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Abstract. For each n > 1 and each multiplicative closed set of integers S, we study closed model

category structures on the pointed category of topological spaces, where the classes of weak

equivalences are classes of maps inducing isomorphism on homotopy groups with coefficients in

determined torsion abelian groups, in degrees higher than or equal to n. We take coefficients either

on all the cyclic groups Z=s with s 2 S, or in the abelian group C½S�1� ¼ Z½S�1�=Z where Z½S�1� is
the group of fractions of the form z

s
with s 2 S. In the first case, for n > 1 the localized category

HoðTnS � Top*Þ is equivalent to the ordinary homotopy category of (nj1)-connected CW-

complexes whose homotopy groups are S-torsion. In the second case, for n > 1 we obtain that the

localized category HoðTDn
S � Top*Þ is equivalent to the ordinary homotopy category of (n j 1)-

connected CW-complexes whose homotopy groups are S-torsion and the nth homotopy group is

divisible. These equivalences of categories are given by colocalizations X T nS �!X , X T Dn S �!X

obtained by cofibrant approximations on the model structures. These colocalization maps have nice

universal properties. For instance, the map X T Dn S �!X is final (in the homotopy category) among

all the maps of the form Y �! X with Y an (nj1)-connected CW-complex whose homotopy

groups are S-torsion and its nth homotopy group is divisible. The spaces X T nS , X T Dn S are

constructed using the cones of Moore spaces of the form M(T, k), where T is a coefficient group of

the corresponding structure of models, and homotopy colimits indexed by a suitable ordinal. If S is

generated by a set P of primes and Sp is generated by a prime p 2 P one has that for n > 1 the

category HoðTnS � Top*Þ is equivalent to the product category
Q

p2P HoðTnSp�Top*Þ. If the

multiplicative system S is generated by a finite set of primes, then localized category HoðTDn
S�

Top*Þ is equivalent to the homotopy category of n-connected Ext-S-complete CW-complexes and a

similar result is obtained for HoðTnS�Top*Þ.

Mathematics Subject Classifications (2001): 55U35, 55U40, 55N25, 55Q70.

Key words: Quillen model category, closed model categories, torsion homotopy groups, homotopy

groups with coefficients, colocalization.

1. Introduction

In this paper we use model structures [17] on the category Top* of pointed

topological spaces, to study the ordinary homotopy category of simply connected

torsion spaces. For the model structures analysed in this paper, the localized
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category is equivalent to the standard homotopy category of cofibrant spaces. In

our study we give some algebraic characterization of these classes of cofibrant

spaces, we also analyse some equivalences of homotopy categories and develop

some methods to compute homology and homotopy groups.

In this work, for each n > 1 and for a closed multiplicative set of integers S,

we introduce a new closed model structure that is denoted by TDn
S�Top*. The

class of weak equivalences of the new structure TDn
S�Top* is the class of maps

X �! Y inducing isomorphism of homotopy groups at degrees � n with

coefficients in the abelian group C½S�1� ¼ Z½S�1�=Z, where we use the C to

recall that C½S�1� is a subgroup of the circle group of complex numbers of

module 1.

We show that for n > 1 the category HoðTDn
S � Top*Þ is equivalent to the

standard homotopy category of (nj 1)-connected CW-complexes whose homo-

topy groups are S-torsion and the nth homotopy group is S-divisible. The

equivalence of categories is given by the CW-approximation X T Dn S , which is the

cofibrant approximation of X in the closed model structure.

The space X(S,n) (in this paper denoted by X T nS) was constructed in [3] using

as building blocks the cones of Moore spaces, which are finite complexes of the

form MðZ=s; mÞ with s 2 S, and inductive colimits indexed by the ordinal of

positive integers. Nevertheless, to construct the space X T Dn S , we use cones of

Moore spaces of the form MðC½S�1�;mÞ and colimits indexed by a higher limit

ordinal. The reason of this fact is that an infinite number of cells is needed to

construct the Moore space MðC½S�1�;mÞ. The relation between these construc-

tions is given in Section 7 by a fibration

KðTSð�nX Þ=DSTSð�nX Þ; n� 1Þ�!X T Dn S�!X T nS

where DSA denotes the maximal S-divisible subgroup of an abelian group A and

TSA denotes the S-torsion subgroup of A.

The following paragraphs of this introduction contain a selection of the main

results of this paper.

In Section 4, we give up to weak equivalence the following algebraic

characterization of TDn
S-cofibrant spaces.

THEOREM 4.1. Let X be a pointed space, then the following statements are
equivalent

(1) X is weakly equivalent to an TDn
S-cofibrant space,

(2) X is a (nj1)-connected space, for every S-uniquely divisible abelian group
B the reduced singular cohomology groups ~HH

qðX ; BÞ are trivial and for
any abelian group C with no S-divisible (nontrivial) subgroups the singular
cohomology group Hn(X; C) is trivial,

(3) X is an (nj1)-connected space, for every s 2 S the singular homology
groups HnðX ; Z=sÞ are trivial and for q � n, HqðX ;Z½S�1�Þ ffi 0.
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(4) X is a (nj1)-connected space, Hn X is an S-torsion divisible group and for
q > n, Hq X is an S-torsion group.

(5) X is a (nj1)-connected space, �nX is an S-torsion divisible group and for q
> n, �qX is an S-torsion group.

In Section 5, we describe how the colocalized spaces can also be constructed

by using homotopy fibres of QuillenYSullivan localization maps FX �! X �!
X[Sj1], n-connective coverings Yn of a space Y and homotopy fibres of maps

which represent some distinguished cohomological classes. We see that X T nS is

weakly equivalent to (F(Xn))n and the following result is proved:

THEOREM 5.3. Consider the homomorphism of abelian groups

a : �nðX TnSÞ�!Torð�n X ;C½S�1�Þ

ffi TSð�n X Þ�!TSð�n X Þ=DSðTSð�n X ÞÞ;

the corresponding cohomological element

A: ðFðX nÞÞn�!KðTSð�nX Þ=DSTSð�n X Þ; nÞ

and denote by ð�FFðX nÞÞn the homotopy fibre of A. Then X T Dn S is weakly
equivalent to ð�FFðX nÞÞn. Moreover, for k � n + 1 the following sequence is exact

0�!�kþ1X � C½S�1��!�kðX TDn SÞ�!Tor ð�k X ; C½S�1�Þ�!0;

and for k = n, we have the exact sequence

0�!�nþ1X � C½S�1��!�nðX TDn SÞ�!DSTSð�n X Þ�!0:

In 1972, Bousfield and Kan [1] introduced techniques of homology

localization. For instance, for the ring Z=p with p a prime and for a 1-connected

space X they constructed a localization map X �!ðZ=pÞ1 X that induces iso-

morphism on the homology functors Hqð�;Z=pÞ. The space ðZ=pÞ1 X is also

1-connected and its homotopy groups are Ext-p-complete abelian groups.

In this preprint, an n-connected space X is said to be Ext-S-complete, if its

homotopy groups are Ext-S-complete and an abelian group � is Ext-S-complete if

ExtðC½S�1�; �Þ ffi �. The case of Ext-p-complete is obtained when S is generated

by a prime p.

For a multiplicative system S generated by a finite number of primes p1, : : : ,

pr and the ring R ¼ Z=p1 � � � � � Z=pr, in Section 9, for n > 1, the following

equivalence of categories is given:

THEOREM 9.1. The left derived functor

RL
1: HoðTDn

S�Top*Þ �! HoðExt<S<complete n<connected spacesÞ
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is left adjoint to

ð:ÞTDn S: HoðExt<S<complete n<connected spacesÞ �! HoðTDn
S � Top*Þ:

Moreover, the pair of functors above gives an equivalence categories.

2. Preliminaries

2.1. CLOSED MODEL CATEGORIES

A closed model category C is a category endowed with three distinguished

classes of maps called cofibrations, fibrations and weak equivalences satisfying

certain axioms. We refer the reader to [4, 5, 11, 12, 17, 18] for any properties,

notation and results concerning closed model categories.

In this paper, the following closed model category (CMC) structure will be

considered:

The closed model category QYTop of topological spaces with the following

classes: Given a map f : X �! Y in Top, f is said to be a fibration if it is a fibre

map in the sense of Serre; f is a weak equivalence if f induces isomorphism �q( f )

for q � 0 and for any choice of base point and f is a cofibration if it has the LLP

with respect to all trivial fibrations. For the study of this structure and its

properties we refer the reader to Quillen [17]. We also recall that QYTop* has

also an induced closed model category structure: A pointed map f : (X,*) �!
(Y,*) is said to be a fibration (resp., weak equivalence, cofibration) if in the non-

pointed setting the map f : X �! Y is a fibration (resp., weak equivalence,

cofibration.) We recall that both categories of spaces and pointed spaces have

compatible simplicial structures, see [8, 17]. For instance for pointed spaces, if K
is a finite simplicial object and X is a pointed space then X � K is defined to be

X � K ¼ X � jKjþ=ðX � * [ *� jKjþÞ

where jKj+ is the disjoint union of jKj and the one point space *.

In particular we have the standard pointed cylinder

X � I ¼ X ��½1�:

Let Ho(QYTop*) denote the corresponding localized category obtained by

formal inversion of of weak equivalences defined above.

In this subsection we recall a CMC structure on the category of pointed spaces

that will be used to prove the main theorems of this paper. A particular case of

this CMC structure was given in [6], and the general construction can be seen in

[9], where the reader is referred for proofs, notations and results. Nevertheless,

we include some significant facts and properties of this CMC structure that are

used in the following sections.
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In the category of pointed topological spaces and continuous maps, Top*, let

F ¼ M�j� 2 �f g be a family of spaces which are suspensions of CW-complexes

(M� ¼ �N� where N� is a CW-complex).

We consider the following classes of maps:

DEFINITION 2.1. Let f : X �! Y be a map in Top*,

(1) f is an F -weak equivalence if the induced map

½�kM�; f �: ½�kM�;X � �! ½�kM�;Y �

is an isomorphism for each k � 0 and � 2 �, where [j, j] denotes the

standard set of pointed homotopy classes.

(2) f is an F -fibration if it has the RLP in the category of pointed spaces with

respect to the family T ðFÞ of inclusions

ðC�kN� � 0Þ [ ð�kN� � IÞ �! C�kN� � I

for every k � 0 and � 2 �.
A map which is both an F -fibration and an F -weak equivalence is said to

be an F -trivial fibration.

(3) f is an F -cofibration if it has the LLP with respect to any trivial F -fibration.

A map which is both an F -cofibration and an F -weak equivalence is said to

be an F -trivial cofibration.

A pointed space X is said to be F -fibrant if the map X �! * is an F -

fibration, and X is said to be F -cofibrant if the map * �! X is an F -

cofibration.

REMARK 2.1. Let C be the path-component of the given base point of X. Note

that the inclusion C �! X is always an F -weak equivalence. It as also clear that

all objects in Top* are F -fibrant.

In order to see the difference with the CMC structures given in [11] we have

included the following characterization of the family of F -fibrations. Notice that

the family of F -fibrations of our CMC structure is larger than the class of Serre

fibrations.

We refer the reader to [9] to see a proof of the following characterizations:

THEOREM 2.1. Suppose that F has at least a non-trivial CW-complex, and for
a map f : X �! Y in Top*, denote by f0 : X0 �! Y0 the induced map on the path-
components of the given base points. Then f is an F -fibration if and only if f0 is a
Serre fibration.
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PROPOSITION 2.1. For a map f : X �! Y in Top*, the following statements
are equivalent:

(1) f is a F -trivial fibration,
(2) f has the RLP with respect to the family C ðFÞ of inclusions

*�!M� ; � 2 � ;
�kM��!C�kM� ; k � 0 ; � 2 �:

Using the characterization of F -trivial fibrations by the RLP with respect to a

family of maps, one can prove following result, see [9].

THEOREM 2.2. The category Top* together with the classes of F -fibrations, F -

cofibrations and F -weak equivalences, has the structure of a closed model
category.

REMARK 2.2. P.S. Hirschhorn a [11] and E. Dror-Farjoun [7] have been

working with cellularization functors associated to a set A of objects in a closed

model category. P.S. Hirschhorn proves that there is a closed model structure on

Top* taking as fibrations the usual Serre fibrations of Top*, as weak

equivalences they consider A-cellular equivalences and the A-cellular cofibra-

tions are defined by the LLP with respect to all the maps which are both

fibrations and A-cellular equivalences. Taking as set of objects A ¼ f
W
�2� M�g

if we consider the closed model structure given by P.S. Hirschhorn, we have that

the class of F -weak equivalences is exactly the class of A-cellular equivalences.

To see this fact it is necessary to take into account that
W
�2� M� is a suspension

space that induces nice properties in the corresponding function space. However,

one has that in Top* the class of F -fibrations is larger than the class of

fibrations. For example, since 0 �! I is not a Serre fibration (in Top) we have

that in Top* the map * + 0 �! * + I is an F -fibration which is not a Serre

fibration. Therefore the CMC structure given in this work is different to the CMC

structure given in [11]. However, it is interesting to note that a space is F -

cofibrant if and only if it is connected and cofibrant in the closed model category

given by Hirschhorn.

We denote by FYTop* the closed model category Top* with the distin-

guished families of F -fibrations, F -cofibrations and F -weak equivalences and

by HoðFYTop*Þ the category of fractions obtained from FYTop* by formal

inversion of the family of F -weak equivalences.

One of the basic tool of this paper will be the factorization technique given by

the following generalization of the argument of the small object, see [7, 11, 13].

Let f : X �! Y be a map in Top*, then f can be factored in two ways:

(1) f = pi, where i is a F -cofibration and p is an F -trivial fibration,

(2) f = qj, where j is an F -weak equivalence having the LLP with respect to all

F -fibrations and q is a F -fibration.
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For instance, in order to obtain the first factorization, we choose a limit

ordinal � whose cardinality is greater than the cardinal of the set of cells of M�

for every � 2 �.

First we can consider all maps of the form v : M��!Y , � 2 � to construct

the space X 0 ¼ X
W
ð
W

v M�ðvÞÞ and the map p0: X0 �! Y defined by the sum of

f and all the maps v. This map p0: X0 �! Y has the RLP with respect to the

maps * �! M�. Nowweconstruct the following�-sequence, for any ordinal � e �

X 0�!X 1�!X 2�! � � � �!X ��! � � �

and compatible maps p� : X ��!Y . For � = 0, we have the map p0 : X0 �! Y.

Given an ordinal �, suppose that we have p� : X��!X for any � < �. Now we

consider two cases:

First case: � is the successor ordinal of �, then we take all commutative

diagrams D of the form

�kM�
uD

�! X�

# #p�

C�kM�
�!
vD Y

where k � 0 and � 2 �. Define j�: X��!X �, by the pushout

W
D �kM� �! X�

# #j�

W
D C�kM� �! X �

and define p�: X ��!Y by the sum of p� and all the vD.

Second case: � is a limit ordinal. In this case we take

X � ¼ colim�<�X�

p� ¼ colim�<�p�

By transfinite induction we obtain an F -cofibration i : X�!X � and a F -trivial

fibration p : X ��!Y .

The other factorization f = qj is similarly obtained. In this case, we also have

that j has the LLP with respect to all F -fibrations.

As consequence of the presence of the closed model structure one has the

following version of the Whitehead Theorem:

THEOREM 2.3. Let f : X �! Y be a map in Top* and suppose that X and Y
are F -cofibrant, then f is a pointed homotopy equivalence if and only

½�kM�; f �: ½�kM�;X ��!½�kM�; Y �

is an isomorphism for each k � 0 and � 2 �.
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We note that the factorizations above are functorial. This will be interesting

when we consider left-derived and right-derived functors. This also implies that

we have functorial cylinders and cocylinders. Note that if X = *, using the

construction above we obtain an F -cofibrant space YF and an F -trivial fibration

p : YF�!Y . This construction induces a well defined functor ð�ÞF : Top*�!
Top*, and a natural transformation YF�!Y .

DEFINITION 2.2. The F -cofibrant space obtained through the factorization of

* �! Y as the composite of an F -cofibration and an F -trivial fibration, will be

called the F -colocalization of Y. The F -trivial fibration YF �!Y will be called

the F -colocalization map of Y.

Since on a closed model category the hom-set from a cofibrant object to a

fibrant object can be realized as a set of homotopy classes, we have

THEOREM 2.4. Let X be a F -cofibrant space and let YF �!Y be the F -

colocalization map of a space Y, then

HoðQ� Top*ÞðX ;YFÞ�!HoðQ� Top*ÞðX ;Y Þ

is an isomorphism. In particular, if Y isF -weakly equivalent to a point, then

HoðQ� Top*ÞðX ;Y Þ ffi *:

Therefore the F -colocalizacion map YF �!Y is finally universal in the

homotopy category among the maps X �! Y from an F -cofibrant space X to Y.

One also has that the map YF �!Y is initially universal in the homotopy cat-

egory among the maps X �! Y which are F -weak equivalences.

2.2. SOME BASIC NOTIONS AND PROPERTIES OF ABELIAN GROUPS

We recall some basic notions that are quite useful for the category of abelian

groups and that will be used in this paper.

DEFINITION 2.3. An abelian group A is said to be left orthogonal to B and B is

said to be right orthogonal to A if Hom (A, B) ffi 0 and Ext (A, B) ffi 0. Given

classes A and B, if for every A of A and every B of B, A is left orthogonal to B,

the class A is said to be left orthogonal to B and B is said to be right orthogonal

to A. If Ext (A, B) ffi 0 we use the terms left Ext-orthogonal and right Ext-

orthogonal. If Hom (A, B) is trivial, we use the term Hom-orthogonal. This last

terminology is also used for non-abelian groups.

DEFINITION 2.4. An abelian group A is said to be � Tor-orthogonal if A � B
ffi 0 and Tor(A, B) ffi 0. Given classes A and B, if for every A of A and every B
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of B, A is � Tor-orthogonal to B, the class A is said to be � Tor-orthogonal

to B. If Tor (A, B) ffi 0 we use the term Tor-orthogonal and if A � B is trivial,

we use the term �-orthogonal.

Given a closed multiplicative system S and an abelian group A, for each s 2 S
one can consider the induced map ~ss: A�!A defined by ~ssa ¼ sa.

DEFINITION 2.5. An abelian group A is said to be S-uniquely divisible if

for every s 2 S the map ~ss : A�!A is a bijection. A is said to be S-free-torsion if

for every s 2 S the map ~ss : A�!A is an injection. A is said to be S-divisible if for

every s 2 S the map ~ss : A�!A is a surjection. If S is generated by a prime p some

times we write p-uniquely divisible, p-free-torsion or p-divisible.

An abelian group which is right orthogonal to Z=s satisfies that the map

~ss : A�!A is an isomorphism. Therefore one has:

(1) an abelian group is right orthogonal to the family fZ=sjs 2 Sg if and only if

A is S-uniquely divisible,

(2) an abelian group A is right Hom-orthogonal to fZ=sjs 2 Sg if and only if A
is S-torsion-free,

(3) an abelian group A is right Ext-orthogonal to the family fZ=sjs 2 Sg if and

only if A is S-divisible.

If S is a multiplicative closed system of integers, recall that Z½S�1� is the of

the fractions of the form
z
s with z an integer and s 2 S and the quotient abelian

group Z½S�1�=Z is denoted by C½S�1�. The following exact sequence will be

frequently used

0�!HomðC½S�1�;BÞ�!HomðZ½S�1�;BÞ�!

B�!ExtðC½S�1�;BÞ�!ExtðZ½S�1�;BÞ�!0

Given an abelian group B, there exists a maximal S-divisible subgroup DSB
which contains every S-divisible subgroup of B. We have the following

properties:

(4) B is right orthogonal to C½S�1� if and only if B is S-uniquely divisible,

(5) B is right Hom-orthogonal to C½S�1� if and only if the maximal S-divisible

subgroup DS(B) of B is S-uniquely divisible,

(6) B is right Ext-orthogonal to C½S�1� if and only of B is S-divisible.

If G is a group and we assume that all the integers of S are positive, we can

consider the progroup fKer~ssj s 2 Sg whose bounding maps are of the

form Kers1 �! Kers0, x �! tx if s1 = s0 t. Note G is right Hom-orthogonal to
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C½S�1� if and only the pointed set lim Ker~ss is trivial, where ~ss: G�!G is the

map g �! gs.

DEFINITION 2.6. An abelian group B is said to be Ext-S-complete if the

boundry morphism of the exact sequence above induces an isomor-

phism B ffi ExtðC½S�1�;BÞ. If Hom ðZ½S�1�;BÞ ffi 0, B is said to be S-reduced

and if ExtðZ½S�1�;BÞ ffi 0, B is said to be S-cotorsion. Note that B is S-reduced

if and only if B has no (non trivial) S-divisible subgroups.

(7) B is right orthogonal to Z½S�1� if and only if B is Ext-S-complete,

(8) B is right Hom-orthogonal to Z½S�1� if and only if B is S-reduced, or

equivalently if DS(B) ffi 0,

(9) B is right Ext-orthogonal to Z½S�1� if and only of B is S-cotorsion.

An abelian group which is �Tor-orthogonal to Z=s satisfies that the map

~ss: A�!A is an isomorphism. Therefore we have:

(10) an abelian group is �Tor-orthogonal to the family fZ=sjs 2 Sg if and only

if A is S-uniquely divisible.

(11) an abelian group A is �-orthogonal to the family fZ=sjs 2 Sg if and only if

A is S-divisible,

(12) an abelian group A is Tor-orthogonal to the family fZ=sjs 2 Sg if and only

if A is S-torsion-free.

DEFINITION 2.7. An abelian group A is said to be S-torsion for every a 2 A
there exist s 2 S such that sa = 0. If S is generated by a prime p we write

p-torsion. For an abelian group A, we denote by TS(A) the maximal S-torsion

subgroup of A. An abelian group is said to be S-adjusted if A / TS(A) is S-uniquely

divisible.

If we consider the exact sequence

0�!TorðA;C½S�1�Þ�!A�!A� Z½S�1��!A� C½S�1��!0

one has that TSðAÞ ffi TorðA;C½S�1�Þ. Using this notation one has:

(13) an abelian group is �Tor-orthogonal to C½S�1� if and only if A is S-

uniquely divisible.

(14) an abelian group A is �-orthogonal to C½S�1� if and only if A is S-adjusted

or equivalently if A /TS(A) is S-uniquely divisible. If S is generated by a set

P of primes, A is �-orthogonal to C½S�1� if and only for each p 2 P for all

a 2 A and for all i � 0 there is xi 2 A such that ajpixi is a p-torsion

element.
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(15) an abelian group A is Tor-orthogonal to C½S�1� if and only if A is

S-torsion-free.

(16) an abelian group is �Tor-orthogonal to Z½S�1� if and only if A is S-torsion,

(17) an abelian group A is �-orthogonal to Z½S�1� if and only if A is S-torsion,

(18) every abelian group A is Tor-orthogonal to Z½S�1�.

3. Some Closed Model Categories Associated to a Set S of Integers

In order to introduce model structures associated with a set of integers S and an

integer n > 0, we recall briefly the definition of homotopy groups with

coefficients. For a more complete description and properties we refer the reader

to Hilton [10]. For k � 1 and an abelian group A, we have the canonical space

M(A; k) which is usually called the Moore space with coefficient group A and

degree k. For a pointed space X, consider the set of pointed homotopy classes

�k(A; X) = [M(A, k), X]. This hom-set admits the structure of a group for k � 2

which abelian for k � 3. It is said that �k(A; X) is the k-th homotopy group of X
with coefficients in A. We also refer the reader to Neisendorfer [15] for some

properties of homotopy groups with coefficients.

We shall frequently use the following exact sequence for k � 1:

0�!ExtðA; �kþ1X Þ�!�kðA; X Þ�!HomðA; �kX Þ�!0:

In the category of pointed topological spaces and continuous maps, Top*, for

a set S of non-zero integers and n > 0, in [3] we have considered the family Sn of

Moore spaces, which in this paper is denoted by T nS

Sn ¼ fMðZ=s; nÞjs 2 Sg ¼ T nS

and we have studied the associated closed model structure.

If S is multiplicative closed, we consider the ring Z½S�1� of the fractions of the

form z
s with z an integer and s 2 S. The quotient abelian group Z½S�1�=Z will be

denoted by C½S�1�.
In [9], we have considered the closed model structure induced by the family

DnS ¼ fMðZ½S�1�; nÞg:

In the present paper is devoted to study the closed model structure induced on

pointed spaces by the family

TDn
S ¼ fMðC½S�1�; nÞg

which only has one Moore space.

For the family TnS, a map f : X �! Y in Top* is a TnS-weak equivalence if

the induced map

�lðZ=s; f Þ: �lðZ=s; X Þ�!�lðZ=s; Y Þ
is an isomorphism for each l � n and s 2 S.
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For the family DnS, a map f : X �! Y in Top* is a DnS-weak equivalence if

the induced map

�lðZ½S�1�; f Þ:�lðZ½S�1�; X Þ�!�lðZ½S�1�; Y Þ

is an isomorphism for each l � n.

With respect to the family TDn
S, f is a TDn

S-weak equivalence if the induced

map

�lðC½S�1�; f Þ : �lðC½S�1�; X Þ�!�lðC½S�1�; Y Þ

is an isomorphism for each l � n.

We note that the homotopy groups with coefficients only depend on the path

component C of the given base point of X. Therefore the inclusion C �! X is

always a weak equivalence for the model structures associated with the families

TnS;DnS and TDn
S. It as also clear that all objects in Top* are fibrant in the

corresponding structures.

We denote by TDn
SYTop* the closed model category Top* with the

distinguished classes of fibrations, TDn
S-cofibrations and TDn

S-weak equivalen-

ces and by HoðTDn
SYTop*Þ the category of fractions obtained from TDn

SYTop*

by formal inversion of the family of TDn
S-weak equivalences. Similar notation

will be used for DnS or for TnS.

In these closed model categories it is very interesting to determine the classes

of cofibrant spaces. If S is multiplicative closed and n > 1 one has, see [3], that a

space X is weakly equivalent to a TnS-cofibrant space if and only if X is (nj1)-

connected and for k � n the homotopy groups of X are S-torsion abelian groups.

In [9], we have shown that for n > 1, a space X is weakly equivalent to a DnS-

cofibrant space if and only if X is (nj1)-connected and for k � n the homotopy

groups of X are S-uniquely divisible abelian groups.

In this paper, we shall give a characterization of TDn
S-cofibrant spaces for

n > 1. However, it remains to study this kind of F -structures and the

corresponding characterizations of Fcofibrant spaces_ for n = 1.

For n > 1, we note that a space Y is TnS-weakly equivalent to a point if �nY is

right Hom-orthogonal to S-torsion abelian groups (S-torsion-free) and for k > n,

�kY is right orthogonal to S-torsion abelian groups (S-uniquely divisible). As a

consequence of Theorem 2.4 one has that if X is an TnS-cofibrant space with n >

1 and B is an abelian group which is right orthogonal to Z=s for every s 2 S, then

the reduced cohomology of X with coefficients in B is trivial. Moreover, if B is S-

torsion-free, then Hn(X; B) is trivial.

With respect the DnS-structure, if n > 1, a space Y is DnS-weakly equivalent

to a point if �nY is S-reduced and for k > n, �kY is S-complete. As a consequence

of Theorem 2.4 one has that if X is an DnS-cofibrant space with n > 1 and B is an

S-complete abelian group, then the reduced cohomology of X with coefficients in

B is trivial. Moreover, if B is S-reduced, then Hn(X; B) is trivial.
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For n > 1, one has that a space Y is TDn
S-weakly equivalent to a point if the

maximal S-divisible subgroup of �nY is S-uniquely divisible and and for k > n,

�kY is S-uniquely divisible. Given an TDn
S-cofibrant space X, if B is an abelian

group whose maximal S-divisible subgroup is S-uniquely divisible, then Hn(X; B)

is trivial and if B is a S-uniquely divisible group, then for k � n, Hk(X; B) is

trivial.

REMARK 3.1. In order to give the factorizations of axiom CM5, we have

chosen a determined limit ordinal. Since the standard Moore space MðZ=s; nÞ
has a finite number of cells, then for the case of the TnS-structure we can choose

the countable limit ordinal @0. Since the standard Moore space MðC½S�1�; nÞ has

a countable number of cells, then for the TDn
S-structure we have to choose the

continuum limit ordinal @1.

4. TTTDDDn
S-cofibrant Spaces for n > 1

In this section, we suppose that n > 1. We also consider a multiplicative

system S generated by a set P of positive primes.

We note that a TDn
S-cofibrant space is (nj1)-connected. We also observe

that nth singular homology group of a TDn
S-cofibrant space is an S-torsion

divisible abelian group and for q>n we shall prove that the qth singular

homology group is an S-torsion abelian group.

This properties of the homology groups will imply that the homotopy groups

of a TDn
S-cofibrant space satisfy similar properties in dimension n and > n,

respectively. In this section, we show that these properties give up to weak

equivalence a characterization of the class of TDn
S-cofibrant spaces.

LEMMA 4.1. If X is a TDn
S-cofibrant space, then X is an (nj1)-connected

space.
Proof. For any ordinal � e @1, consider the @1-sequence given in Section 2:

X 0�!X 1�!X 2�! � � � �!X ��! � � �

where X 0 ¼
W

f MðC½S�1�; nÞf for all maps f : MðC½S�1�; nÞ �! X . For X � we

have two cases:

If � is the successor ordinal of �, then X � has the homotopy type of the

homotopy cofibre of a map of the form
W

D MðC½S�1�; mDÞ�!X�, mD � n.

If � is a limit ordinal. We have that

X � ¼ colim�<�X�

By transfinite induction we obtain a TDn
S-cofibrant space X@1 and a TDn

S-

trivial fibration p: X@1 �! X .

It is clear that X0 is an (nj1)-connected space. For the first case, using the

excision theorem for homotopy groups, it follows that if X� is (nj 1)-connected,

HOMOTOPY CATEGORIES FOR SIMPLY CONNECTED TORSION SPACES 433



then X � is also (nj1)-connected. For the second case, one has that the homotopy

groups commute with homotopy colimits. Then by transfinite induction we have

that X@1 is an (nj1)-connected space. Since X is a cofibrant space we have that

the TDn
S-trivial fibration p : X@1 �!X is a weak equivalence, hence X is also an

(nj1)-connected space. Ì

The following result gives up to weak equivalence some algebraic character-

izations of TDn
S-cofibrant spaces.

THEOREM 4.1. Let X be a pointed space, then the following statements are
equivalent

(1) X is weakly equivalent to a TDn
S-cofibrant space,

(2) X is an (nj1)-connected space, for every S-uniquely divisible abelian
group B the reduced singular cohomology groups ~HH

qðX ; BÞare trivial and
for any abelian group C with no S-divisible (nontrivial) subgroups the
singular cohomology group Hn(X; C) is trivial,

(3) X is an (nj1)-connected space, for every s 2 S the singular homology
groups HnðX ;Z=sÞ are trivial and for q � n HqðX ;Z½S�1�Þ ffi 0.

(4) X is an (nj1)-connected space, HnX is an S-torsion divisible group and for
q > n, HqX is an S-torsion group.

(5) X is an (nj1)-connected space, �nX is an S-torsion divisible group and for
q > n, �qX is an S-torsion group.

Proof.

(1) ) (2). Lemma 4.1 and the cohomological results given at the end of

Section 3 (before Remark 3.1.)

(2) ) (3). Note that if s 2 S then any Z=s-module M is right Hom-orthogonal

to C½S�1�. Therefore the reduced nth cohomology group of X with

coefficients in a Z=s-module M vanishes if s 2 S. By the universal

coefficient theorem for Z=s-module chain complexes we have that

HomðHnðX ;Z=sÞ;MÞ ffi 0. In particular one has that

HomðHnðX ;Z=sÞ;HnðX ;Z=sÞÞ ffi 0:

This implies that HnðX ;Z=sÞ ffi 0. We can repeat the argument for

Z½S�1�-modules to obtain that for q � n HqðX ;Z½S�1�Þ ffi 0.

(3) () (4). This is obvious from the universal coefficient theorem and the

properties (11) and (16) of Section 2.

(4) () (5). It follows from Serre mod C theory, see [19]. A 1-connected space

has uniquely S-divisible homology groups if and only if it has

uniquely S-divisible homotopy groups.
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(5) ) (1). Assume that X satisfies (5). Take the TDn
S-trivial fibration

p: X TDn S�!X with fibre F. If we consider the exact sequence

of homotopy groups of the fibration p:

� � � �!�lþ1X TDn S�!�lþ1X �!�lF�!�lX
TDn S�!�lX �! � � �

we obtain that �l F is an S-torsion for l � nj 1, �nj1F is a

divisible group, and F is an (nj2)-connected space.

On the other hand, because p is a fibration we also have the exact sequence

� � � �!�kðC½S�1�; X TDn SÞ�!�kðC½S�1�; X Þ�!�k�1ðC½S�1�; FÞ

�!�k�1ðC½S�1�; X TDn SÞ�!�k�1ðC½S�1�; X Þ�! � � �

Since p is an T Dn
S-trivial fibration and

�n�1ðC½S�1�; X T Dn SÞ ffi ExtðC½S�1�;�nX T Dn SÞ ffi 0

because �nX T Dn S is divisible, it follows that �kðC½S�1�; FÞ ffi 0 for k > nj1.

Because �nj1F is an S-divisible group, one has that its maximal S-divisible

subgroup is �nj1F. Because �nj1F is right Hom-orthogonal to C½S�1�, this

maximal subgroup �nj1F is S-uniquely divisible. However we also have that

�nj1F is an S-torsion group. Then one has that �nj1F ffi 0. For q � n, one also

has that �qF is an S-torsion S-uniquely divisible group, hence �qF ffi 0.

Therefore the map p : X TDn S�!X is a weak equivalence. Ì

Now we study the homotopy groups with coefficients in C½S�1� of the T Dn
S-

colocalization of a space X and in particular the homotopy groups with

coefficients of a T Dn
S-cofibrant space.

PROPOSITION 4.1. Let X TDn S be the TDn
S-colocalization of a pointed space X.

Then for q � n the following sequence is exact

0�!ExtðC½S�1�; �qþ1X Þ�!�qðC½S�1�; X Dn SÞ�!HomðC½S�1�; �qX Þ�!0

In particular, if the maximal S-divisible subgroup of �q X is S-uniquely divisible,
one has

�qðC½S�1�; X TDn SÞ ffi ExtðC½S�1�; �qþ1X Þ

with the additional condition that �q + 1X is an S-cotorsion group, then

�qðC½S�1�; X T Dn SÞ ffi �qþ1X=DSð�qþ1X Þ
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where DS(�q+1X) is the maximal S-divisible subgroup of �q+1X and if �q+1X is
an S-cotorsion S-reduced group

�qðC½S�1�; X TDn SÞ ffi �qþ1X :

On the other hand, if �q+1X is S-cotorsion and S-divisible then

�qðC½S�1�; X TDn SÞ ffi HomðC½S�1�; �qX Þ:

COROLLARY 4.1. Suppose that B is an abelian group and K(B,q) the
EilenbergYMac Lane space at dimension q. Then for m > n, KðB;mÞTDn S has
two possible non-trivial homotopy groups with coefficients in C½S�1�

�m�1ðC½S�1�; KðB;mÞTDn SÞ ffi ExtðC½S�1�;BÞ;

�mðC½S�1�; KðB;mÞT Dn SÞ ffi HomðC½S�1�;BÞ:

If the maximal S-divisible subgroup of B is S-uniquely divisible, then the space
KðB;mÞTDn Shas only one non-trivial homotopy group with coefficients in C½S�1�

�m�1ðC½S�1�; KðB;mÞTDn SÞ ffi ExtðC½S�1�;BÞ:

If B is S-cotorsion S-divisible, then KðB;mÞTDn Shas only one non-trivial ho-
motopy group with coefficients in C½S�1�

�mðC½S�1�; KðB;mÞTDn SÞ ffi HomðC½S�1�;BÞ:

REMARK 4.1. If we take into account Theorem 5.3 of the following section, we

can also compute the homotopy group �n�1ðX T Dn S ;C½S�1�Þ. In particular, one

has that

�n�1ðC½S�1�; KðB; nÞT Dn SÞ ffi ExtðC½S�1�;DSTSBÞ:

5. TTTnS-colocalizations, TTTDDDn
S-colocalizations and S-cocompletions

Trough all this section we assume that n > 1 and that S is a closed multi-

plicative system.

We consider the SullivanYQuillen localization for 1-connected spaces, then

for a 1-connected space X we have the localization l : X �! X[Sj1]. The

homotopy fibre FX of the localization map is called the S-cocomplection of X. In

this section, we compare the S-cocomplection FX with the TnS-colocalization

X TnS and the TDn
S-colocalization X TDn S . We denote by Yn the n-connective

covering of Y.
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THEOREM 5.1. Let X be a 1-connected space. Then we have:

(1) If �qX is S-uniquely divisible for q e nj1 and �nX is S-adjusted, then FX is
weakly equivalent to X TnS .

(2) If �qX is S-uniquely divisible for q e nj1, and �nX is S-divisible, then FX
is weakly equivalent to X TDn S .

Proof. For k � 0 we have the following exact sequence

� � � �!�kþ1X �!�kþ1X ½S�1��!�kFX �!�kX �!�kX ½S�1�;

Then one has for k � 1 the following exact sequence

0�!�kþ1X � C½S�1��!�kFX �!Torð�kX ;C½S�1�Þ�!0: Ì

In case (1), because X is 1-connected, �qX is S-uniquely divisible for q e n j 1

and �nX is S-adjusted, by (13), (14) of Section 2 it follows that FX is (nj1)

-connected. In case (2), one obtains that FX is (nj 1)-connected and �nFX ffi
�nþ1X � C½S�1� is a divisible abelian group. In both cases we have that for q �
n, �q FX, is an S-torsion abelian group.

As a consequence of Theorem 2.4, for a (nj1)-connected space FX with S-

torsion homotopy groups, we have the bijection

p*: HoðQ�Top*ÞðFX ;X TnSÞ�!HoðQ�Top*ÞðFX ;X Þ

where p : X TnS�!X is the colocalization map.

With the additional condition that �nFX is divisible we also have the bijection

HoðQ�Top*ÞðFX ;X T Dn SÞ ffi HoðQ�Top*ÞðFX ;X Þ

Therefore, for the maps i : FX �! X, there exists a map i0: FX �! X TnS , such that

i0p = i in Ho(QjTop*).

On the other hand, because X[Sj1] is S-uniquely divisible space, it follows

that X[Sj1] is TnS-weakly equivalent to a point. Then

HoðQ�Top*ÞðX TnS; X ½S�1�Þ ffi HoðTnS�Top*ÞðX TnS; X ½S�1�Þ ffi 0:

By the same reason,

HoðQ�Top*ÞðX TnS;� X ½S�1�Þ ffi 0:

Because FX �! X �! X[Sj1] is a fibration sequence, it follows that

i
*

: HoðQ�Top*ÞðX TnS;FX Þ�!HoðQ�Top*ÞðX TnS ;X Þ

is a bijection. Therefore there exists a map p0: X T nS �! FX such that ip0 = p.
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Finally it is easy to check that p0i0 = id, i0p0 = id. Therefore X TnS is weakly

equivalent to FX. Similarly, under condition (2) we also have that X TDn S is

weakly equivalent to FX.
The following result proves that for any space X, the colocalizations can be

expressed in terms of cocompletions, connective coverings and amplification

constructions induced by certain cohomological elements.

We note that for n > 1, given any space X the n-connective covering Xn �! X
induces a weak equivalence ðX nÞTnS�!X TnS where Xn is a 1-connected space.

THEOREM 5.2. The space X TnS is weakly equivalent to (FXn)n. Moreover, for
k � n the following sequence is exact

0�!�kþ1X � C½S�1��!�kðX TnSÞ�!Torð�kX ;C½S�1�Þ�!0:

Proof. It similar to the proof above. Ì

THEOREM 5.3. Consider the homomorphism of abelian groups

a :�nðX TnSÞ�!Torð�nX ;C½S�1�Þ ¼ TSð�n X Þ�!TSð�nX Þ=DSðTSð�nX ÞÞ;

the corresponding cohomological element

A : ðFðX nÞÞn�!KðTSð�nX Þ=DSTSð�nX Þ; nÞ

and denote byð�FFðX nÞÞn the homotopy fibre of A. Then X TDn S is weakly equivalent
toð�FFðX nÞÞn. Moreover, for k � n + 1 the following sequence is exact

0�!�kþ1X � C½S�1��!�kðX TDn SÞ�!Torð�kX ;C½S�1�Þ�!0;

and for k = n, we have the exact sequence

0�!�nþ1X � C½S�1��!�nðX TDn SÞ�!DSTSð�nX Þ�!0:

COROLLARY 5.1. Suppose that B is an abelian group and K(B,q) the
EilenbergYMac Lane space at dimension q >1. Then KðB; nÞTnSis an Eilen-
bergYMac Lane space such that �nðKðB; nÞTnSÞ ffi Torð�nX ;C½S�1�Þ. For m > n,

KðB;mÞTnS has two possible non-trivial homotopy groups

�m�1ðKðB;mÞTnSÞ ffi B� C½S�1�;

�mðKðB;mÞTnSÞ ffi TorðB;C½S�1�Þ:

COROLLARY 5.2. Suppose that B is an abelian group and K(B,q) the
EilenbergYMac Lane space at dimension q > 1. Then KðB; nÞTDn Sis an
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Eilenberg-Mac Lane space such that �nðKðB; nÞTDn SÞ ffi DSTSðBÞ. For m > n,

KðB;mÞTDn S has two possible non-trivial homotopy groups

�m�1ðKðB;mÞTDn SÞ ffi B� C½S�1�;

�mðKðB;mÞTDn SÞ ffi TorðB;C½S�1�Þ:

6. Homology of TTTnS-colocalizations and TTTDDDn
S-colocalizations

In all this section we suppose that n > 1 and S will be a closed multiplicative

system. We shall consider the Serre spectral sequence of a fibre map in order to

study some properties of the homology of TnS-colocalizations and TDn
S-

colocalizations.

PROPOSITION 6.1. Let X TnS , X TDn Sbe the corresponding colocalizations of a
space X, then

(1) For every integer q we have

~HHqðX TnS;ZÞ ffi ~HHqþ1ðX TnS;C½S�1�Þ

~HHqðX TDn S;ZÞ ffi ~HHqþ1ðX TDn S;C½S�1�Þ

(2) For every s 2 S one has

HnðX TnS;Z=sÞ ffi TSð�nX Þ � Z=s;

and for any S-torsion abelian group T:

~HHqðX TDn S ; TÞ ffi 0 for q � n:

Proof. (1) follows from the exact sequence of homology groups induced by

the short exact sequence of coefficients 0�!Z�!Z½S�1��!C½S�1��!0.

For (2), we can apply the Hurewicz Theorem and Theorem 5.2. For the

second isomorphism, recall that by Theorem 4.1 we have that for any s 2 S,

HnðX TDn S;Z=sÞ ffi 0. For a given S-torsion group T we have a short exact

sequence 0 �! A �! B �! T �! 0 where B is a sum of groups of the form Z=s.

By [14], a subgroup of a sum of cyclic groups is also a sum of cyclic groups, then

one has A is a sum of cyclic groups and because B is S-torsion A is also a sum of

groups of the form Z=s. From the exact sequence induced by the short exact

sequence of coefficients above we also have that for any S-torsion group T,

HnðX TnS; TÞ ffi 0. Ì
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PROPOSITION 6.2. Suppose that X is a 1-connected space. Then we have:

(1) If �kX is S-uniquely divisible for k e n j 1 and �n X is S-adjusted,

then HqðX TnS; TÞ ffi HqðX ; TÞ for any S-torsion abelian group T and for
q > 0 the following sequence is exact

0�!Hqþ1X � C½S�1��!HqðX TnSÞ�!TorðHqX ;C½S�1�Þ�!0:

In particular, if HqX is S-torsion-free, then HqðX TnSÞ ffi Hqþ1X � C½S�1�,
and if Hq +1 X is S-adjusted, then HqðX TnSÞ ffi TorðHqX ;C½S�1�Þ.

(2) If �kX is S-uniquely divisible for k e n j 1 and �nX is S-divisible,
then HqðX TDn S ; TÞ ffi HqðX ; TÞ for any S-torsion abelian group T and for
q > 0 he following sequence is exact

0�!Hqþ1X � C½S�1��!HqðX TDn SÞ�!TorðHq X ;C½S�1�Þ�!0:

Therefore, if HqX is S-torsion-free, then HqðX TDn SÞ ffi Hqþ1X � C½S�1�, and
if Hq+1X is S-adjusted, then HqðX TDn SÞ ffi TorðHqX ;C½S�1�Þ.

Proof. For each space X we have the fibre sequence � (X[Sj1]) �! FX �!
X. Since X is 1-connected, the homotopy groups and the reduced homology

groups of � (X[Sj1]) are S-uniquely divisible, then for any S-torsion abelian

group T, using the spectral sequence of a fibre map

E2
pq ¼ HpðX ; Hqð�ðX ½S�1�Þ; TÞÞ

we have that HkðFX ; TÞ ffi HkðX ; H0ð� X ½S�1�; TÞÞ ffi HkðX ; TÞ for all k. Under

the conditions of (1), one has that FX ffi X TnS and under conditions of (2)

FX ffi X TDn S . If we take T ¼ C½S�1� by Proposition 6.1 and the formula of

universal coefficients we obtain the short exact sequences of (1) and (2). Ì

PROPOSITION 6.3. Let f : X �! Y be a map between 1-connected spaces, then
we have:

(1) Suppose that �kX, �kY for k e nj1 are S-uniquely divisible and �nX, �nY
are S-adjusted. If Hqð f ;Z=sÞ is an isomorphism for every q � n and s 2 S,
then f is a TnS-weak equivalence.

(2) Suppose that �kX, �kY are S-uniquely divisible for k e nj1, and �nX, �nY
are S-divisible. If Hqðf ;C½S�1�Þ is an isomorphism for every q � n + 1, then
f is a TDn

S-weak equivalence.

Proof. Consider the commutative diagram:

X TnS pX

�! X

f TnS# f #
Y TnS pY

�! Y
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By Proposition 6.2, pX and pY induce isomorphism on the homology groups

with coefficients in any S-torsion group. Because f also induce isomorphism Hq

ðf ;Z=sÞ for every q � n and s 2 S, it follows that f TnS induces isomorphism

Hqð f TnS;Z=sÞ for every q � n and s 2 S. Therefore f TnS induces isomorphism

Hqð f TnS;C½S�1�Þ for every q � n + 1. By Proposition 6.1, we have that f TnS

induces isomorphism on homology with coefficients in Z. Since X TnS , ZTnS are 1-

connected space we have that f TnS is a homotopy equivalence. Taking into

account that pX, pY and f TnS are TnS-weak equivalences, one has that f is also a

TnS-weak equivalence. For the case (2) the proof is similar. Ì

COROLLARY 6.1. Suppose that B is an abelian group and M(B, q) the Moore
space at degree q > 1. Then for m > n, MðB;mÞTnShas two possible non-trivial
reduced homology groups

Hm�1ðMðB;mÞTnSÞ ffi B� C½S�1�;

HmðMðB;mÞTnSÞ ffi TorðB;C½S�1�Þ:

7. The Categories HoðTTTnS�Top*Þ and HoðTTTDDDn
S�Top*Þ

In this section, we compare the closed model categories induced by the

families TnS, TDn
S and the standard closed model category of pointed spaces.

Notice that there is no problem if we assume that S is generated by a set of

primes. As usual we suppose that in this section n > 1.

It is interesting to note the existence of short exact sequences

0�!A�!B�!C½S�1��!0

0�!Z=s�!C½S�1��!C½S�1��!0

where s 2 S and A, B are direct sums of subgroups of the form Z=s with s 2 S.

From the exact sequences of the homotopy groups with coefficients in the

abelian groups in sequences above, it follows that the weak equivalences of the

corresponding closed model categories satisfy the following relations:

TDn
S<w:e: 	 Tnþ1S<w:e: 	 TDn

S<w:e: 	 TnS<w:e: 	 w:e:;

and for the classes of cofibrations (and cofibrant spaces) one has:

TDnþ1
S<cof : 
 Tnþ1S<cof : 
 TDn

S<cof : 
 TnS<c: 
 cof ::
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Now using the functors ð�ÞTnS; ð�ÞTDn S: Top* �! Top* given in Definition

2.2, we have:

THEOREM 7.1.

(1) There exist the following pairs of adjoint functors

HoðTnS�Top*Þ !
ðÞTnS

Id

HoðQ�Top*Þ

HoðTDn
S � Top*Þ !

ðÞTDn S

Id

HoðQ�Top*Þ

HoðTDn
S�Top*Þ !

ðÞTDn S

Id

HoðTnS�Top*Þ

HoðTnþ1S�Top*Þ !
ðÞTnþ1S

Id

HoðTDn
S�Top*Þ

HoðTnþ1S�Top*Þ !
ðÞTnþ1S

Id

HoðTnS�Top*Þ

HoðTDnþ1
S�Top*Þ !

ðÞTDnþ1
S

Id

HoðTDn
S�Top*Þ

where the upper arrows are always left adjoint functors.

(2) The following restrictions

HoðTnS�Top*Þ !
ðÞTnS

Id

HoðQ�Top*ÞjTnS�cof

HoðTDn
S�Top*Þ !

ðÞTDn S

Id

HoðQ�Top*ÞjTDn S�cof

are equivalence of categories, where

HoðQ�Top*ÞjTnS�cof ; HoðQ�Top*ÞjTDn S�cof

are the full subcategories determined by the corresponding cofibrant spaces.
Proof. It suffices to check that the units and the counits of the adjunctions are

isomorphism. Ì

REMARK 7.1.

(1) The family of functors ð ÞTnS : HoðTnS�Top*Þ�!HoðQ�Top*Þ gives for

each space X a tower of fibrations:

� � � �! X T 1S
� �T 2S
� �T 3S

�! X T 1S
� �T 2S�!X T 1S�!X
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We note that ðX T1SÞT2S
is isomorphic to X T2S in Ho(QYTop*). Therefore

the tower of fibrations above will be written as � � � �!X T3S�! X T2S�!
X T1S�!X . We have that for q � 3 the fibre of X Tqþ1S�!X TqS has only

possible non-trivial homotopy groups with coefficients in Z=s in degrees q,

qj 1 and qj 2, for all s 2 S.

(2) For family of functors ð ÞTDn S
we have a similar tower of fibrations:

� � � �!ððX TD1
SÞTD2

SÞTD3
S�!ðX TD1

SÞTD2
S�!X TD1

S�!X

that as above will be denoted by � � � �!X TD3
S�!X TD2

S�!X TD1
S�!X .

The fibres have a similar property for homotopy groups with coefficients in

C½S�1�.
(3) We can combine both kind of functor to obtain a tower of fibrations of the

form

� � � �!X TD3
S�!X T3S�!X TD2

S�!X T2S�!X TD1
S�!X T1S�!X

In this case, we can see that for higher degrees the fibre of X T qþ1S�!X TDq S

and the fibre of X TDq S�!X TqS reduces the number of possible non-trivial

homotopy groups with coefficients.

PROPOSITION 7.1. Let S be a closed multiplicative system and suppose that
n > 1, then

(1) the homotopy fibre of the canonical map X TDn S�!X TnSis an Eilenberg Mac
Lane space of type KðTSð�nX Þ=DSTSð�nX Þ; n�1Þ;

(2) the homotopy fibre of the canonical map X T nþ1S�!X TDn S is an Eilenberg
Mac Lane space of type Kð�nX TDn S ; n� 1Þ.

Proof. It follows from the formulas given in Theorems 5.2 and 5.3. Ì

REMARK 7.2.

(1) Note that for n � 3 the homotopy fibre F of X TDn S�!X TnS has only one

non-trivial homotopy group with coefficients in C½S�1�:
�n�2ðC½S�1�; FÞ ffi ExtðC½S�1�;TSDSð�nX ÞÞ

(2) For n � 2 and s 2 S, the homotopy fibre F0 of X Tnþ1S�!X TDn S has one non-

trivial homotopy group:

�n�1ðZ=s; F 0Þ ffi HomðZ=s; �n�1F 0Þ

and only one non-trivial homotopy group with coefficients in C½S�1�:

�n�1ðC½S�1�; F 0Þ ffi HomðC½S�1�; �n�1F 0Þ
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8. The Categories HoðTnS�Top*Þ and HoðTnSp�Top*Þ

In this section, we suppose that S is generated by a set of positive primes P
and Sp is the multiplicative closed system generated by a positive prime p 2 P.

For n > 1 we analyze some relations between the closed model categories in-

duced by the families TnS, TnSp.

We note that the classes of distinguished maps satisfy the following relations:

TnS<w:e: 	 TnSp<w:e:;

and for the classes of cofibrations (and cofibrant spaces) one has:

TnSp<cof : 
 TnS<cof :

Then, one has the following pair of adjoint functors

HoðTnSpTop*Þ ð ÞT nSp

 ���!
Id

HoðTnS�Top*Þ

On the other hand if we consider the family TnSpYTop*, p 2 P, of closed

models categories, we can take the product of these closed model structuresQ
p2P TnSpYTop* and the localized category Hoð

Q
p2P TnSpYTop*Þ which is

equivalent to
Q

p2P HoðTnSpYTop*Þ. The functor

�: TnS�Top*�!
Y

p2P

TnSp�Top*;

given by �X ¼ ðX Þp2P, is right adjoint to

W :
Y

p2P

TnSp�Top*�!TnS�Top*;

WðYpÞp2P ¼
W

p2P Yp.

It is easy to check that � preserves weak equivalences and fibrations. To

check that W carries weak equivalences between cofibrant objects into weak

equivalences, suppose that fp : Xp�!Yp is a weak equivalence in ðTnSp�
Top*Þcof for each p 2 P. By Theorem 2.3 we have that for every p 2 P, fp is a

pointed homotopy equivalence. Then
W

p fp is also a pointed homotopy

equivalence and it follows that
W

p fp is a TnS-weak equivalence. Thus one has

an induced adjunction (equivalence) on the localized categories:

THEOREM 8.1. For n > 1, the induced adjunction

Y

p2P

HoðTnSp�Top*Þ WL

 !
�

HoðTnS�Top*Þ

W LðXpÞp2P ¼
_

p2P

X TnSp

p

gives an equivalence of categories.
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Proof. Using the functors ~HH*ð�; TÞ where T is either an S-torsion group or a

p-torsion group with p 2 P, one can check that the unit and the counit of the

adjunction are weak equivalences. Ì

COROLLARY 8.1. The homotopy category of torsion 1-connected CW-

complexes is equivalent to the product of the homotopy categories of 1-

connected p-torsion CW-complexes where pranges on the set of positive primes.

COROLLARY 8.2. A torsion 1-connected space X is weakly equivalent to the
wedge

W
p X T2Sp

.

On the other hand, the functor �, is left adjoint to

P :
Y

p2P

TnSp�Top*�!TnS�Top*;

PðYpÞp2P ¼
Q

p2P Yp.

We can check that P carries weak equivalences between cofibrant objects into

weak equivalences as follows: Suppose that fp : Xp�!Yp is a weak equivalence

in ðTnSp�Top*Þcof for each p 2 P. By Theorem 2.3, we have that each fp is a

pointed homotopy equivalence in Top*. Then
Q

p fp is a pointed homotopy

equivalence. Therefore P( fp) is an TnS-weak equivalence. Thus one has an

induced functor PL:
Q

p2P TnSp�Top*�!TnS�Top* and one has:

PROPOSITION 8.1. For n > 1, the pair of functors

Y

p2P

HoðTnSp�Top*Þ PL

 !
�

HoðTnS�Top*Þ

PLðXpÞp2P ¼
Y

p2P

X TnSp

p

gives an equivalence of categories.

Proof. Using the universal property of the map X TnS�!X one has induced

maps X TnS�!X TnSp

, X TnS�!
Q

p2P X TnSp

. Note that the maps X TnS�!X ,

X TnS�!
Q

p2P X TnSp

are TnS-weak equivalences, then PL� is isomorphic to the

identity functor. On the other hand, each projection
Q

p2P X TnSp

p �!X TnSp

p is a

TnSp-weak equivalence. Therefore �PL is also isomorphic to the identity functor

and we have an equivalence of categories. Ì

COROLLARY 8.3. For any space X and n > 1, the inclusion map
W

p2P X TnSp

p

�!
Q

p2P X TnSp

p is an TnS-weak equivalence. Moreover, if for each k � n, �kX
has finitely many non-trivial torsion components, and for each k � n + 1 �k X is
p-divisible except for finitely many primes p, then the inclusion above is a weak
equivalence.

Proof. For k � n we can use the formula

0�!�kþ1X � C½ðSpÞ�1��!�kðX TnSpÞ�!Torð�kX ;C½ðSpÞ�1�Þ�!0
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to prove that under that conditions on the homotopy groups of X one has thatQ
p2P X TnSp

p has S-torsion homotopy groups. Now the result follows from

Theorem 2.3. Ì

REMARK 8.1. The results given in Corollary 8.2 or in Corollary 8.3 for the

case of of X a 1-connected CW-complex with finitely generated torsion

homotopy groups can be obtained from the fracture lemma, see 6.3 of ch V in

[1], or from the Pullback Theorem given in [16].

9. S-torsion and Ext-S-complete Spaces

In this section, for a space X, we consider the ring R ¼ Z=p1 � � � � � Z=pr, where

p1; � � � pr are primes, and the R-localization X �!R1X given by Bousfield-Kan

[1], see also [2]. Through all this section we assume that n > 1 and the closed

multiplicative system S is generated by a finite set of primes p1,: : : pr.

Recall that an abelian group B is said to be Ext-S-complete if the extension

group ExtðC½S�1�;BÞ ffi B. Note that

ExtðC½S�1�;BÞ ffi ExtðC½ 1
p1

�;BÞ � � � � � ExtðC½ 1
pr

�;BÞ:

DEFINITION 9.1. A 1-connected space Y is said to be Ext-S-complete if its

homotopy groups are Ext-S-complete.

Applying the universal properties of the constructions R1X and ð�ÞTDn S
, one

has:

THEOREM 9.1. The left derived functor

RL
1: HoðTDn

S�Top*Þ�!HoðExt<S<complete n<connected spacesÞ

is left adjoint to

ðÞTDn S : HoðExt<S<complete n<connected spacesÞ�!HoðTDn
S�Top*Þ:

Moreover, the pair of functors above gives an equivalence categories.
Proof. For the case of one prime p, the homotopy groups of ðZ=pÞ1X are

given by the exact sequence:

0�!ExtðC½1
p
�; �kX Þ�!�kðZ=pÞ1X Þ�!HomðC½1

p
�; �k�1X Þ�!0
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If S is generated by finite primes p1
: : : , pr using the formulas

ðZ=p1 � � � � � Z=prÞ1X ffi ðZ=p1Þ1X � � � � � ðZ=prÞ1X

�kðRÞ1X ffi �kððZ=p1Þ1X Þ � � � � � �kððZ=prÞ1X Þ

ExtðC½S�1�; �Þ ffi ExtðC½ 1
p1

�; �Þ � � � � � ExtðC½ 1
pr

�; �Þ

HomðC½S�1�; �Þ ffi HomðC½ 1
p1

�; �Þ � � � � � HomðC½ 1
pr

�; �Þ

we have a similar formula for R1X

0�!ExtðC½S�1�; �kX Þ�!�kR1X �!HomðC½S�1�; �k�1X Þ�!0

If X is an TDn
S-cofibrant space, we have that �nX is S-divisible, then

�nR1X ffi ExtðC½S�1�; �nX Þ ffi 0 and R1X is an Ext-S-complete n-connected

space. On the other hand, if Y is an Ext-S-complete n-connected space, then

Y TDn S is an TDn
S-cofibrant space.

By the universal properties of the constructions RL
1 and ð�ÞTDnS we have that

on the homotopy categories RL
1 is left adjoint to ð�ÞTDn S

. The unit of the

adjunction in contained in the commutative diagram

ðR1X ÞT Dn S

% #
X �! R1X

where we have supposed that X is TDn
S-cofibrant. The localization X �!R1X

induces isomorphism on singular homology with coefficients in Z=p1 � � � ��
Z=pr. Since R1X is n-connected we apply Proposition 6.2 to obtain that

ðR1X ÞTDn S�!R1X induces isomorphism on singular homology with coeffi-

cients in Z=p1 � � � � � Z=pr. Therefore the unit X �!ðR1X ÞT Dn S
induces

isomorphism on homology with coefficients in Z=p1 � � � � � Z=pr. From

this fact we also have that the unit induce isomorphism on homology with

coefficients in every S-torsion group. By Proposition 6.3, because X and

ðR1X ÞT Dn S
are 1-connected spaces, one has that the unit is a homotopy

equivalence.

On the other hand, for the counit of the adjunction we have the commutative

diagram

Y TDn S �! Y

# %
R1ðY TDn SÞ

where Y is an Ext-S-complete n-connected space.
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The localization Y TDn S�!R1ðY TDn SÞ induces isomorphism on singular

homology with coefficients in Z=p1 � � � � � Z=pr. Since Y is n-connected, by

Proposition 6.2 we have that Y TDn S�!Y induces isomorphism on singular

homology with coefficients in Z=p1 � � � � � Z=pr. Therefore the counit

R1ðY TDn SÞ�!Y induces isomorphism on homology with coefficients in

Z=p1 � � � � � Z=pr. Taking into account that R1ðY TDn SÞ and Y are Ext-S-com-

plete spaces, it follows that the counit is a weak equivalence. Ì

THEOREM 9.2. Let X be an (nj1)-connected space with �nX an S-divisible
group, then for k > n

�kR1X ffi �k�1ðC½S�1�; X Þ

Moreover, if we also assume that for k � n �kX an S-torsion group then one has
the following exact sequence for k > n

0�!�kðC½S�1�; X Þ � C½S�1�

�!�kX �!Torð�k�1ðC½S�1�; X Þ;C½S�1�Þ�!0

and for k = n one has

�nX ffi �nðC½S�1�; X Þ � C½S�1�

Proof. Notice that the maps X �!R1X and Sk�!R1Sk for k > n induce

isomorphism on singular homology with coefficients in every S-torsion abelian

group. By Proposition 6.3 (2) these maps are TDn
S-weak equivalence, hence

X TDn S�!ðR1X ÞTDn S
, ðSkÞTDn S�!ðR1SkÞTDn S

are homotopy equivalences. Us-

ing Proposition 6.2 (2) it follows that ðSkÞTDn S
is a Moore space of type

MðC½S�1�; k � 1Þ. Now one has the following isomorphism

�kR1X ffi HoðQ�Top*ÞðR1Sk;R1X Þ

ffi HoðTDn
S�Top*ÞððR1SkÞTDn S ; ðR1X ÞTDn SÞ

ffi HoðTDn
S�Top*ÞðMðC½S�1�; k � 1Þ;X TDn SÞ

ffi HoðQ�Top*ÞðMðC½S�1�; k � 1Þ;X TDn SÞ

ffi �k�1ðC½S�1�; X TDn SÞ

ffi �k�1ðC½S�1�; X Þ

where we have used the universal property of the localization maps, the equiv-

alence of categories given in Theorem 9.1, the fact that MðC½S�1�; k � 1Þ is

TDn
S-cofibrant and X TDn S is TDn

S-fibrant and finally that X TDn S�!X is an TDn
S-

weak equivalence.
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For the second part of the theorem, we note that by by Theorem 4.1 X is weak

equivalent to an TDn
S-cofibrant space, then one has that ðR1X ÞTDn S ffi X . Now

the result follows from the exact sequences given in Theorem 5.3. Ì

COROLLARY 9.1. Let A be an S-torsion group, then we have a splittable short
sequence

0�!HomðC½S�1�;AÞ � C½S�1�

�!A�!TorðExtðC½S�1�;AÞ;C½S�1�Þ�!0

where HomðC½S�1�;AÞ � C½S�1� is isomorphic to DSA the maximal S-divisible
subgroup of A and TorðExtðC½S�1�;AÞ;C½S�1�Þ has no S-divisible (non trivial)
subgroups.

On the other hand, if B is an Ext-S-complete group, then one has a splittable
short sequence

0�!ExtðC½S�1�;TorðB;C½S�1�ÞÞ�!

B�!HomðC½S�1�;B� C½S�1�Þ�!0

where ExtðC½S�1�;TorðB;C½S�1�ÞÞ is S-adjusted and S-complete, and Hom

ðC½S�1�;B� C½S�1�Þ is S-torsion-free and S-complete.
Proof. It suffices to consider the Eilenberg Mac Lane space K(A, m) for an S-

torsion group, with m > n and compute the homotopy groups of R1KðA;mÞ and

ðR1KðA;mÞÞTDn S
. For B an S-complete group we compute the homotopy groups

of KðA;mÞTDn S
and R1ðKðA;mÞTDn SÞ. Ì

REMARK 9.1. The formulas of Corollary above are well known. We refer the

reader to [1, ch VI]. Note that we consider the case that S is generated by a finite

number of primes.

Using the equivalence of categories

HoðTDn
S�Top*Þ ’

Yr

i¼1

HoðTDn
Spi�Top*Þ

and Theorem 9.1, one can prove the following results:

COROLLARY 9.2. The homotopy category of n-connected Ext-S-complete
spaces is equivalent to the finite product of the homotopy categories of n-
connected Ext-pi-complete spaces for i = 1: : : r.

COROLLARY 9.3. Let Y be an n-connected Ext-S-complete space, then

(1) Y is weakly equivalent toðZ=p1Þ1Y � � � � � ðZ=prÞ1Y ,

HOMOTOPY CATEGORIES FOR SIMPLY CONNECTED TORSION SPACES 449



(2) The inclusion

ðZ=p1Þ1Y
_
� � �
_
ðZ=prÞ1Y �!ðZ=p1Þ1Y � � � � � ðZ=prÞ1Y ;

is a weak equivalence.

REMARKS 9.2.

(1) Note that the the category HoðTnS�Top*Þ is equivalent to the homotopy

category of (nj1)-connected Ext-S-complete spaces whose nth homotopy

group is S-adjusted.

(2) Given an Ext-S-complete abelian group B, there exist a unique Ext-S-

complete space C ¼ CðC½S�1�; B;mÞ up to weak equivalence such that

�mðC½S�1�; CÞ ffi B and for k 6¼ m, C has trivial homotopy groups with

coefficients in C½S�1�. On the other hand, there exists a unique S-torsion

space T ¼ TðC½S�1�; B;mÞ up to weak equivalence, such that with respect

to homotopy groups with coefficients in C½S�1�, T is an Eilenberg Mac Lane

space.

(3) Recall that the standard homotopy groups are related with the homotopy

groups with coefficients in C½S�1� or in Z=s by the formulas:

0�!ExtðC½S�1�; �kþ1X Þ�!�kðC½S�1�; X Þ�!HomðC½S�1�; �kX Þ�!0

0�!ExtðZ=s; �kþ1X Þ�!�kðZ=s; X Þ�!HomðZ=s; �kX Þ�!0

It is interesting to note that the homotopy groups with coefficients in C½1
p
� and

in Z=s, with s = pl are related by the formulas

0�! lim
l

1�kþ1ðZ=pl; X Þ�!�kðC½
1

p
�; X Þ�! lim

l
�kðZ=pl; X Þ�!0

0�!ExtðZ=pl; �kþ1ðC½
1

p
�; X ÞÞ�!�kðZ=pl; X Þ�!HomðZ=pl; �kðC½

1

p
�; X ÞÞ

�!0:

If X is an 1-connected Ext-S-complete space one has

�kX ffi �k�1ðC½S�1�; X Þ:

Finally, if X is an 1-connected space and there exists a multiplicative system S
generated by a finite set of primes such that �2X is S-divisible and for k � 2 �kX
is S-torsion, then the standard homotopy groups and the homotopy groups with

coefficients in C½S�1� are related by the short exact sequence for k � 2:

0�!�kðC½S�1�; X Þ � C½S�1��!�kX �!Torð�k�1ðC½S�1�; X Þ;C½S�1�Þ

�!0:
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258Y294.

HOMOTOPY CATEGORIES FOR SIMPLY CONNECTED TORSION SPACES 451



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AardvarkPSMT
    /AceBinghamSH
    /AddisonLibbySH
    /AGaramond-Italic
    /AGaramond-Regular
    /AkbarPlain
    /Albertus-Bold
    /AlbertusExtraBold-Regular
    /AlbertusMedium-Italic
    /AlbertusMedium-Regular
    /AlfonsoWhiteheadSH
    /Algerian
    /AllegroBT-Regular
    /AmarilloUSAF
    /AmazoneBT-Regular
    /AmeliaBT-Regular
    /AmerigoBT-BoldA
    /AmerTypewriterITCbyBT-Medium
    /AndaleMono
    /AndyMacarthurSH
    /Animals
    /AnneBoleynSH
    /Annifont
    /AntiqueOlive-Bold
    /AntiqueOliveCompact-Regular
    /AntiqueOlive-Italic
    /AntiqueOlive-Regular
    /AntonioMountbattenSH
    /ArabiaPSMT
    /AradLevelVI
    /ArchitecturePlain
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialMTBlack-Regular
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialRoundedMTBold
    /ArialUnicodeLight
    /ArialUnicodeLight-Bold
    /ArialUnicodeLight-BoldItalic
    /ArialUnicodeLight-Italic
    /ArrowsAPlentySH
    /ArrusBT-Bold
    /ArrusBT-BoldItalic
    /ArrusBT-Italic
    /ArrusBT-Roman
    /Asiana
    /AssadSadatSH
    /AvalonPSMT
    /AvantGardeITCbyBT-Book
    /AvantGardeITCbyBT-BookOblique
    /AvantGardeITCbyBT-Demi
    /AvantGardeITCbyBT-DemiOblique
    /AvantGardeITCbyBT-Medium
    /AvantGardeITCbyBT-MediumOblique
    /BankGothicBT-Light
    /BankGothicBT-Medium
    /Baskerville-Bold
    /Baskerville-Normal
    /Baskerville-Normal-Italic
    /BaskOldFace
    /Bauhaus93
    /Bavand
    /BazookaRegular
    /BeauTerrySH
    /BECROSS
    /BedrockPlain
    /BeeskneesITC
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BenguiatITCbyBT-Bold
    /BenguiatITCbyBT-BoldItalic
    /BenguiatITCbyBT-Book
    /BenguiatITCbyBT-BookItalic
    /BennieGoetheSH
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BernhardBoldCondensedBT-Regular
    /BernhardFashionBT-Regular
    /BernhardModernBT-Bold
    /BernhardModernBT-BoldItalic
    /BernhardModernBT-Italic
    /BernhardModernBT-Roman
    /Bethel
    /BibiGodivaSH
    /BibiNehruSH
    /BKenwood-Regular
    /BlackadderITC-Regular
    /BlondieBurtonSH
    /BodoniBlack-Regular
    /Bodoni-Bold
    /Bodoni-BoldItalic
    /BodoniBT-Bold
    /BodoniBT-BoldItalic
    /BodoniBT-Italic
    /BodoniBT-Roman
    /Bodoni-Italic
    /BodoniMTPosterCompressed
    /Bodoni-Regular
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolFive
    /BookshelfSymbolFour
    /BookshelfSymbolOne-Regular
    /BookshelfSymbolThree-Regular
    /BookshelfSymbolTwo-Regular
    /BookwomanDemiItalicSH
    /BookwomanDemiSH
    /BookwomanExptLightSH
    /BookwomanLightItalicSH
    /BookwomanLightSH
    /BookwomanMonoLightSH
    /BookwomanSwashDemiSH
    /BookwomanSwashLightSH
    /BoulderRegular
    /BradleyHandITC
    /Braggadocio
    /BrailleSH
    /BRectangular
    /BremenBT-Bold
    /BritannicBold
    /Broadview
    /Broadway
    /BroadwayBT-Regular
    /BRubber
    /Brush445BT-Regular
    /BrushScriptMT
    /BSorbonna
    /BStranger
    /BTriumph
    /BuckyMerlinSH
    /BusoramaITCbyBT-Medium
    /Caesar
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /CalisMTBol
    /CalistoMT
    /CalistoMT-Italic
    /CalligrapherRegular
    /CameronStendahlSH
    /Candy
    /CandyCaneUnregistered
    /CankerSore
    /CarlTellerSH
    /CarrieCattSH
    /CaslonOpenfaceBT-Regular
    /CassTaylorSH
    /CDOT
    /Centaur
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturyOldStyle-BoldItalic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Cezanne
    /CGOmega-Bold
    /CGOmega-BoldItalic
    /CGOmega-Italic
    /CGOmega-Regular
    /CGTimes-Bold
    /CGTimes-BoldItalic
    /CGTimes-Italic
    /CGTimes-Regular
    /Charting
    /ChartreuseParsonsSH
    /ChaseCallasSH
    /ChasThirdSH
    /ChaucerRegular
    /CheltenhamITCbyBT-Bold
    /CheltenhamITCbyBT-BoldItalic
    /CheltenhamITCbyBT-Book
    /CheltenhamITCbyBT-BookItalic
    /ChildBonaparteSH
    /Chiller-Regular
    /ChuckWarrenChiselSH
    /ChuckWarrenDesignSH
    /CityBlueprint
    /Clarendon-Bold
    /Clarendon-Book
    /ClarendonCondensedBold
    /ClarendonCondensed-Bold
    /ClarendonExtended-Bold
    /ClassicalGaramondBT-Bold
    /ClassicalGaramondBT-BoldItalic
    /ClassicalGaramondBT-Italic
    /ClassicalGaramondBT-Roman
    /ClaudeCaesarSH
    /CLI
    /Clocks
    /ClosetoMe
    /CluKennedySH
    /CMBX10
    /CMBX5
    /CMBX7
    /CMEX10
    /CMMI10
    /CMMI5
    /CMMI7
    /CMMIB10
    /CMR10
    /CMR5
    /CMR7
    /CMSL10
    /CMSY10
    /CMSY5
    /CMSY7
    /CMTI10
    /CMTT10
    /CoffeeCamusInitialsSH
    /ColetteColeridgeSH
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CommercialPiBT-Regular
    /CommercialScriptBT-Regular
    /Complex
    /CooperBlack
    /CooperBT-BlackHeadline
    /CooperBT-BlackItalic
    /CooperBT-Bold
    /CooperBT-BoldItalic
    /CooperBT-Medium
    /CooperBT-MediumItalic
    /CooperPlanck2LightSH
    /CooperPlanck4SH
    /CooperPlanck6BoldSH
    /CopperplateGothicBT-Bold
    /CopperplateGothicBT-Roman
    /CopperplateGothicBT-RomanCond
    /CopticLS
    /Cornerstone
    /Coronet
    /CoronetItalic
    /Cotillion
    /CountryBlueprint
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /CSSubscript
    /CSSubscriptBold
    /CSSubscriptItalic
    /CSSuperscript
    /CSSuperscriptBold
    /Cuckoo
    /CurlzMT
    /CybilListzSH
    /CzarBold
    /CzarBoldItalic
    /CzarItalic
    /CzarNormal
    /DauphinPlain
    /DawnCastleBold
    /DawnCastlePlain
    /Dekker
    /DellaRobbiaBT-Bold
    /DellaRobbiaBT-Roman
    /Denmark
    /Desdemona
    /Diploma
    /DizzyDomingoSH
    /DizzyFeiningerSH
    /DocTermanBoldSH
    /DodgenburnA
    /DodoCasalsSH
    /DodoDiogenesSH
    /DomCasualBT-Regular
    /Durian-Republik
    /Dutch801BT-Bold
    /Dutch801BT-BoldItalic
    /Dutch801BT-ExtraBold
    /Dutch801BT-Italic
    /Dutch801BT-Roman
    /EBT's-cmbx10
    /EBT's-cmex10
    /EBT's-cmmi10
    /EBT's-cmmi5
    /EBT's-cmmi7
    /EBT's-cmr10
    /EBT's-cmr5
    /EBT's-cmr7
    /EBT's-cmsy10
    /EBT's-cmsy5
    /EBT's-cmsy7
    /EdithDaySH
    /Elephant-Italic
    /Elephant-Regular
    /EmGravesSH
    /EngelEinsteinSH
    /English111VivaceBT-Regular
    /English157BT-Regular
    /EngraversGothicBT-Regular
    /EngraversOldEnglishBT-Bold
    /EngraversOldEnglishBT-Regular
    /EngraversRomanBT-Bold
    /EngraversRomanBT-Regular
    /EnviroD
    /ErasITC-Bold
    /ErasITC-Demi
    /ErasITC-Light
    /ErasITC-Medium
    /ErasITC-Ultra
    /ErnestBlochSH
    /Euclid
    /Euclid-Bold
    /Euclid-BoldItalic
    /EuclidExtra
    /EuclidExtra-Bold
    /EuclidFraktur
    /EuclidFraktur-Bold
    /Euclid-Italic
    /EuclidMathOne
    /EuclidMathOne-Bold
    /EuclidMathTwo
    /EuclidMathTwo-Bold
    /EuclidSymbol
    /EuclidSymbol-Bold
    /EuclidSymbol-BoldItalic
    /EuclidSymbol-Italic
    /EuroRoman
    /EuroRomanOblique
    /ExxPresleySH
    /FencesPlain
    /Fences-Regular
    /FifthAvenue
    /FigurineCrrCB
    /FigurineCrrCBBold
    /FigurineCrrCBBoldItalic
    /FigurineCrrCBItalic
    /FigurineTmsCB
    /FigurineTmsCBBold
    /FigurineTmsCBBoldItalic
    /FigurineTmsCBItalic
    /FillmoreRegular
    /Fitzgerald
    /Flareserif821BT-Roman
    /FleurFordSH
    /Fontdinerdotcom
    /FontdinerdotcomSparkly
    /FootlightMTLight
    /ForefrontBookObliqueSH
    /ForefrontBookSH
    /ForefrontDemiObliqueSH
    /ForefrontDemiSH
    /Fortress
    /FractionsAPlentySH
    /FrakturPlain
    /Franciscan
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /FranklinUnic
    /FredFlahertySH
    /Freehand575BT-RegularB
    /Freehand591BT-RegularA
    /FreestyleScript-Regular
    /Frutiger-Roman
    /FTPMultinational
    /FTPMultinational-Bold
    /FujiyamaPSMT
    /FuturaBlackBT-Regular
    /FuturaBT-Bold
    /FuturaBT-BoldCondensed
    /FuturaBT-BoldItalic
    /FuturaBT-Book
    /FuturaBT-BookItalic
    /FuturaBT-ExtraBlack
    /FuturaBT-ExtraBlackCondensed
    /FuturaBT-ExtraBlackCondItalic
    /FuturaBT-ExtraBlackItalic
    /FuturaBT-Light
    /FuturaBT-LightItalic
    /FuturaBT-Medium
    /FuturaBT-MediumCondensed
    /FuturaBT-MediumItalic
    /GabbyGauguinSH
    /GalliardITCbyBT-Bold
    /GalliardITCbyBT-BoldItalic
    /GalliardITCbyBT-Italic
    /GalliardITCbyBT-Roman
    /Garamond
    /Garamond-Antiqua
    /Garamond-Bold
    /Garamond-Halbfett
    /Garamond-Italic
    /Garamond-Kursiv
    /Garamond-KursivHalbfett
    /Garcia
    /GarryMondrian3LightItalicSH
    /GarryMondrian3LightSH
    /GarryMondrian4BookItalicSH
    /GarryMondrian4BookSH
    /GarryMondrian5SBldItalicSH
    /GarryMondrian5SBldSH
    /GarryMondrian6BoldItalicSH
    /GarryMondrian6BoldSH
    /GarryMondrian7ExtraBoldSH
    /GarryMondrian8UltraSH
    /GarryMondrianCond3LightSH
    /GarryMondrianCond4BookSH
    /GarryMondrianCond5SBldSH
    /GarryMondrianCond6BoldSH
    /GarryMondrianCond7ExtraBoldSH
    /GarryMondrianCond8UltraSH
    /GarryMondrianExpt3LightSH
    /GarryMondrianExpt4BookSH
    /GarryMondrianExpt5SBldSH
    /GarryMondrianExpt6BoldSH
    /GarryMondrianSwashSH
    /Gaslight
    /GatineauPSMT
    /GDT
    /Geometric231BT-BoldC
    /Geometric231BT-LightC
    /Geometric231BT-RomanC
    /GeometricSlab703BT-Bold
    /GeometricSlab703BT-BoldCond
    /GeometricSlab703BT-BoldItalic
    /GeometricSlab703BT-Light
    /GeometricSlab703BT-LightItalic
    /GeometricSlab703BT-Medium
    /GeometricSlab703BT-MediumCond
    /GeometricSlab703BT-MediumItalic
    /GeometricSlab703BT-XtraBold
    /GeorgeMelvilleSH
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Gigi-Regular
    /GillSansBC
    /GillSans-Bold
    /GillSans-BoldItalic
    /GillSansCondensed-Bold
    /GillSansCondensed-Regular
    /GillSansExtraBold-Regular
    /GillSans-Italic
    /GillSansLight-Italic
    /GillSansLight-Regular
    /GillSans-Regular
    /GoldMinePlain
    /Gonzo
    /GothicE
    /GothicG
    /GothicI
    /GoudyHandtooledBT-Regular
    /GoudyOldStyle-Bold
    /GoudyOldStyle-BoldItalic
    /GoudyOldStyleBT-Bold
    /GoudyOldStyleBT-BoldItalic
    /GoudyOldStyleBT-Italic
    /GoudyOldStyleBT-Roman
    /GoudyOldStyleExtrabold-Regular
    /GoudyOldStyle-Italic
    /GoudyOldStyle-Regular
    /GoudySansITCbyBT-Bold
    /GoudySansITCbyBT-BoldItalic
    /GoudySansITCbyBT-Medium
    /GoudySansITCbyBT-MediumItalic
    /GraceAdonisSH
    /Graeca
    /Graeca-Bold
    /Graeca-BoldItalic
    /Graeca-Italic
    /Graphos-Bold
    /Graphos-BoldItalic
    /Graphos-Italic
    /Graphos-Regular
    /GreekC
    /GreekS
    /GreekSans
    /GreekSans-Bold
    /GreekSans-BoldOblique
    /GreekSans-Oblique
    /Griffin
    /GrungeUpdate
    /Haettenschweiler
    /HankKhrushchevSH
    /HarlowSolid
    /HarpoonPlain
    /Harrington
    /HeatherRegular
    /Hebraica
    /HeleneHissBlackSH
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Narrow
    /Helvetica-Narrow-Bold
    /Helvetica-Narrow-BoldOblique
    /Helvetica-Narrow-Oblique
    /Helvetica-Oblique
    /HenryPatrickSH
    /Herald
    /HighTowerText-Italic
    /HighTowerText-Reg
    /HogBold-HMK
    /HogBook-HMK
    /HomePlanning
    /HomePlanning2
    /HomewardBoundPSMT
    /Humanist521BT-Bold
    /Humanist521BT-BoldCondensed
    /Humanist521BT-BoldItalic
    /Humanist521BT-Italic
    /Humanist521BT-Light
    /Humanist521BT-LightItalic
    /Humanist521BT-Roman
    /Humanist521BT-RomanCondensed
    /IBMPCDOS
    /IceAgeD
    /Impact
    /Incised901BT-Bold
    /Incised901BT-Light
    /Incised901BT-Roman
    /Industrial736BT-Italic
    /Informal011BT-Roman
    /InformalRoman-Regular
    /Intrepid
    /IntrepidBold
    /IntrepidOblique
    /Invitation
    /IPAExtras
    /IPAExtras-Bold
    /IPAHighLow
    /IPAHighLow-Bold
    /IPAKiel
    /IPAKiel-Bold
    /IPAKielSeven
    /IPAKielSeven-Bold
    /IPAsans
    /ISOCP
    /ISOCP2
    /ISOCP3
    /ISOCT
    /ISOCT2
    /ISOCT3
    /Italic
    /ItalicC
    /ItalicT
    /JesterRegular
    /Jokerman-Regular
    /JotMedium-HMK
    /JuiceITC-Regular
    /JupiterPSMT
    /KabelITCbyBT-Book
    /KabelITCbyBT-Ultra
    /KarlaJohnson5CursiveSH
    /KarlaJohnson5RegularSH
    /KarlaJohnson6BoldCursiveSH
    /KarlaJohnson6BoldSH
    /KarlaJohnson7ExtraBoldCursiveSH
    /KarlaJohnson7ExtraBoldSH
    /KarlKhayyamSH
    /Karnack
    /Kashmir
    /KaufmannBT-Bold
    /KaufmannBT-Regular
    /KeplerStd-Black
    /KeplerStd-BlackIt
    /KeplerStd-Bold
    /KeplerStd-BoldIt
    /KeplerStd-Italic
    /KeplerStd-Light
    /KeplerStd-LightIt
    /KeplerStd-Medium
    /KeplerStd-MediumIt
    /KeplerStd-Regular
    /KeplerStd-Semibold
    /KeplerStd-SemiboldIt
    /KeystrokeNormal
    /Kidnap
    /KidsPlain
    /Kindergarten
    /KinoMT
    /KissMeKissMeKissMe
    /KoalaPSMT
    /KorinnaITCbyBT-Bold
    /KorinnaITCbyBT-KursivBold
    /KorinnaITCbyBT-KursivRegular
    /KorinnaITCbyBT-Regular
    /KristenITC-Regular
    /Kristin
    /KunstlerScript
    /KyotoSong
    /LainieDaySH
    /LandscapePlanning
    /Lapidary333BT-Bold
    /Lapidary333BT-BoldItalic
    /Lapidary333BT-Italic
    /Lapidary333BT-Roman
    /LatinoPal3LightItalicSH
    /LatinoPal3LightSH
    /LatinoPal4ItalicSH
    /LatinoPal4RomanSH
    /LatinoPal5DemiItalicSH
    /LatinoPal5DemiSH
    /LatinoPal6BoldItalicSH
    /LatinoPal6BoldSH
    /LatinoPal7ExtraBoldSH
    /LatinoPal8BlackSH
    /LatinoPalCond4RomanSH
    /LatinoPalCond5DemiSH
    /LatinoPalCond6BoldSH
    /LatinoPalExptRomanSH
    /LatinoPalSwashSH
    /LatinWidD
    /LatinWide
    /LeeToscanini3LightSH
    /LeeToscanini5RegularSH
    /LeeToscanini7BoldSH
    /LeeToscanini9BlackSH
    /LeeToscaniniInlineSH
    /LetterGothic12PitchBT-Bold
    /LetterGothic12PitchBT-BoldItal
    /LetterGothic12PitchBT-Italic
    /LetterGothic12PitchBT-Roman
    /LetterGothic-Bold
    /LetterGothic-BoldItalic
    /LetterGothic-Italic
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LetterGothic-Regular
    /LibrarianRegular
    /LinusPSMT
    /Lithograph-Bold
    /LithographLight
    /LongIsland
    /LubalinGraphMdITCTT
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /LydianCursiveBT-Regular
    /Magneto-Bold
    /Map-Symbols
    /MarcusHobbesSH
    /Mariah
    /Marigold
    /MaritaMedium-HMK
    /MaritaScript-HMK
    /Market
    /MartinMaxxieSH
    /MathTypeMed
    /MatisseITC-Regular
    /MaturaMTScriptCapitals
    /MaudeMeadSH
    /MemorandumPSMT
    /Metro
    /Metrostyle-Bold
    /MetrostyleExtended-Bold
    /MetrostyleExtended-Regular
    /Metrostyle-Regular
    /MicrogrammaD-BoldExte
    /MicrosoftSansSerif
    /MikePicassoSH
    /MiniPicsLilEdibles
    /MiniPicsLilFolks
    /MiniPicsLilStuff
    /MischstabPopanz
    /MisterEarlBT-Regular
    /Mistral
    /ModerneDemi
    /ModerneDemiOblique
    /ModerneOblique
    /ModerneRegular
    /Modern-Regular
    /MonaLisaRecutITC-Normal
    /Monospace821BT-Bold
    /Monospace821BT-BoldItalic
    /Monospace821BT-Italic
    /Monospace821BT-Roman
    /Monotxt
    /MonotypeCorsiva
    /MonotypeSorts
    /MorrisonMedium
    /MorseCode
    /MotorPSMT
    /MSAM10
    /MSLineDrawPSMT
    /MS-Mincho
    /MSOutlook
    /MSReference1
    /MSReference2
    /MTEX
    /MTEXB
    /MTEXH
    /MT-Extra
    /MTGU
    /MTGUB
    /MTLS
    /MTLSB
    /MTMI
    /MTMIB
    /MTMIH
    /MTMS
    /MTMSB
    /MTMUB
    /MTMUH
    /MTSY
    /MTSYB
    /MTSYH
    /MT-Symbol
    /MTSYN
    /Music
    /MysticalPSMT
    /NagHammadiLS
    /NealCurieRuledSH
    /NealCurieSH
    /NebraskaPSMT
    /Neuropol-Medium
    /NevisonCasD
    /NewMilleniumSchlbkBoldItalicSH
    /NewMilleniumSchlbkBoldSH
    /NewMilleniumSchlbkExptSH
    /NewMilleniumSchlbkItalicSH
    /NewMilleniumSchlbkRomanSH
    /News702BT-Bold
    /News702BT-Italic
    /News702BT-Roman
    /Newton
    /NewZuricaBold
    /NewZuricaItalic
    /NewZuricaRegular
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NigelSadeSH
    /Nirvana
    /NuptialBT-Regular
    /OCRAbyBT-Regular
    /OfficePlanning
    /OldCentury
    /OldEnglishTextMT
    /Onyx
    /OnyxBT-Regular
    /OpenSymbol
    /OttawaPSMT
    /OttoMasonSH
    /OzHandicraftBT-Roman
    /OzzieBlack-Italic
    /OzzieBlack-Regular
    /PalatiaBold
    /PalatiaItalic
    /PalatiaRegular
    /PalmSpringsPSMT
    /Pamela
    /PanRoman
    /ParadisePSMT
    /ParagonPSMT
    /ParamountBold
    /ParamountItalic
    /ParamountRegular
    /Parchment-Regular
    /ParisianBT-Regular
    /ParkAvenueBT-Regular
    /Patrick
    /Patriot
    /PaulPutnamSH
    /PcEncodingLowerSH
    /PcEncodingSH
    /Pegasus
    /PenguinLightPSMT
    /PennSilvaSH
    /Percival
    /PerfectRegular
    /Pfn2BlackItalic
    /Phantom
    /PhilSimmonsSH
    /Pickwick
    /PipelinePlain
    /Playbill
    /PoorRichard-Regular
    /Poster
    /PosterBodoniBT-Italic
    /PosterBodoniBT-Roman
    /Pristina-Regular
    /Proxy1
    /Proxy2
    /Proxy3
    /Proxy4
    /Proxy5
    /Proxy6
    /Proxy7
    /Proxy8
    /Proxy9
    /Prx1
    /Prx2
    /Prx3
    /Prx4
    /Prx5
    /Prx6
    /Prx7
    /Prx8
    /Prx9
    /Pythagoras
    /Ranegund
    /Ravie
    /Ribbon131BT-Bold
    /RMTMI
    /RMTMIB
    /RMTMIH
    /RMTMUB
    /RMTMUH
    /RobWebsterExtraBoldSH
    /Rockwell
    /Rockwell-Bold
    /Rockwell-ExtraBold
    /Rockwell-Italic
    /RomanC
    /RomanD
    /RomanS
    /RomanT
    /Romantic
    /RomanticBold
    /RomanticItalic
    /Sahara
    /SalTintorettoSH
    /SamBarberInitialsSH
    /SamPlimsollSH
    /SansSerif
    /SansSerifBold
    /SansSerifBoldOblique
    /SansSerifOblique
    /Sceptre
    /ScribbleRegular
    /ScriptC
    /ScriptHebrew
    /ScriptS
    /Semaphore
    /SerifaBT-Black
    /SerifaBT-Bold
    /SerifaBT-Italic
    /SerifaBT-Roman
    /SerifaBT-Thin
    /Sfn2Bold
    /Sfn3Italic
    /ShelleyAllegroBT-Regular
    /ShelleyVolanteBT-Regular
    /ShellyMarisSH
    /SherwoodRegular
    /ShlomoAleichemSH
    /ShotgunBT-Regular
    /ShowcardGothic-Reg
    /SignatureRegular
    /Signboard
    /SignetRoundhandATT-Italic
    /SignetRoundhand-Italic
    /SignLanguage
    /Signs
    /Simplex
    /SissyRomeoSH
    /SlimStravinskySH
    /SnapITC-Regular
    /SnellBT-Bold
    /Socket
    /Sonate
    /SouvenirITCbyBT-Demi
    /SouvenirITCbyBT-DemiItalic
    /SouvenirITCbyBT-Light
    /SouvenirITCbyBT-LightItalic
    /SpruceByingtonSH
    /SPSFont1Medium
    /SPSFont2Medium
    /SPSFont3Medium
    /SPSFont4Medium
    /SpsFont4Medium
    /SPSFont5Normal
    /SPSScript
    /SRegular
    /Staccato222BT-Regular
    /StageCoachRegular
    /StandoutRegular
    /StarTrekNextBT-ExtraBold
    /StarTrekNextPiBT-Regular
    /SteamerRegular
    /Stencil
    /StencilBT-Regular
    /Stewardson
    /Stonehenge
    /StopD
    /Storybook
    /Strict
    /Strider-Regular
    /StuyvesantBT-Regular
    /StylusBT
    /StylusRegular
    /SubwayRegular
    /SueVermeer4LightItalicSH
    /SueVermeer4LightSH
    /SueVermeer5MedItalicSH
    /SueVermeer5MediumSH
    /SueVermeer6DemiItalicSH
    /SueVermeer6DemiSH
    /SueVermeer7BoldItalicSH
    /SueVermeer7BoldSH
    /SunYatsenSH
    /SuperFrench
    /SuzanneQuillSH
    /Swiss721-BlackObliqueSWA
    /Swiss721-BlackSWA
    /Swiss721BT-Black
    /Swiss721BT-BlackCondensed
    /Swiss721BT-BlackCondensedItalic
    /Swiss721BT-BlackExtended
    /Swiss721BT-BlackItalic
    /Swiss721BT-BlackOutline
    /Swiss721BT-Bold
    /Swiss721BT-BoldCondensed
    /Swiss721BT-BoldCondensedItalic
    /Swiss721BT-BoldCondensedOutline
    /Swiss721BT-BoldExtended
    /Swiss721BT-BoldItalic
    /Swiss721BT-BoldOutline
    /Swiss721BT-Italic
    /Swiss721BT-ItalicCondensed
    /Swiss721BT-Light
    /Swiss721BT-LightCondensed
    /Swiss721BT-LightCondensedItalic
    /Swiss721BT-LightExtended
    /Swiss721BT-LightItalic
    /Swiss721BT-Roman
    /Swiss721BT-RomanCondensed
    /Swiss721BT-RomanExtended
    /Swiss721BT-Thin
    /Swiss721-LightObliqueSWA
    /Swiss721-LightSWA
    /Swiss911BT-ExtraCompressed
    /Swiss921BT-RegularA
    /Syastro
    /Symap
    /Symath
    /SymbolGreek
    /SymbolGreek-Bold
    /SymbolGreek-BoldItalic
    /SymbolGreek-Italic
    /SymbolGreekP
    /SymbolGreekP-Bold
    /SymbolGreekP-BoldItalic
    /SymbolGreekP-Italic
    /SymbolGreekPMono
    /SymbolMT
    /SymbolProportionalBT-Regular
    /SymbolsAPlentySH
    /Symeteo
    /Symusic
    /Tahoma
    /Tahoma-Bold
    /TahomaItalic
    /TamFlanahanSH
    /Technic
    /TechnicalItalic
    /TechnicalPlain
    /TechnicBold
    /TechnicLite
    /Tekton-Bold
    /Teletype
    /TempsExptBoldSH
    /TempsExptItalicSH
    /TempsExptRomanSH
    /TempsSwashSH
    /TempusSansITC
    /TessHoustonSH
    /TexCatlinObliqueSH
    /TexCatlinSH
    /Thrust
    /Times-Bold
    /Times-BoldItalic
    /Times-BoldOblique
    /Times-ExtraBold
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Oblique
    /Times-Roman
    /Times-Semibold
    /Times-SemiboldItalic
    /TimesUnic-Bold
    /TimesUnic-BoldItalic
    /TimesUnic-Italic
    /TimesUnic-Regular
    /TonyWhiteSH
    /TransCyrillic
    /TransCyrillic-Bold
    /TransCyrillic-BoldItalic
    /TransCyrillic-Italic
    /Transistor
    /Transitional521BT-BoldA
    /Transitional521BT-CursiveA
    /Transitional521BT-RomanA
    /TranslitLS
    /TranslitLS-Bold
    /TranslitLS-BoldItalic
    /TranslitLS-Italic
    /TransRoman
    /TransRoman-Bold
    /TransRoman-BoldItalic
    /TransRoman-Italic
    /TransSlavic
    /TransSlavic-Bold
    /TransSlavic-BoldItalic
    /TransSlavic-Italic
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /TribuneBold
    /TribuneItalic
    /TribuneRegular
    /Tristan
    /TrotsLight-HMK
    /TrotsMedium-HMK
    /TubularRegular
    /Txt
    /TypoUprightBT-Regular
    /UmbraBT-Regular
    /UmbrellaPSMT
    /UncialLS
    /Unicorn
    /UnicornPSMT
    /Univers
    /UniversalMath1BT-Regular
    /Univers-Bold
    /Univers-BoldItalic
    /UniversCondensed
    /UniversCondensed-Bold
    /UniversCondensed-BoldItalic
    /UniversCondensed-Italic
    /UniversCondensed-Medium
    /UniversCondensed-MediumItalic
    /Univers-CondensedOblique
    /UniversExtended-Bold
    /UniversExtended-BoldItalic
    /UniversExtended-Medium
    /UniversExtended-MediumItalic
    /Univers-Italic
    /UniversityRomanBT-Regular
    /UniversLightCondensed-Italic
    /UniversLightCondensed-Regular
    /Univers-Medium
    /Univers-MediumItalic
    /URWWoodTypD
    /USABlackPSMT
    /USALightPSMT
    /Vagabond
    /Venetian301BT-Demi
    /Venetian301BT-DemiItalic
    /Venetian301BT-Italic
    /Venetian301BT-Roman
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /VinetaBT-Regular
    /Vivaldii
    /VladimirScript
    /VoguePSMT
    /WaldoIconsNormalA
    /WaltHarringtonSH
    /Webdings
    /Weiland
    /WesHollidaySH
    /Wingdings-Regular
    /WP-HebrewDavid
    /XavierPlatoSH
    /YuriKaySH
    /ZapfChanceryITCbyBT-Bold
    /ZapfChanceryITCbyBT-Medium
    /ZapfDingbatsITCbyBT-Regular
    /ZapfElliptical711BT-Bold
    /ZapfElliptical711BT-BoldItalic
    /ZapfElliptical711BT-Italic
    /ZapfElliptical711BT-Roman
    /ZapfHumanist601BT-Bold
    /ZapfHumanist601BT-BoldItalic
    /ZapfHumanist601BT-Italic
    /ZapfHumanist601BT-Roman
    /ZappedChancellorMedItalicSH
    /ZurichBT-BlackExtended
    /ZurichBT-Bold
    /ZurichBT-BoldCondensed
    /ZurichBT-BoldCondensedItalic
    /ZurichBT-BoldItalic
    /ZurichBT-ExtraCondensed
    /ZurichBT-Italic
    /ZurichBT-ItalicCondensed
    /ZurichBT-Light
    /ZurichBT-LightCondensed
    /ZurichBT-Roman
    /ZurichBT-RomanCondensed
    /ZurichBT-RomanExtended
    /ZurichBT-UltraBlackExtended
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


