, and Totik in [21�23, 31]. For the
case of measures supported on unbounded intervals and varying measures
see also [15].

Szego� 's Theory may be interpreted as the comparison of the sequence of
polynomials [.n] orthonormal with respect to _ and the sequence [zn]
which is orthonormal with respect to Lebesgue's measure. The new object
is to compare two orthogonal polynomial systems when the corresponding
measures do not satisfy Szego� 's condition.
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Let _ be a finite positive Borel measure on 1. A second measure h d_ is
also considered, where h is a nonnegative integrable function with respect
to _. The corresponding sequences of orthonormal polynomials and their
positive leading coefficients will be denoted [.n(`)], [.n(h; `)], [:n], and
[:n(h)] respectively. We state the following result in the form it appears in
[21] (see Theorem 3).

Assume that _$>0 a.e. on 1 and h is such that there exists a polynomial
Q for which Qh, Qh&1 # L�(_). Then

lim
n � �

.n(h; `)
.n(`)

=D(h; `),

uniformly on each compact subset of C� "[|`|�1], where

D(h; `)=exp { 1
4? |

1
log h(z)

z+`
z&`

|dz|= .

In particular,

lim
n � �

:n(h)
:n

=exp {&1
4? |

1
log h(z) |dz|= .

Whenever log h # L1 , D(h; `) is well defined for |`|>1 and almost
everywhere on 1. This is the so-called (exterior) Szego� function associated
with h and it is characterized by the properties (see [3, Chap. 5] and [32,
Chap. 10]).

�� D(h; `) # H2 in C� "[ |`|�1] and, therefore,

lim
r � 1+

D(h; r`)=D(h; `),

for almost every ` in 1,

�� D(h; `){0 for |`|>1, D(h; �)>0, and

�� |D(h; `)| 2=1�h(`) almost everywhere on 1.

The appropriate way of extending the notion of the Szego� function for
an arc #/1 and an h defined on # is having in mind the defining properties
described above.

Let h be a nonnegative measurable function given on an arc #/1 such
that log h is integrable with respect to the Lebesgue measure on #. We
define D(h; `)=D#(h; `) as the unique function which satisfies the conditions:
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(i) D(h; `) # H2 in C� "# and, therefore,

lim
r � 1+

D(h; r`)=D(h; `+), lim
r � 1&

D(h; r`)=D(h; `&),

for almost every ` # #,

(ii) D(h; `){0 for ` # C� "#, D(h; �)>0, and

(iii) |D(h; `+)|2=|D(h; `&)|2=1�h(`) almost everywhere on #.

The construction of this function and its uniqueness is easy to reduce by
conformal mapping to the case of the unit circle 1 (see Section 3).

In Section 3, we prove the following extension of the theorem of Ma� te� �
Nevai�Totik stated above.

Theorem 2. Let _ be a finite positive Borel measure supported on an arc
#, 0<%2&%1<2?, with _$>0 a.e. on #, and let h be such that there exists
a polynomial Q for which Qh, Qh&1 # L�(_). Then

lim
n � �

.n(h; `)
.n(`)

=D#(h; `), (4)

uniformly on each compact subset of C� "#. In particular,

lim
n � �

:n(h)
:n

=D#(h; �). (5)

In the following, we maintain the notations introduced above.

2. RAKHMANOV ON THE ARC

Consider the automorphism of C� , `=({+i)�({&i). It takes the real line
R onto the unit circle 1. The inverse {=i((`+1)�(`&1)) does the opposite.
We write `=z when |`|=1, and {=t when { # R.

Let _ be a finite measure on 1 whose support, supp(_), contains infinitely
many points and let 3n be an algebraic polynomial of degree n orthogonal
to all polynomials of lower degree with respect to _ (for the time being no
normalization is imposed on 3n). That is,

0=| z� &3n(z) d_(z), &=0, ..., n&1.
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Along with _, we will consider the following measures on R; d+(t)=
d_((t+i)�(t&i)) and d+n(t)=d+(t)�(1+t2)n. The mth monic orthogonal
polynomial with respect to d+n is denoted by Ln, m({). It satisfies

0=| t&Ln, m(t) d+n(t), &=0, ..., m&1.

The corresponding orthonormal polynomial is ln, m({)=}n, mLn, m({), where

1
}n, m

=&Ln, m&+n=\| |Ln, m(t)|2 d+n(t)+
1�2

.

Finally, we consider the mth kernel function relative to d+n ,

Kn, m({, w)= :
m&1

k=0

ln, k({) ln, k(w). (6)

Since n remains fixed in the sum (as does the measure, see [32, pg. 43])

Kn, m({, w)=
}n, m&1

}n, m

ln, m({) ln, m&1(w)&ln, m(w) ln, m&1({)
{&w

. (7)

Lemma 1. With the notations above, we have

Ln({)=({&i)n 3n \{+i
{&i+=

3n(1)
}n, n ln, n(&i)

Kn, n+1({, &i).

Proof. For all &=0, ..., n&1,

0=|
1

z&&3n(z) d_(z)=|
R \

t&i
t+i+

&

3n \t+i
t&i+ d+(t)

=|
R

(t+i)n&&&1 (t&i)& Ln(t)(t+i) d+n(t).

Since (t+i)n&&&1 (t&i)&, &=0, 1, ..., n&1, forms a basis in the space of
all polynomials of degree at most n&1, we conclude that

0=|
R

t&Ln(t)(t+i) d+n(t), &=0, ..., n&1. (8)

From (8) it follows that

({+i) Ln({)=Cn, 1Ln, n+1({)+Cn, 2Ln, n({), (9)
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where Cn, 1 , Cn, 2 are constants and Cn, 1 is the leading coefficient of Ln({).
Thus

Cn, 1= lim
{ � �

Ln({)
{n = lim

{ � � \{&i
{ +

n

3n \{+i
{&i+=3n(1).

Substituting in (9) and taking { � &i, we find

Cn, 2=&3n(1)
Ln, n+1(&i)

Ln, n(&i)
.

Note that Ln, n(&i){0, since all its zeros must be in R.
With these values for Cn, 1 and Cn, 2 in (9), we obtain by using (7)

Ln({)=
3n(1)

Ln, n(&i) _
Ln, n+1({) Ln, n(&i)&Ln, n+1(&i) Ln, n({)

{&(&i) &
=

3n(1)
}n, n ln, n(&i)

}n, n

}n, n+1 _
ln, n+1({) ln, n(&i)&ln, n+1(&i) ln, n({)

{&(&i) &
=

3n(1)
}n, n ln, n(&i)

Kn, n+1({, &i). K

Let us consider this formula for the cases when 3n=,n if the n th monic
orthogonal polynomial and, for 3n=.n=:n,n , :n>0, the n th ortho-
normal polynomial with respect to _.

Lemma 2. We have

({&i)n ,n \{+i
{&i+=(2i)n Kn, n+1({, &i)

Kn, n+1(i, &i)
, (10)

({&i)n .n \{+i
{&i+=in Kn, n+1({, &i)

- Kn, n+1(i, &i)
, (11)

and

:n=
- Kn, n+1(i, &i)

2n . (12)

Proof. From Lemma 1

({&i)n ,n \{+i
{&i+=

,n(1)
}n, n ln, n(&i)

Kn, n+1({, &i).
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Taking the limit { � i, we obtain

(2i)n=
,n(1)

}n, n ln, n(&i)
Kn, n+1(i, &i).

Thus, we have (10). Formula (6) shows that Kn, n+1(i, &i)>0. Indeed,

Kn, n+1(i, &i)= :
n

k=0

ln, k(i) ln, k(&i)= :
n

k=0

|ln, k(i)| 2>0. (13)

To obtain the analogous formula for .n we must multiply both sides of
(10) by :n=&,n&&1

_ . Let us calculate this quantity using (10)

1
:2

n

=&,n&2
_ =|

1
|,n(z)| 2 d_(z)=22n |

R }Kn, n+1(t, &i)
Kn, n+1(i, &i) }

2

d+n(t)

=
22n

K 2
n, n+1(i, &i) |R

Kn, n+1(t, &i) Kn, n+1(t, &i) d+n(t)

=
22n

K 2
n, n+1(i, &i) |R

Kn, n+1(t, &i) Kn, n+1(t, i) d+n(t)

=
22n

Kn, n+1(i, &i)
.

Thus, we obtain (12) and (11). In the last two steps, we used that Kn, m(t, &i)
=Kn, m(t, i) (see (6)) and the reproducing property of the kernel function

|
R

Kn, m(t, w) Am(t) d+n(t)=Am(w),

for any polynomial Am of degree �m&1. K

Note that in Lemmas 1 and 2 we did not require any additional condi-
tions on the finite measure _ (except that it have infinitely many points in
its support). Analogous formulas, when you start from a (fixed) measure
on R and carry it over to 1, may be seen in Lemma 9 of [15].

If z=1 belongs to supp(_), then supp(+) is unbounded; otherwise,
supp(+) is bounded. In the following, we restrict our attention to the case
when supp(_)=# is an arc different from the whole unit circle. For our
purpose, without loss of generality, we may assume that 1 � # and # is
symmetric with respect to R.
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Let e\i%, % # (0, ?), be the end points of # (%=? is not possible because
supp(_) contains infinitely many points). From the expression of + it
follows that

supp(+)=_&cot
%
2

, cot
%
2&

(if we would have only assumed that supp(_)/#, then supp(+)/[&cot(%�2),
cot(%�2)]). In the following, c=cot(%�2) and . denotes the conformal
mapping of C� "[&1, 1] onto the complement of the unit disk such that
.(�)=�, .$(�)>0.

Lemma 3. Assume that supp(_)=#, where # is an arc as described above
and _$>0 a.e. on # with respect to the Lebesgue measure. Then

lim
n � �

({&i)n ,n(({+i)�({&i)) ln, n(i)
(2i)n ln, n({)

=
1

|.(i�c)|
.({�c)&.(&i�c)

{+i
(14)

and

lim
n � �

({&i)n .n(({+i)�({&i)) ln, n(i)
inln, n({) |ln, n(i)|

=� c
2 |.(i�c)|

.({�c)&.(&i�c)
{+i

, (15)

uniformly on each compact subset of C� "[&c, c]. In particular,

lim
n � �

2n:n

|ln, n(i)|
=�c

2
|.(i�c)| . (16)

Proof. From Theorem 7 in [17] (see also Theorem 1 in [13]), we have

lim
n � �

Ln, n+ j+1({)

Ln, n+ j ({)
=

c
2

lim
n � �

ln, n+ j+1({)

ln, n+ j ({)
=

c
2

. \{
c+ , (17)

uniformly on each compact subset of C"[&c, c], for each fixed integer j.
In particular,

lim
n � �

}n, n+ j+1

}n, n+ j
=

2
c

. (18)
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Formula (10) gives

({&i)n ,n(({+i)�({&i)) ln, n(i)
(2i)n ln, n({)

=
2i

{+i
(ln, n+1({))�(ln, n({))&(ln, n+1(&i))�(ln, n(&i))
(ln, n+1(i))�(ln, n(i))&(ln, n+1(&i))�(ln, n(&i))

=
(ln, n+1({))�(ln, n({))&(ln, n+1(&i))�(ln, n(&i))

({+i) I(ln, n+1(i))�(ln, n(i))
.

Using (17), Eq. (14) immediately follows. Note that I.(i�c)= |.(i�c)|
because it is a purely imaginary number in the upper half plane.

In order to derive (15) and (16), let us use (12). From that formula, we
have

2n:n

|ln, n(i)|
=� }n, n

}n, n+1

(ln, n+1(i))�(ln, n(i))&(ln, n+1(&i))�(ln, n(&i))
2i

=� }n, n

}n, n+1

I \ln, n+1(i)
ln, n(i) + .

By using (17) and (18), we arrive at (16). Formula (15) is the product of
(14) and (16). K

Note that the function on the right-hand side of (14) is never zero in
C� "[&c, c]. Since ln, n({) has no zeros in this set, one concludes from
Hurwitz's Theorem that given a compact set K/C� "[&c, c], ({&i)n

,n(({+i)�({&i)) has no zeros on K, for all sufficiently large n. In other
words, if supp(_)/# and _$>0 a.e. on #, then # ``attracts'' all the zeros of
the orthogonal polynomials with respect to _ in such a way that no point
in C� "# may be an accumulation point of zeros, or a zero of infinitely many
polynomials. Therefore, it makes sense to study the asymptotics of ratios of
such polynomials not only on [|`|>1] (as usual) but on all C"#. We do
this in the following without further reference to what we have just pointed out.

Lemma 4. Under the assumptions of Lemma 3, we have

lim
n � �

,n+1(({+i)�({&i))
,n(({+i)�({&i))

ln, n+1({)
ln+1, n+1({)

ln+1, n+1(i)
ln, n+1(i)

=
2i

{&i
.({�c)
.(i�c)

, (19)

uniformly on compact subsets of C� "([&c, c] _ [i]), and

lim
n � �

:n+1

:n } ln, n+1(i)
ln+1, n+1(i) }=

1
2 }. \ i

c+}. (20)
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Proof. Formulas (14) and (16) applied to consecutive sequences of indexes
indicate that

lim
n � �

,n+1(({+i)�({&i))
,n(({+i)�({&i))

ln, n({)
ln+1, n+1({)

ln+1, n+1(i)
ln, n(i)

=
2i

{&i
,

uniformly on each compact subset of C� "([&c, c] _ [i]], and

lim
n � �

:n+1

:n } ln, n(i)
ln+1, n+1(i) }=

1
2

.

Using (17) one sees that these relations are equivalent to (19) and (20)
respectively. K

In order to conclude the proof of Theorem 1, we must investigate (should
the limit exist)

lim
n � �

ln+1, n+1({)
ln, n+1({)

. (21)

As opposed to (17), here we have ratios of polynomials of equal degree
but orthogonal with respect to different measures. Nonetheless, d+n=
(1+t2) d+n+1 ; therefore, we have a problem of relative asymptotics. While
ln+1, n+1 is orthonormal with respect to d+n+1, ln, n+1 is orthonormal with
respect to g d+n+1 , with g(t)=(1+t2). This problem was studied in [15]
on the unit circle for sufficiently general ``perturbing'' functions and varying
measures. In order to avoid, at this point, complicating matters with
generality, let us calculate (21) for this particular case. For monic polyno-
mials and rational perturbing functions, as we have here, the corresponding
result was stated (without proof) in Theorem 10 of [17]. Unfortunately,
there is a typo in the expression of the formula (see (3.2) of [18] where the
formula is proved and appears correctly, but only the case of fixed measures
is considered). On the other hand, we need the asymptotics of the leading
coefficients of the orthonormal polynomials as well.

Lemma 5. Under the assumptions of Lemma 3, we have

2
c |.(i�)|

lim
n � �

ln+1, n+1({)
ln, n+1({)

= lim
n � �

Ln+1, n+1({)
Ln, n+1({)

=
2({&i)

c.({�c) .(i�c)

.({�c) .(i�c)&1
.({�c)&.(i�c)

, (22)
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uniformly on each compact subset of C� "[&c, c]. In particular,

lim
n � �

}n+1, n+1

}n, n+1

=
c
2 }. \ i

c+}. (23)

Proof. Since

0=|
R

t&Ln, n+1(t)(1+t2) d+n+1(t), &=0, ..., n,

then

(1+{2) Ln, n+1({)=Ln+1, n+3({)+*n, 1Ln+1, n+2({)+*n, 2Ln+1, n+1({),

(24)

or what is the same

(1+{2)
Ln, n+1({)

Ln+1, n+1({)
=

Ln+1, n+3({)
Ln+1, n+1({)

+*n, 1

Ln+1, n+2({)
Ln+1, n+1({)

+*n, 2 . (25)

Evaluating (25) at \i, we obtain the system of equations

*n, 1

Ln+1, n+2(i)
Ln+1, n+1(i)

+*n, 2 =&
Ln+1, n+3(i)
Ln+1, n+1(i)

,

*n, 1

Ln+1, n+2(&i)
Ln+1, n+1(&i)

+*n, 2=&
Ln+1, n+3(&i)
Ln+1, n+1(&i)

.

The determinant of this system has for a limit (use (17)) (c�2)[.(i�c)&
.(&i�c)]{0. Therefore, it is different from zero for all sufficiently large n
(in fact, it is different from zero for all n because of (7) and (13)). Solving
the system and taking limits, we obtain

lim
n � �

*n, 1=&
c
2 _. \ i

c++.\&i
c +& (26)

and

lim
n � �

*n, 2=\c
2+

2

. \ i
c+ . \&i

c +=\c
2+

2

}. \ i
c+}

2

. (27)

Using (17) once more, and (25)�(27), we have

lim
n � �

Ln, n+1({)
Ln+1, n+1({)

=\c
2+

2

_.({�c)&.(i�c)
{&i &_.({�c)&.(&i�c)

{+i & , (28)
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uniformly on each compact subset of C� "[&c, c]. It is easy to check that

_.(w)&.(w0)
2(w&w0) &_1&

1
.(w) .(w0)&=1, w, w0 # C� "[&1, 1].

Using this relation to substitute the second factor to the right of (28) and
using that .(&i�c)=.(i�c), we arrive at the second equality in (22).

In order to prove (23), we proceed as follows. Note that deg [Ln, n+1&
Ln+1, n+1]<n+1; thus,

| (Ln, n+1&Ln+1, n+1)(t) Ln, n+1(t) d+n(t)=0.

Therefore, from (24), it follows that

1
}2

n, n+1

=| L2
n, n+1(t) d+n(t)

=| (1+t2) Ln, n+1(t) Ln+1, n+1(t) d+n+1(t)

=*n, 2 | L2
n+1, n+1(t) d+n+1(t)=

*n, 2

}2
n+1, n+1

.

This relation and (27) imply (23), which together with the second equality
in (22) gives the first one. K

Now, let us proceed with the

Proof of Theorem 1. Let us assume that the arc # is symmetric with
respect to R and 1 � #. Then, according to (20) and (22),

lim
n � �

:n+1

:n
=

1
2 }. \ i

c+} lim
n � � } ln+1, n+1(i)

ln, n+1(i) }
=

c
4 }. \ i

c+}
2

lim
n � � }Ln+1, n+1(i)

Ln, n+1(i) }. (29)

For our purpose, it is easier to use the expression for the last limit
derived from (28) (instead of (22)). That quantity is the absolute value of

lim
n � �

Ln+1, n+1(i)
Ln, n+1(i)

=_c
4

.$ \ i
c+ I. \ i

c+&
&1

. (30)
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Since

.$(w)=
.(w)

- w2&1
and }I. \ i

c+}= }. \ i
c+} ,

because .(i�c) is purely imaginary, from (29) and (30) it follows that

lim
n � �

:n+1

:n
= } �\ i

c+
2

&1 }=�1+tan2 %
2

=sec
%
2

.

Thus, we have proved the existence of limit in (1) and some may identify
that quantity with C(#)&1. But if you do not, we shall get to that.

Formulas (19), (22), and (30) give

lim
n � �

,n+1(({+i)�({&i))
,n(({+i)�({&i))

=
2i

{&i
.({�c)
.(i�c)

2({&i)

c.({�c) .(i�c)

_
.({�c) .(i�c)&1
.({�c)&.(i�c)

c.(i�c) I.(i�c)

4 - (i�c)2&1

=
iI.(i�c)

.(i�c) - (i�c)2&1

.({�c) .(i�c)&1
.({�c)&.(i�c)

,

uniformly on each compact subset of C� "([&c, c] _ [i]). Since .(i�c) is a
purely imaginary number, then iI.(i�c)=.(i�c) and .(i�c)=&.(i�c). On
the other hand, - (i�c)2&1=i sec (%�2). Therefore,

lim
n � �

,n+1(!)
,n(`)

=cos
%
2

8 \i
`+1
`&1+ , (31)

uniformly on each compact subset of C� "#, where

8({)=i
.({�c) .(i�c)&1
.({�c)&.(i�c)

.

By construction, 8(i(`+1)�(`&1)) is obviously a conformal representa-
tion of C� "# onto the complement of the unit disk such that � goes to �.
Let us check that its derivative at infinity is positive. In fact,
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lim
` � �

1
`

8 \i
`+1
`&1+=lim

{ � i

ic
{+i

({�c)&(i�c)
.({�c)&.(i�c) _. \{

c+ . \ i
c+&1&

=
ic
2i

.(i�c)

.$(i�c) _. \ i
c+&

1
.(i�c)&

=
c
2

i � 1
c2+1 \&

2i
c +=sec

%
2

>0. (32)

Therefore, we have shown that G(`)=8(i(`+1)�(`&1)).
The limit in (32) shows that cos(%�2) is the capacity of # since log |G(`)|

is Green's function for C� "# and the capacity, in such a case, equals |G$(�)|&1

(see [7, pg. 313]). Thus (31) is (2), and (3) follows immediately.1

If # is not symmetric with respect to R, the problem reduces to the
previous case by a simple change of variables (rotation). K

Remark 1. If supp(_) consists of an arc # plus a finite number of mass
points e, and _$>0 a.e. on #, then (1)�(3) remain valid, where (2), (3) take
place uniformly on each compact subset of C"(# _ e). In this case, each
mass point ``attracts'' a zero of ,n and the rest ``concentrate'' on #. The
proof follows arguments similar to the ones above and those employed in
the proof of Theorem 1$ of [14].

As usual, given a polynomial 3n(`) of degree n, 3 n*(`)=`n3n(1� �̀ )
denotes its reversed polynomial.

Corollary 1. Under the assumptions of Theorem 1, we have

lim
n � �

,*n+1(`)
,n*(`)

=C(#) `G(1� �̀ ), (33)

lim
n � �

.*n+1(`)
.n*(`)

=`G(1� �̀ ), (34)

and

lim
n � �

,n+1(0)
,n*(`)
,n(`)

=C(#) G(`)&`, (35)

uniformly on each compact subset of C"#. Also,

lim
n � �

|,n(0)|=- 1&C2(#), lim
n � �

,n+1(0)
,n(0)

=C(#) G(0). (36)
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Proof. For C"(# _ [0]), formulas (33), (34) are immediate from the
definition of reversed polynomial and (2), (3) respectively. Since the zeros
of ,n* are bounded away from the origin, these two formulas extend to C"#
by use of the maximum principle. As for (35) and (36), they follow from
the well known relations (see [5, p. 11] or [32, pg. 293])

,n+1(`)=`,n(`)+,n+1(0) ,n*(`) (37)

and

:2
n&1

:2
n

=1&|,n(0)| 2,

by use of (2) and (1) respectively. The second limit in (36) is (35) at `=0.
K

Remark 2. In connection with the second limit in (36), it is not difficult
to check that C(#) G(0)=e&i%0, where %0 is the angle one must rotate # in
order to make it symmetric with respect to R, leaving out z=1.

Remark 3. In the case of the unit circle, an analogue of the Blumenthal�
Nevai class of orthogonal polynomials on R is not known. We suspect that
such class is the one formed by those sequences of orthogonal polynomials
on 1 whose reflection coefficients satisfy

lim
n � �

|,n(0)|=a, lim
n � �

,n+1(0)
,n(0)

=b, (38)

where a # (0, 1).
Under the more restrictive condition

lim
n � �

,n(0)=:, 0<|:|<1,

the support of the orthogonality measure _ has been well studied (see [4],
and Theorems 6 and 10 in [6]). In particular, if

|,n(0)&:|=0(rn), r<1,

then the measure falls in the category described in Remark 1 (see Theorems
4.1 and 4.2 in [26]); therefore, in this case (2) and (3) hold uniformly on
each compact subset of C"supp(_). We think that this is true whenever
conditions (38) take place.

Before ending this section, let us apply the results above to obtain
asymptotic formulas for the reproducing kernel function Kn(`, ') and the
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Christoffel function wn(`) relative to the measure _. We recall that these
functions are defined by the relations

Kn(`, ')= :
n&1

k=0

.k(`) .k(')=
.n*(`) .n*(')&.n(`) .n(')

1&`'�
(39)

and

wn(`)=K &1
n (`, `). (40)

First, let us study some properties of the function F(`)=C(#) G(`)&`.

Lemma 6. Under the assumptions of Theorem 1, we have

>- 1&C2(#), |`|<1,

(i) |F(`)| {=- 1&C2(#), [ |`|=1]"#,

<- 1&C2(#), |`|>1.

(ii) F(`) F(1� �̀ )=1&C2(#), ` # C� "#.

(iii) F(`) is one�one in C� "#.

(iv) For all ` # C"#,

F(`)= 1
2 [C(#) G(0)&`+- (C(#) G(0)&`)2+4`(1&C2(#)) C(#) G(0)],

where the root is taken so that F(0)=C(#) G(0). In particular, if # is
symmetric with respect to R, 1 � #, then

F(`)=
1&`+- (1+`)2&4`C 2(#)

2

and

(v) F+(`)=&iei:�2 _�C2(#)&cos2 :
2

+sin
:
2& , `=ei:,

F&(`)=iei:�2 _�C2(#)&cos2 :
2

&sin
:
2& , `=ii:,

%<:<2?&%, e\i% are the endpoints of #, and F+, F& denote the limit
values of F as the variable tends to points in # from the interior and exterior
of the unit circle respectively. (Note that F+(`) F&(`)=1&C2(#), ` # #.)

(vi) The nearest and furthest points from the origin of the image of #
by F have modulus 1&C(#) and 1+C(#) respectively.

(vii) The following relation takes place for all (`, ') # (C"#)2,

(F(`) F(')+C2(#)&1)(G(`) G(')&1)=(1&C 2(#))(1&`'� ).
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Proof. The function F(`) is the uniform limit on compact subsets of
C� "# of the sequence [,n+1(0)(,n*(`)�,n(`))] (see (35)). Given a compact
set K/C� "#, the functions in the sequence are never zero on K, for all
sufficiently large n. Therefore, their limit F must either be identically equal
to zero on C� "# or never equal to zero on that region. Since |F(0)|=1 (see
(36)), then F(`){0, ` # C� "#.

For each fixed n

>|,n+1(0)|, |`|<1,

},n+1(0)
,n*(`)
,n(`) }{=|,n+1(0)|, |`|=1,

<|,n+1(0)|, |`|>1.

This is true because ,n*(`)�,n(`) is the reverse of a Blaschke product. Using
(35) and (36), we obtain the relations (i) with � and � in the first and
third parts. But equality is not possible by the minimum and maximum
principle applied to F in [ |`|<1] and [|`|>1] respectively, because F
cannot be identically equal to a constant (that would imply that G is an
affine transformation which is not possible since it transforms C� "# conformally
onto the complement of the unit disk).

Formula (ii) is an immediate consequence of the second relation in (i)
and the symmetry principle of analytic functions.

In order to prove the rest of the statements, let us find a compact
analytic expression for F. To this end, we shall use (37) and its symmetric
form

,*n+1(`)=,n*(`)+`,n+1(0) ,n(`). (41)

Dividing (41) by (37) and multiplying either sides by ,n+2(0), we obtain

,n+2(0)
,*n+1(`)
,n+1(`)

=
,n+2(0)
,n+1(0)

,n+1(0)((,n*(`))�(,n(`)))+` |,n+1(0)| 2

`+,n+1(0)((,n*(`))�(,n(`)))
.

Taking limits, using (35) and (36), we have

F(`)=
F(`)+`(1&C2(#))

`+F(`)
C(#) G(0)

(note that `+F(`)=C(#) G(`){0). This last relation is equivalent to

F2(`)&C(#) G(0) F(`)=`[(1&C 2(#)) C(#) G(0)&F(`)]. (42)

Let us prove that (1&C2(#)) C(#) G(0)&F(`){0 for ` # C� "#. In fact, if
(1&C2(#)) C(#) G(0)&F(`1)=0 for some `1 # C� "#, then

F 2(`1)=C(#) G(0) F(`1),
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or what is the same

(1&C2(#))2 C2(#) G2(0)=(1&C2(#)) C2(#) G2(0).

This is impossible because 0<C(#)<1 and G(0){0.
Therefore, from (42) it readily follows that

F 2(`)&C(#) G(0) F(`)
(1&C2(#)) C(#) G(0)&F(`)

=`. (43)

Assume that F(`1)=F(`2), `1 , `2 # C� "#; then, from (43), we obtain that
`1=`2 . In other words, F is one to one on C� "# as stated in (iii).

Formula (42) may be rewritten as

F 2(`)&(C(#) G(0)&`) F(`)&`(1&C 2(#)) C(#) G(0)=0.

Solving this quadratic equation for F, we obtain

F(`)= 1
2[C(#) G(0)&`+- (C(#) G(0)&`)2+4`(1&C2(#)) C(#) G(0)]

(44)

(the root is taken so that F(0)=C(#) G(0)). Relation (44) is (iv), and in
the symmetric case, with 1 � #, it reduces to the second formula in (iv) since
then C(#) G(0)=1.

By the principle of correspondence of boundaries under conformal
representations, we know that, for each ` # #, there exist F+(`) and F&(`).
From (ii) these limit values must be symmetric with respect to the circle of
center 0 and radius - 1&C2(#). From (i) it follows that F+(`) is the one
of greater module and F&(`) the one of smaller absolute value.

From this and formula (iv), it follows that (`=ei:, %<:<2?&%,
|cos(:�2)|�C(#))

F\(`)=
1
2

[1+`+- (1+`)2&4`C2(#)]&!

=ei:�2 _ei:�2+e&i:�2

2
+�1

2
(ei:�2+e&i:�2)2&C2(#)&ei:�2&

=ei:�2 _�cos2 :
2

&C2(#)&i sin
:
2&

=iei:�2 _��C2(#)&cos2 :
2

&sin
:
2& .

Thus we have proved (v).
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In the symmetric case with 1 � #, the statement in (vi) is an immediate
consequence of formula (v). Moreover, F&(&1)=1&C(#)�|F&(`)|�
|F+(`)|�F+(&1)=1+C(#). The general case reduces to the symmetric
one by a rotation in the variable which does not affect the absolute value
of the function (compare both formulas in (iv) and take into consideration
that |C(#) G(0)|=1 according to (36)).

Finally, let us prove (vii). Since C(#) G(z)=F(`)+`, it is equivalent to
prove that

(F(`) F(')+C2(#)&1)((F(`)+`)(F(')+'� )&C2(#))

=C2(#)(1&C2(#))(1&`'� ),

for all (`, ') # (C"#)2.
From (42), we obtain

F 2(`)+`F(`)=C(#) G(0)(F(`)+(1&C2(#)) `).

Using this relation and that |C(#) G(0)|=1, it follows that

(F(`) F(')+C2(#)&1)((F(`)+`)(F(')+'� )&C2(#))

=(F 2(`)+`F(`))(F 2(')+'F('))&C2(#) F(`) F(')

+(C2(#)&1)(F(`)+`)(F(')+'� )+C2(#)(1&C2(#))

=|C(#) G(0)| 2 (F(`)+(1&C2(#)) `)(F(')+(1&C2(#)) '� )

&C2(#) F(`) F(')+(C 2(#)&1) F(`) F(')+(C 2(#)&1) '� F(`)

+(C2(#)&1) `F(')+(C 2(#)&1) `'� +C2(#)(1&C 2(#))

=C2(#)(1&C 2(#))(1&`'� ),

which is what we needed to prove. K

Remark 4. From (vii) in Lemma 6, it follows that in (C"#)2

F(`) F(')&1+C2(#)=0 � '=1� �̀ ,

because in this set G(`) G(')&1 is never zero.

We are ready for the proof of

Corollary 2. Under the assumptions of Theorem 1, we have

lim
n � �

Kn(`, ')

.n(`) .n(')
=

1

G(`) G(')&1
, (45)
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uniformly on each compact subset of (C� "#)2. In particular,

lim
n � �

1
wn(`) |.n(`)| 2=

1
|G(`)| 2&1

, (46)

uniformly on each compact subset of C� "#. Since the right-hand sides of (45)
and (46) are different from zero on (C"#)2 and C"# respectively, these
formulas may be reversed with uniform limit on compact subsets of (C"#)2

and C"# respectively.

Proof. We can rewrite (39) as

Kn(`, ')

.n(`) .n(')
=

1
|,n+1(0)| 2

_
,n+1(0)((,n*(`))�,n(`)) ,n+1(0)(,n*(')�,n('))&|,n+1(0)| 2

1&`'�
.

(47)

Using (47), (35), and the first part of (36), we obtain

lim
n � �

Kn(`, ')

.n(`) .n(')
=

1
1&C 2(#)

(C(#) G(`)&`)(C(#) G(')&'� )+C2(#)&1
1&`'�

,

uniformly on each compact subset of

(C� "#)2"[(`, 1� �̀ ): ` # C� "#].

This formula has the problem that its right-hand side is not determined for
'=1� �̀ . But, according to (vii) in Lemma 6 (see also Remark 4), the right-
hand side equals 1�(G(`) G('� )&1) on (C� "#)2"[(`, 1� �̀ ): ` # C� "#]. Thus, we
have proved (45) on compact subsets of (C� "#)2"[(`, 1� �̀ ): ` # C� "#]. In
order to conclude the proof of (45), it is sufficient to show that on a
neighborhood of each point in [(`, 1� �̀ ): ` # C� "#], (45) takes place.

Fix `0 # C"(# _ [0]). Take r>0 sufficiently small so that the disk B1=
[`: |`&`0 |�r] is contained in C"(# _ [0]). From symmetry with respect
to the unit circle, we have that the disk B2=[1� �̀ : ` # B1] is also contained
in C"(# _ [0]). Therefore, B1_B2 is a compact neighborhood of (`0 , 1�`0 )
contained in (C"#)2. Let us prove that on B1_B2 there is uniform
convergence. Let r1>r be such that [`: |`&`0 |�r1] is contained in
C"(# _ [0]). Set \=[1� �̀ : |`&`0 |=r1]. Obviously, \/C"# and it is a
simple curve which surrounds the set B2 . From Cauchy's Theorem, we
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have that for all (`, ') # B1 _B2 (and all sufficiently large n so that the
zeros of .n lie in the exterior of B1 and \)

Kn(`, ')

.n(`) .n(')
&

1

G(`) G(')&1
=Fn(`, ')&F(`, ')

=
1

2?i |\

Fn(`, z)&F(`, z)
z&'

dz.

The set B1_\ is a compact subset of (C"#)2"[(`, 1� �̀ ): ` # C"#]. Therefore,
from what was proved above, it follows that Fn(`, z) converges uniformly
to F(`, z) on B1_\. Using the integral expression, we immediately obtain
that

lim
n � �

Kn(`, ')

.n(`) .(')
=

1

G(`) G(')&1
,

uniformly on B1 _B2 , as we needed to prove. For the points (0, �) and
(�, 0), the proof may be carried out following the same line of reasoning.
For (�, 0), take r>1 and B1=[`: |`|�r], then proceed analogously with
r>r1>1. For the point (0, �) we start out by defining the sets from
the second variable and integrate with respect to the first. With this we
conclude the proof. K

3. NEVAI ET AL. ON THE ARC

As in Section 2, we concentrate on the case when # is symmetric with
respect to R and 1 � #. Let h be a measurable function defined on #
such that h d_ is a finite positive Borel measure on #. In the following,
,n(h; `) denotes the nth monic orthogonal polynomial with respect to
h d_ and Ln, n(h; {) the n th monic orthogonal polynomial with respect to
h((t+i)�(t&i)) d+n(t). Analogously, we denote the orthonormal polyno-
mials and the leading coefficients, relative to these measures. For the
orthogonal polynomials and leading coefficients relative to d_ and d+n(t),
we maintain the previous notation. Recall that d+(t)=d_((t+i)�(t&i))
and d+n(t)=d+(t)�(1+t2)n.

Lemma 7. Under the assumptions of Lemma 3 with respect to _, and
h>0 a.e. on #, we have

lim
n � �

,n (h; ({+i)�({&i)) ln, n({) ln, n(h; i)
,n(({+i)�({&i)) ln, n(h, {) ln, n(i)

=1, (48)

237POLYNOMIALS ORTHOGONAL ON AN ARC



File: DISTIL 312623 . By:CV . Date:29:01:98 . Time:08:46 LOP8M. V8.B. Page 01:01
Codes: 2598 Signs: 1491 . Length: 45 pic 0 pts, 190 mm

uniformly on each compact subset of C� "[&c, c], and

lim
n � �

:n(h)
:n

|ln, n(i)|
|ln, n(h; i)|

=1. (49)

Proof. Note that not only d_ but also h d_ satisfies the conditions of
Lemma 3. Therefore, (48) and (49) are immediate consequences of (14) and
(16) applied to the sequences [,n(h, `)], [,n(`)], [:n(h)], and [:n]. K

We must investigate the asymptotic behavior of [ln, n(h; {)�ln, n({)]. We
will translate the problem to the whole unit circle, where the corresponding
results are at hand. To this end, we will connect the orthogonal polyno-
mials we have on [&c, c] with orthogonal polynomials on 1. We do this
for [hn, n({)], and then for [hn, n(h; {)] the formulas are obvious.

Define on 1 a measure _~ , symmetric with respect to the real axis, as
follows. Let E be a measurable set on the upper half of the unit circle, then

_~ (E)=+[cx: x=cos :, with ei: # E].

In other words,

d_~ (u)=d+(c cos :), u=ei:,

in the upper half circle. In the lower half, _~ is defined by symmetry with
respect to R.

Note that (1+c2 cos2 :)n is a positive trigonometric polynomial on
: # [0, 2?]. It is well known that there exists an algebraic polynomial
whose zeros lie in [|!|<1], such that its module to the square takes the
same value at u=ei: as the trigonometric polynomial at : (see Theorem 1.2.2
in [32]). Let us take a look at this algebraic polynomial.

It is easy to verify that

}\u&
1

.(i�c)+\u&
1

.(i�c)+}
2

=\u&
1

.(i�c)+\u� &
1

.(i�c)+\u&
1

.(i�c)+
_\u� &

1

.(i�c)+
=

4(1+c2 cos2 :)
c2 |.(i�c)| 2 , u=ei:.

Denote

w2n(u)=\u&
1

.(i�c)+
n

\u&
1

.(i�c)+
n

,
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then

|w2n(u)| 2=\ 2
c |.(i�c)|+

2n

(1+c2 cos2 :)n, u=ei:.

Therefore,

d_~ 2n(u)=
d_~ (u)

|w2n(u)| 2

=\c |.(i�c)|
2 +

2n d+(c cos :)
(1+c2 cos2:)n , u=ei:.

Since ln, n(cx) is the n th orthonormal polynomial with respect to the
measure d+(cx)�(1+c2x2)n, x # [&1, 1], then (2�c |.(i�c)| )n ln, n(cx) is the
nth orthonormal polynomial with respect to (c |.(i�c)|�2)2n d+(cx)�(1+c2x2)n.

Let .~ 2n, 2n be the (2n) th orthonormal polynomial, with positive leading
coefficient, with respect to (1�2?) d_~ 2n . As usual, .~ *2n, 2n denotes its reversed
polynomial and ,� 2n, 2n the corresponding monic orthogonal polynomial.
Since n is fixed, the following well-known formula takes place (see [32,
Theorem 11.5] and [5, Theorem 9.1])

\ 2
c |.(i�c)|+

n

ln, n(c/)=
.~ 2n, 2n(!)+.~ *2n, 2n(!)

!n
- 2?(1+,� 2n, 2n(0))

, /=
1
2 \!+

1
!+ . (50)

Analogously,

\ 2
c |.(i�c)|+

n

ln, n(h; c/)=
.~ 2n, 2n(h; !)+.~ *2n, 2n(h; !)

!n
- 2?(1+,� 2n, 2n(h; 0))

, /=
1
2 \!+

1
!+ ,

(51)

where ,� 2n, 2n(h; !) and .~ 2n, 2n(h; !) denote the monic and orthonormal
polynomials of degree 2n with respect to the measure

1
2?

d_~ h(u)
|w2n(u)| 2 , d_~ h(u)=h \c cos :+i

c cos :&i+ d_~ (u), u=ei:.

Lemma 8. Under the assumptions of Lemma 3 with respect to _, and
h>0 a.e. on #, we have

lim
n � �

ln, n(h; c/)
ln, n(c/)

.~ 2n, 2n(!)
.~ 2n, 2n(h; !)

=1, /=
1
2 \!+

1
!+ , (52)

uniformly on each compact subset of [|!|>1].
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Proof. From (50) and (51), it follows that

ln, n(h; c/)
ln, n(c/)

.~ 2n, 2n(!)
.~ 2n, 2n(h; !)

=
1+((.~ *2n, 2n(h; !))�(.~ 2n, 2n(h; !)))

1+((.~ *2n, 2n(!))�(.~ 2n, 2n(!)))

- 1+,� 2n, 2n(0)

- 1+,� 2n, 2n(h; 0)
.

(53)

Since _~ $(u)>0 a.e. on 1 and h((c cos :+i)�(c cos :&i))>0 a.e. on 1
(ei:=u), we have from Lemmas 4 and 5 in [13] that

lim
n � �

,� 2n, 2n(h, 0)= lim
n � �

,� 2n, 2n(0)=0 (54)

and

lim
n � �

.~ *2n, 2n(h; !)

.~ 2n, 2n(h; !)
= lim

n � �

.~ *2n, 2n(!)

.~ 2n, 2n(!)
=0, (55)

uniformly on each compact subset of [ |!|>1]. From (53)�(55), we
obtain (52). K

We referred to [13] because the zeros of [w2n(!)] are bounded away
from the unit circle (in fact, they are fixed at two points within the unit
circle), which is the kind of varying weights considered there. In [14] and
[17], you will find generalizations of Lemmas 4 and 5 from [13] which
also lead to (54), (55).

We have reduced the problem to the study of the asymptotic behavior of
the sequence [.2n, 2n(h, !)�.2n, 2n(!)]. This question is considered in Theorem 1
of [15]. Unfortunately, there, the corresponding result is proved for the
particular case when w2n(!)=(!&1)2n, which was the case needed for the
application to relative asymptotics with respect to fixed measures supported
on unbounded sets. The proof in the present situation follows using the
same arguments as those in [15]. One good reason why this is so is that
here we are much better off. No singularities are placed on the support of
the measure; therefore, Carleman-type conditions for the uniqueness of
analytic functions are not needed. You will see that no special use is made
of the form of [w2n] as long as Lemma 1 of [15] is satisfied. For a proof
of the statements of that Lemma in the present setting, we refer the reader
to Lemmas 1, 4, and 5 of [13].

Lemma 9. Under the assumptions of Theorem 2 with # symmetric with
respect to R and 1 � #, we have

lim
n � �

.~ 2n, 2n(h; !)
.~ 2n, 2n(!)

=Sh(!), (56)
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uniformly on each compact subset of [|!|>1], where

Sh(!)=exp { 1
4? |

1
log h \c cos :+i

c cos :&i+
u+!
u&!

|du|= , u=ei:.

Proof. From the assumptions, it is obvious that there exists an algebraic
polynomial Q such that

Q(u) _h \c cos :+i
c cos :&i+&

\1

# L�(_~ ), u=ei:.

On the other hand, h((c cos :+i)�(c cos :&i))>0 a.e. on 1, _~ $(u)>0 a.e.
on 1, and the zeros of [w2n] are bounded away from 1. It only remains
to follow the scheme of the proof of Theorem 1 in [15]. K

Now, we are ready for the

Proof of Theorem 2. First, let us consider the case when # is symmetric
with respect to R and 1 � #. The assumptions in Theorem 2 imply the
conditions of Lemma 3, and h>0 a.e. on #. Therefore, we can use Lemmas
7�9. From (48), (52), and (56), we obtain

lim
n � �

,n(h; ({+i)�({&i))
,n(({+i)�({&i))

=
Sh(.({�c))
Sh(.(i�c))

,

uniformly on each compact subset of C� "[&c, c]. This is equivalent to
saying that

lim
n � �

,n(h; `)
,n(`)

=
Sh(.(i(`+1)�c(`&1)))

Sh(.(i�c))
, (57)

uniformly on each compact subset of C� "#. On the other hand, from (49),
(52), and (56) it follows that

lim
n � �

:n(h)
:n

= }Sh \. \ i
c++}. (58)

Therefore, using (57) and (58), we obtain that

lim
n � �

.n(h; `)
.n(`)

=
Sh(.(i(`+1)�c(`&1))) |Sh(.(i�c))|

Sh(.(i�c))
. (59)

This proves the existence of limit in (4). On the other hand, from the
properties of the (exterior) Szego� function for the case of the unit disk it
is obvious that the function on the right-hand side of (59) satisfies the
conditions (i)�(iii) which characterize D(h; `) (see point 3 in Section 1).
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As in Theorem 1, the general case reduces to the symmetric one by
rotation. With this we conclude the proof of Theorem 2. K

In terms of the asymptotic behavior of the reflection coefficients, results
on relative asymptotics of polynomials orthogonal on arcs of the unit circle
may be found in [27].

Let Kn(h; `, ') and wn(h; `) denote the reproducing kernel and the
Christoffel function relative to the measure h d_.

Corollary 3. Under the assumptions of Theorem 2, we have

lim
n � �

Kn(h; `, ')
Kn(`, ')

=D(h; `) D(h; '),

uniformly on each compact subset of C� "#)2. On the other hand,

lim
n � �

wn(h; `)
wn(`)

=|D(h; `)|&2,

uniformly on each compact subset of C� "#.

Proof. These results follow immediately form Corollary 2 and Theorem 2.
K

Remark 5. In Widom's paper [34] and more recently in [10] there are
very general results regarding strong asymptotics for polynomials orthogonal
with respect to measures, supported on curves, which satisfy Szego� 's condition.
We point out that the method we exposed in the present paper may be
used also to obtain such asymptotics when the curve is an arc of the unit
circle. You will find in [16] the results needed relative to strong asymptotics
of polynomials orthogonal with respect to varying measures on the unit
circle.
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