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Let [hn (z)] be the sequence of polynomials, satisfying

|
+�

0

hm (x) hn (x) x&*n d\(x)=$mn , 0�m�n,

where *n # [0, 2n], n # N. For a wide class of weights d\(x) and under the assump-
tion limn � � *n�(2n)=% # [0, 1], two descriptions of the zero asymptotics of
[hn (z)] are obtained. Furthermore, their analogues for polynomials orthogonal on
[&1, 1] with respect to varying weights are considered. These results continue the
study begun in [3]. � 1996 Academic Press, Inc.

1. Introduction: Statement of Results

Orthogonal polynomials with respect to ``varying weights'' (weights
depending on the degree of the polynomial) have been studied intensively
in the last ten years in connection with rational approximation of analytic
functions. Namely, given a Stieltjes function, that is, the Cauchy transform
of a measure (or distribution) \ on the real line with bounded or unbounded
support S(\)

\̂(z)=|
d\(t)
t&z

, (1)

and starting from its asymptotic expansion at the endpoints of the convex
hull of S(\), we can construct the so-called two-point Pade� approximants:
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rational functions whose denominators in this case will be orthogonal with
respect to \ modified by a factor that depends on the degree of the polyno-
mial. Hence, convergence and pole distribution are clearly connected with
the behaviour of these orthogonal polynomials.

In [3] a class of distributions supported on the positive semiaxis was
studied. Namely, let \ be a positive Borel measure on R+=[0,+�).
Consider a sequence of integers [*n], n�0, and set

41=sup
n

*n , 42=sup
n

(2n&*n).

Assume that

|
+�

0
x& d\(x)<+�, &41�&�42 , & # Z. (2)

This condition guarantees that all forthcoming integrals exist. If (2) holds,
we say that the pair (\, [*n]) is admissible.

By hn (z)=}n zn+ } } } , }n>0, we denote the n th orthonormal polyno-
mial with respect to the measure x&*n d\(x), x>0; hence,

|
+�

0
hn (x) hm (x) x&*n d\(x)=$n, m , 0�m�n. (3)

Then for the Stieltjes function (1), once n # N and 0�*n�2n are fixed,
there exists a polynomial Pn , deg Pn�n&1, satisfying

(hn \̂&Pn)(z)=O(z&n+*n&1), z � &�,

(hn \̂&Pn)(z)=O(z*n), z � 0&,

and the rational function Rn :=Pn �hn is the two-point Pade� approximant (of
type [n�n]), interpolating \̂ at 0 and �. Furthermore, using standard
arguments the Hermite formula for the remainder can be worked out:

\̂(z)&Rn (z)=
1

2?i
z*n

h2
n (z) |

+�

0

h2
n (x)

x&z
d\(x)

x*n
, z � R+.

Hence, the rate of convergence of Pade� approximants in C�R+ heavily
depends upon the asymptotic behavior of the sequence

Hn (z)=hn (z) z&*n�2 (4)
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as n � �. When *n{0, the expression appearing in (4) is commonly called
a Laurent polynomial. We study the case when the interpolation conditions
are proportionally distributed at 0 and �,

lim
n

*n

2n
=% # [0, 1], (5)

in this way continuing the research initiated in [3] (see also [4]).
For #>0, s>0, we introduce the class Fs (#) of functions {, continuous

on (0,+�), such that

lim
x � 0+

(sx)# {(x)= lim
x � +�

(sx)&# {(x)=1. (6)

We will limit ourselves to measures of the form

d\(x)=x: exp(&{(x)) dx, x>0, (7)

where { # Fs (#), with : # R, s>0 and #>1�2 fixed. These kind of measures
form admissible pairs (\, [*n]) for any sequence of reals [*n] even when
#>0, but for our purposes we require the determinacy of the moment
problem, and then the condition #>1�2 is sufficient.

For d\ given in (7), we denote by hn, m ({; z) the orthonormal polynomial
of degree m with respect to the measure x&*n d\(x), x # R+:

hn, m ({; z)=}n, m ({) zm+ } } } , }n, m ({)>0.

We omit the explicit reference to { when it cannot lead to confusion, using
notation introduced in (3).

In [3] the following result regarding the asymptotics of such polyno-
mials was obtained:

Theorem A. Let \ and [*n] be as stated above. Then, for the orthonor-
mal polynomials hn, n ({; z)

lim
n

log |hn, n ({; z) z&*n�2|
(2n)1&1�(2#)

=D(#)[(1&%)1&1�(2#) Im[(sz)1�2]+%1&1�(2#) Im[(sz)&1�2]], z # C"R+ ,

(8)

where

D(#)=
2#

2#&1 _
1(#+1�2)
?1�21(#) &

1�(2#)

,
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1(z) is Euler's gamma function and we take the branch of the root so that
(&1)1�2=i. In (8) convergence holds uniformly on each compact subset
of C"R+.

Here we describe the (weak) zero asymptotics of [hn, n ({; z)] in two dif-
ferent ways. To each polynomial P(z)=A(z&z1) } } } (z&zn) we associate a
discrete measure

&(P)= :
n

i=1

$zi ,

where $zi denotes the unit measure whose support is the point zi . An
important contribution in this field is due to E. A. Rakhmanov [6] (see
also [1] for a general approach). For *n#0 and for Freud-type weights
d\(x)=g(x) dx, x>0, satisfying

lim
x � +�

x&# log g(x)=&r, r>0, #>1�2,

he proved the existence of the ``contracted'' zero asymptotics (for simplicity,
we take r=1): if Qn (x) satisfies

deg Qn=n, |
+�

0
x&Qn (x) g(x) dx=0, &=0, ..., n&1,

cn=\2?1�2 1(#)
1(#+1�2)

n+
1�#

(9)

and Qn*(x)=Qn (cn x), then

1
n

&(Qn*) � U, (10)

where U is the so-called unit Nevai�Ullmann distribution on [0, 1]

dU(x)=
#
? |

1

x

t#&1 dt

- x(t&x)
dx, x # [0, 1]. (11)

In (10) (and in the sequel) the symbol � referring to measures denotes
weak-* convergence.

In the case we are dealing with, the situation is rather different. It is not
difficult to prove (see (43) below) that

1
n

&(hn, n) � %$0 .
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Roughly speaking, this means that approximately %n zeros of hn, n

``concentrate'' at z=0, while (1&%)n ``escape'' to infinity. Hence, any con-
traction (or dilation) on the real axis gives rise to mass points at z=0 or
z=�.

In order to circumvent this undesirable effect, we analyze the rescaled
asymptotics of the ``large'' and ``small'' zeros of hn, n separately. If

hn, n ({; z)=}n, n ({) `
n

i=1

(z&zi, n), 0<z1, n< } } } <zn, n<� (12)

define

An (z)= `
zi, n�1

(z&zi, n), Bn (z)= `
zi, n<1

\z&
1

zi, n+ . (13)

Theorem 1. Under the assumptions of Theorem A the following zero
distributions take place:

(i) if 0<%<1, and

An*(z)=An (cn (1&%)# z�s), Bn*(z)=Bn (cn %#z�s), (14)

then
&(An*) � (1&%)U, &(Bn*) � %U. (15)

(ii) if %=0, for Pn*(z)=hn, n (cn z�s),

&(Pn*) � U. (16)

Analogously, if %=1 and Qn*(z)=znhn, n (1�(cn zs)), then

&(Qn*) � U. (17)

Here U is the Nevai�Ullmann distribution on [0, 1] and [cn] is defined
in (9).

As was shown in [9], another appropriate description of the zero
behavior is given by the weighted asymptotics. Now we associate with
hn, n ({, z) the discrete measure

:n= :
n

i=1

zi, n

1+z2
i, n

$zi, n . (18)

In this way, we ``diminish'' the weight of the smaller and larger zeros,
avoiding the mass point effect they produce at the end points. In fact, the
following result holds:
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Theorem 2. Under the assumptions of Theorem A,

1
(2n)1&1�(2#) :n � ;, n � �,

where ; is an absolutely continuous measure on R+ given by

d;(x)=
D(#)

2?(1+x2)
((1&%)1&1�(2#) (sx)1�2+%1&1�(2#)(sx)&1�2) dx, x>0.

As a consequence, for every bounded and continuous function f on [0,+�)

lim
n � �

1
(2n)1&1�(2#) :

n

i=1

zi, n f (zi, n)
1+z2

i, n

=|
+�

0
f (x) d;(x).

Now we consider briefly the case of measures with bounded support (the
so-called Markov case). Suppose + is a finite positive Borel measure on
2=[&1, 1] of the form

d+(x)=C(1&x): (1+x); exp(&{(x))

with :, ; # R and { continuous on (&1, 1) and such that

lim
x � &1+

s#(1+x)# {(x)= lim
x � 1&

s&#(1&x)# {(x)=2#,

where #>1�2, s>0. Then, for 0�*n�2n, we define the polynomials ln (x),
deg ln=n, such that

|
2

ln(x) lm (x)
d+(x)

(1&x)2n&*n (1+x)*n
=$mn , 0�m�n, n # N. (19)

Again, for

+̂(z)=|
2

d+(t)
t&z

and n # N we can construct pn , deg pn�n&1, satisfying

(ln +̂&pn)(z)=O((1&z)2n&*n), z � 1+,

(ln +̂&pn)(z)=O((1+z)*n), z � &1&,

then rn=pn�ln is the two-point Pade� approximant of type [n�n] inter-
polating +̂ at &1 and +1. The Hermite formula for the remainder
(+̂&rn)(z) permits to deduce the rate of convergence of rn to +̂ in
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C"[&1, 1], knowing the asymptotic properties of [ln (z)]. In particular,
under assumption (5) a formula of type (8) can be obtained.

Although both results stated in Theorems 1 and 2 may be translated into
the Markov case by an appropriate change of variable, for the sake of
brevity we restrict ourselves to the weighted zero distribution of polyno-
mials ln .

Define \ on [0,+�) such that

d+(x)=
1
2

(1&x) d\ \1+x
1&x+ , x # (&1, 1).

Then \ satisfies (6)�(7) and

hn (x)=Kn \x+1
2 +

n

ln \x&1
x+1+

satisfy (3). The constants Kn can be explicitly computed, but play no role
in the zero distribution. Hence, with Theorem 2 at hand, we arrive at

Theorem 3. Let ln (x)=kn >n
i=1 (x&xi, n) satisfy (19) and

:n*= :
n

i=1

1&x2
i, n

1+x2
i, n

$xi, n .

Then, if (5) holds,

1
(2n)1&1�(2#) :n* � ;*, n � �,

where ;* is an absolutely continuous measure on [&1, 1] given by its
density

d;*(x)=
D(#)

4?(1+x2) {(1&%)1&1�(2#) \s
1+x
1&x+

1�2

+%1&1�(2#) \s
1+x
1&x+

&1�2

= dx, x # (&1, 1).

As a consequence, for every bounded and continuous function f on [&1, 1]

lim
n � �

1
(2n)1&1�(2#) :

n

i=1

1&x2
i, n

1+x2
i, n

f (xi, n)=|
1

&1
f (x) d;*(x).

The structure of the paper is as follows. For completeness we state in
Section 2 the results that we need appearing in [3] and [4]. In Section 3,
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we obtain a bound for the greatest zero zn, n of hn, n ({, z), which is used in
the proof of Theorem 1 in Section 4. Theorem 2 is proved in Section 5.

Finally, we should point out that the mentioned ``mass point effect''
appears only when % # (0, 1). Asymptotic formulas for % # R"[0, 1] were
worked out in [4]; in this case, the Laurent polynomials Hn , defined in
(4), exhibit a contracted n th root asymptotics, from which the corre-
sponding contracted zero asymptotics is easily obtained.

2. Background

Here we overview some facts, proved in [3] and [4], which we will use
below. We also keep the notation introduced in Section 1. Note first of all,
that if {(x) # Fs (#) and g(x)={(x�s), then

hn, n ({; x)=s(:+1&*n)�2hn, n (g; sx), }n, n ({)=s(2n+:+1&*n)�2}n, n (g),

so that s{1 is trivially reduced to s=1. Hence, in what follows we take
s=1. The parameter : plays no role in the proof, except that (\, [*n]) be
admissible, so for simplicity we assume that :=0. For n # N, Pn denotes the
class of all polynomials of degree �n. Given a positive Borel measure _ on
R+ the notation S(_) stands for its support and V_ for its logarithmic
potential:

V_ (x)= &| log |z&t| d_(t).

Moreover, in the sequel we say that any property holds quasi-everywhere
(briefly, q.e.) in 0/C if it is satisfied for all z # 0"e, where e is a Borel
subset of zero logarithmic capacity.

For n # N let Mn be the class of all positive Borel measures _ on R+ that
satisfy &_&=� d_=n.

As it was already shown in [3], a key role in the proof of Theorem 1 is
played by a sequence of equilibrium measures +n ({) in the presence of
the external fields {(x)+*n log x. These measures can be defined by the
relations

+n ({) # Mn ,

2V+n (x)+{(x)+*n log x=|n ({), x # S(+n ({)),

�|n ({), x # R+.

In particular, for .(x)=x#+x&# # F1 (#) and A>0, we write

+n, A=+n (A.), |n, A=|n (A.),
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which are respectively the equilibrium measure and the equilibrium con-
stant of the problem

2V+n, A (x)+.n, A (x)=|n, A , x # S(+n, A ({)),

�|n, A , x # R+, (20)

where .n, A (x)=A.(x)+*n log x. In [3] it was proved that S(+n, A)=
[rn, A , Rn, A] with 0<rn, A<Rn, A<+� satisfying the equations

1
? |

Rn, A

rn, A

.$n (x) dx

- (Rn, A&x)(x&rn, A)
=0,

1
? |

Rn, A

rn, A

x.$n (x) dx

- (Rn, A&x)(x&rn, A)
=2n.

The following asymptotic formulas were also obtained:

Rn, A=_2n(1&%)
A#B(#) &

1�#

+o(n1�#), r&1
n, A=_ 2n%

A#B(#)&
1�#

+o(n1�#), (21)

with

B(#) :=?&1 |
1

0
x#[x(1&x)]&1�2 dx=?&1�21(#+1�2)�1(#+1).

Furthermore, the equilibrium constant satisfies

|n, A=(2n&*n) log
4e1�#

Rn, A
+o(n). (22)

Along with the equilibrium problem (20), an essential role is played by
the asymptotics of the Christoffel functions

Kn ({; z)= sup
P # Pn

|P(z)| 2 {|
+�

0
|P(x)| 2 exp(&{(x))

x*n
dx=

&1

, z # C.

It is known (see, e.g., [5]) that

Kn ({; z)= :
n

m=0

|hn, m ({; z)| 2.

For any subinterval 2 of the real line, g2 (z, �) denotes the Green func-
tion of C� "2 with pole at �, and 82 (z) is a conformal mapping of C� "2
onto the exterior of the unit disk, such that g2 (z, �)=log |82 (z)| .
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Finally, dist(z, K) stands for the distance from z to the set K. The following
relations were proved in [3] (see also [4]):

Lemma 1. (i) For 2n, A=[rn, A , Rn, A] and z # C"2n, A ,

? dist(z, 2n, A) Kn (A.; z) |82n, A (z)|&1�exp[|n, A&2V+n, A (z)]. (23)

(ii) There exists a constant C>0 such that for z # C"2n, A , n # N,

Kn (A.; z)�Cn&5 \1+
Rn, A&rn, A

dist(z, 2n, A)+
&2

exp[|n, A&2V+n, A(z)]. (24)

(iii) Furthermore,

fn (z) Kn ({; z)�|h2
n, n ({, z)|�Kn ({; z), z # C"R+ , (25)

with

fn (z)={1+n6(Im z)&2,
1+n6 |z| &1,

z # C"R,
z<0.

3. Bounds for the Zeros

We maintain the notation 0<z1, n< } } } <zn, n<� for the zeros of
hn, n ({, z) introduced in (12).

Lemma 2. There exists k>1 independent from n, such that

zn, n�kRn, 1 , z1, n�rn, 1 �k.

Proof. From the Gauss quadrature formula, applied to

pn&1(z)=
hn, n ({, z)
z&zn, n

,

it follows that

zn, n=
�+�

0 xp2
n&1(x) x&*n d\(x)

�+�
0 p2

n&1(x) x&*n d\(x)

�sn+|
+�

sn

xp2
n&1(x) \|

+�

0
p2

n&1(t) t&*n d\(t)+
&1

x&*n d\(x)

�sn+|
+�

sn

xKn ({; x) x&*n d\(x), (26)

for any sn�0.
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Fix =>0. Then there exist constants A1 and A2 such that

(1&=) .(x)+A1�{(x)�(1+=) .(x)+A2 , x # (0,+�), (27)

and consequently,

exp(A1) Kn ((1&=).; z)�Kn ({; z)�exp(A2) Kn ((1+=).; z), z # C.

(28)

For the sake of brevity, in what follows we omit in the notation the
explicit reference to the constant A>0 whenever A=1, and substitute the
subindex A by the corresponding superindex ``+'' or ``&'', depending on
whether A=1+= or A=1&=. For example,

rn=rn, 1 , r+
n =rn, 1+= , r&

n =rn, 1&= .

Let sn=kR+
n , with k>1. Then from (27), (28) and Lemma 1(i), it

follows that

In=|
+�

sn

xKn ({; x)
exp(&{(x))

x*n
dx

�
C1

(k&1) R+
n

|
+�

sn

x |82n
+(x)|

_exp[|+
n &2V+n

+(x)&(1&=) .(x)] x&*n dx

�
C2 exp(|+

n )
(k&1)(R+

n )2 |
+�

sn

x2n&*n+4 exp[&(1&=) x#]
dx
x2 .

Here and in the sequel, we denote by C1 , C2 , ... positive constants that do
not depend on n. Note that the function

gn (x)=x2n&*n+4 exp[&(1&=) x#]

is decreasing for x>((2n&*n+4)�((1&=)#))1�#. Taking into account (21),
it follows that there exists a k0>1 such that for k>k0 , kR+

n >
((2n&*n+4)�((1&=)#))1�#, so that by (22)

In�kR+
n

C2 k2

k&1
exp _(2n&*n) \log 4ke1�#&

1&=
1+=

k#

#B(#)++o(n)& . (29)

In order to establish the first inequality in Lemma 2, it remains to use (21)
and (26). The second inequality is directly obtained making the substitu-
tion x [ 1�x.
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4. Contracted Zero Asymptotics

This section is devoted to the proof of Theorem 1. For the sequence
[+n, A] of equilibrium measures (20) define the ``contracted'' measures

d+*n, A (x)=d+n, A (Rn, A x), x>0, S(+*+, A)=[rn, A �Rn, A , 1]=2*n, A .

Then,

1
n

V+*n, A
(x)+A

R#
n, A

2n
x#+

A
R#

n, A 2n
x&#+

*n

2n
log x

=
1

2n
[|n, A+(2n&*n) log Rn, A], x # 2*n, A ,

�
1

2n
[|n, A+(2n&*n) log Rn, A], x>0. (30)

Since the supports of the unit measures (1�n)+*n, A are uniformly bounded,
they form a weakly compact sequence. Hence, we can fix a 4�N such that

1
n

+*n, A � +*A , n # 4, (31)

where +*A is a unit measure, supported on a subset of [0, 1]. From (5),
(21) and (22) by the lower envelope principle for potentials (see [2,
Theorem 3.8], [7]), it follows that

V+*A
(x)+

1&%
#B(#)

x#+% log x=(1&%) log[4e1�#], q.e. on (0, 1]

�(1&%) log[4e1�#], q.e. on (1,+�). (32)

Suppose that 0�%<1. Then

`A=
1

1&%
(+*A &%$0)

is a charge (signed measure) with S(`A)�[0, 1], satisfying

V`A (x)+
1

#B(#)
x#=log[4e1�#], q.e. on [0, 1]

�log[4e1�#], x>1. (33)

335ZEROS OF LAURENT POLYNOMIALS



File: 640J 294813 . By:CV . Date:18:06:96 . Time:15:51 LOP8M. V8.0. Page 01:01
Codes: 2475 Signs: 1014 . Length: 45 pic 0 pts, 190 mm

Note that the Nevai�Ullmann distribution on [0, 1] also satisfies the rela-
tion (33) (see [6], [8] or [9]). To establish that `A=U, we use the
following strong uniqueness result:

Lemma 3 [2, Chap. IV]. Suppose we have two signed measures &1 and
&2 , such that for the set I of irregular points of S(&1) _ S(&2),

&1 | I#&2 | I#0,

(where & | I denotes the restriction of & to I ).
Then if

V&1
=V&2

q.e. on S(&1) _ S(&2),

it follows that &1=&2 .

Now, for &1=`A and &2=U we have S(&1) _ S(&2)=[0, 1], so that
I=<. Hence,

`A=U, (34)

and since 4�N in (31) was arbitrary,

1
n

+*n, A � (1&%)U+%$0 , n � �. (35)

From (32) and the unicity of the solution of the corresponding equi-
librium problem it follows that (35) holds for %=1 also.

Fix =>0. Lemma 1 along with (28) yields the inequality

CeA1

n5 fn (z) \1+
R&

n &r&
n

dist(z, 2&
n )+

&2

exp[|&
n &2V+n

&(z)]

�|h2
n, n ({, z)|

�
eA2 |82n

+(z)|

? dist(z, 2+
n )

exp[|+
n &2V+n

+(z)], z # C"R+,

that is,

log(? dist(z, 2+
n ))&A2&g2n

+(z)+2V+n
+(z)&|+

n

�2V&(hn, n)(z)&log }2
n, n ({)

�&log _C
n5 fn (z) \1+

R&
n &r&

n

dist(z, 2&
n )+

&2

&&A1+2V+n
&(z)&|&

n ,

z # C"R+ . (36)
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Then, for the sequence

&n*= :
n

i=1

$zi, n�Rn

with an appropriate scaling in (36), we obtain

log(?R+
n dist(z, 2*n, 1+=))&A2&g2*n, 1+=

(z, �)+2V+*n, 1+=
(z)&|+

n

+
n
#

log(1+=)+log }2
n, n ({)

�2V&*n
(z)

�&log _C
n5 fn (R&

n z) \1+
1&r&

n �R&
n

dist(z, 2*n, 1&=)+
&2

&&A1+2V+n
&(z)&|&

n

+
n
#

log(1&=)+log }2
n, n ({). (37)

Moreover, if in (36) z=ix, x>0 with x � +�, we have

log[(R+
n &r+

n )�4]&A2&|+
n � &log }2

n, n ({)� &log Cn&5&A1&|&
n .

(38)

On the other hand, from Lemma 2 it follows that the supports of [&n*]
are uniformly bounded. Hence, we can fix an arbitrary subsequence (that
we denote by 4 again), 4�N, such that

1
n

&n* � &*, n # 4.

Now, dividing (37) by n and taking into account (29), (35), and (38), we
obtain for n � �, n # 4,

2V(1&%)U+%$0
(z)+

1&%
#

log \1&=
1+=++

1
#

log(1+=)

�2V&*(z)

�2V(1&%)U+%$0
(z)+

1&%
#

log \1+=
1&=++

1
#

log(1&=), z # C"R+.

Since =>0 is arbitrary, we finally arrive at

V&*(z)=V(1&%)U+%$0
(z), z # C"R+.
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The interior of R+ is empty, so this proves that

&*=(1&%)U+%$0 . (39)

On the other hand, the limit

1
n

&(hn, n) � %$0 (40)

will be established below (see (43)). From this, for the polynomials An (z)
and Bn (z), defined in (13), we have

deg An (z)=(1&%)n+o(n), deg Bn (z)=%n+o(n).

Thus for Pn (z)=hn, n (z)�An (z),

1
n

&(Pn) � %$0 ,

and then

1
n

&(Pn*) � %$0 , (41)

where Pn*(z)=Pn (Rn z).
Taking into account (39)�(41),

1
n

&(An*) � (1&%)U

readily follows. The second limit in (15) is established in a similar way.
Moreover, (ii) of Theorem 1 is a particular case when %=0 or %=1.
Theorem 1 is proved.

5. Weighted Zero Asymptotics

The proof of Theorem 2 is based on the formula (8), obtained in [3],
and follows the scheme, proposed by Van Assche in [9]. We may take
again s=1.

Here we use the notation

&n=&(hn, n).
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Moreover, Vn (z) stands for a multivalued and analytic function in C"S(&n)
whose real part coincides with V&n

(z):

Re Vn (z)=V&n
(z),

d
dz

Vn (z)=|
d&n (t)
t&z

, z # C"S(&n).

Due to the uniform convergence in (8), we can take derivatives on both
sides of this formula to obtain

lim
n

1
(2n)1&1�(2#) \| d&n (t)

t&z
+

*n

2z+
=D(#) { i

2
(1&%)1&1�(2#) z&1�2+

i
2

%1&1�(2#)z&3�2= , z # C"R+. (42)

Then

lim
n

1
n \|

d&n (t)
t&z

+
*n

2z+=0,

so that

1
n |

d&n (t)
t&z

� % |
d$0(t)
t&z

uniformly on any compact subset of z # C"R+ . Since [&n�n] are unit
measures, they form a weakly compact sequence on R� + . The Stieltjes�
Perron inversion formula, applied to any of its limit points, shows that
necessarily

1
n

&(hn, n) � %$0 , n � � (43)

((43) is also a direct consequence of the Grommer and Hamburger con-
tinuity theorem, see for example [9]).

On the other hand, taking in (42) z=i and z= &i respectively, we
obtain

lim
n

1
(2n)1&1�(2#) \| d&n (t)

t&i
+

*n

2i+
=

D(#)
21�2(1+i)

[i(1&%)1&1�(2#)+%1&1�(2#)] (44)
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and

lim
n

1
(2n)1&1�(2#) \| d&n (t)

t+i
&

*n

2i+
=

D(#)
21�2(i&1)

[i(1&%)1&1�(2#)&%1&1�(2#)]. (45)

Adding (44) and (45), it follows that

lim
n

1
(2n)1&1�(2#) |

t d&n (t)
1+t2 =

D(#)
23�2 [(1&%)1&1�(2#)+%1&1�(2#)]. (46)

In the same way, subtracting (45) from (44) we get

lim
n

1
(2n)1&1�(2#) \| d&n (t)

1+t2 &
*n

2 +=
D(#)
23�2 [(1&%)1&1�(2#)&%1&1�(2#)]. (47)

Finally, using the identity

t
(1+t2)(t&z)

=
1

1+z2 { z
t&z

&
zt

1+t2+
1

1+t2=
and formulas (44)�(47), it gives

lim
n

1
(2n)1&1�(2#) |

t
1+t2

d&n (t)
t&z

=
D(#)

2 {(1&%)1&1�(2#) iz1�2&2&1�2z+2&1�2

1+z2

+%1&1�(2#) iz&1�2&2&1�2z&2&1�2

1+z2 = . (48)

Integrating along an appropriate path in the complex domain, the
following identities for z # C"R+ are easily obtained:

iz1�2&2&1�2z+2&1�2

1+z2 =
1
? |

+�

0

t1�2

1+t2

dt
t&z

,

iz&1�2&2&1�2z�2&1�2

1+z2 =
1
? |

+�

0

t&1�2

1+t2

dt
t&z

.
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Then,

lim
n

1
(2n)1&1�(2#) |

t
1+t2

d&n (t)
t&z

=
D(#)
2? |

+�

0
[(1&%)1&1�(2#) t1�2+%1&1�(2#)t&1�2]

_
dt

(1+t2)(t&z)
, z # C"R+.

Since (46) shows that the sequence of measures

1
(2n)1&1�(2#) :n

with :n defined in (18), is uniformly bounded, a scheme of reasoning
analogous to the one used to establish (43) yields the asymptotics

1
(2n)1&1�(2#) :n �

D(#)
2?(1+x2)

[(1&%)1&1�(2#) x1�2+%1&1�(2#)x&1�2] dx,

for x>0. This concludes the proof of Theorem 2.
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